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Interpolation theory and measuresrelated to operator idealsFernando CobosAbstract. Given any operator ideal I, there are two natural func-tionals 
I(T ), �I(T ) that one can use to show the deviation of theoperator T to the closed surjective hull of I and to the closed in-jective hull of I, respectively. We describe the behaviour under in-terpolation of 
I and �I . The results are part of joint works withA. Mart��nez, A. Manzano and P. Fern�andez-Mart��nez.Often in analysis we are dealing with an operator that can be consid-ered acting between several Banach spaces. This is, for example, the caseof many integral operators that are studied simultaneously in the wholefamily of Lp-spaces (see [21] and [23]). For this reason it is important tohave results which give relationships between properties of a given oper-ator considered in two di�erent spaces. Non-trivial examples of such re-sults are the famous interpolation theorems of Riesz-Thorin (1926/1938)and Marcinkiewicz (1939). Let us recall the statement of Riesz-Thorin the-orem.Let (
i; �i), i = 0; 1, be measure spaces with �-�nite positive measures�i, and let Lp = Lp(
i; �i) denote the space of all (equivalent classes of)�i-measurable functions f on 
i, such thatkfkp = �Z
 jf(x)jpd�i�1=pis �nite.Theorem (Riesz-Thorin theorem). Assume that 1 � pi; qi � 1 for i =0; 1, and let T be a linear operator which maps Lpi(
0; �0) continuously intoLqi(
1; �1) with norm Mi. If 0 < � < 1 and 1=p = (1� �)=p0+ �=p1, 1=q =(1��)=q0+�=q1, then T maps Lp(
0; �0) continuously into Lq(
1; �1) withnorm M �M1��0 M�1 .This theorem shows that boundedness can be interpolated betweenLp-spaces. In 1960, Krasnosel'skii [22] proved that compactness can be alsointerpolated. Namely, in the hypotheses of the Riesz-Thorin theorem, if



94 Fernando CobosT : Lp0(
0; �0) �! Lq0(
1; �1) is not just bounded but also compact, thenT : Lp(
0; �0) �! Lq(
1; �1) is compact too.Recall that T 2 L(A;B) is said to be compact if T maps the unit ballof A into a relatively compact set in B.The proof given by Krasnosel'skii in [22] requires also the assumptionq0 <1, but this condition is not essential for the result. It can be eliminatedby given di�erent arguments.At the beginning of the sixties, Lions, Peetre, Calder�on, Gagliardo, Kreinand other authors investigated the validity of these results for general cou-ples of Banach spaces. Two main interpolation methods were developed, thecomplex method (based on ideas involved in the proof of the Riesz-Thorintheorem) and the real method (connected with the Marcinkiewicz theorem).In the following years the contributions of these and other authors turnedideas and techniques related to these questions into a new �eld of studyin functional analysis, which is now called interpolation theory and thathas found important applications in harmonic analysis, partial di�erentialequations and approximation theory, among other branches of analysis (seethe books by Bergh and L�ofstr�om [5] and by Triebel [35]).Let me recall the construction of the real interpolation method.Let A = (A0; A1) be a Banach couple, that is, two Banach spaces con-tinuously embedded in a Hausdor� topological vector space A. Then wecan form their sum A0 + A1 = fa 2 A : a = a0 + a1; ai 2 Aig and theirintersection A0 \ A1 = fa 2 A : a 2 A0 and a 2 A1g. These spaces becomeBanach spaces when endowed with their natural normskakA0+A1 = inf fka0kA0 + ka1kA1 : a = a0 + a1; ai 2 Aig ;kakA0\A1 = max fkakA0 ; kakA1g :The real interpolation method will allow us to construct intermediatespaces between A0 and A1. In other words, spaces that contain continuouslyA0 \ A1 and that are continuously embedded in A0 +A1. For this aim, we�rst modify the norm of A0+A1 by inserting a scalar parameter t > 0. PutK(t; a) = inf fka0kA0 + tka1kA1 : a = a0 + a1; ai 2 Aig :Then, given any 0 < � < 1 and 1 � q � 1, we de�ne A�;q = (A0; A1)�;q asthe collection of all elements a 2 A0 +A1 having a �nite normkak�;q =8><>:�Z 10 �t��K(t; a)�q dtt �1=q if q <1supt>0 �t��K(t; a)	 if q =1:



Interpolation theory and measures 95The space (A0; A1)�;q is called the real interpolation space. It is an in-termediate space between A0 and A1 and has the following interpolationproperty for bounded operators:If (B0; B1) is another Banach couple and T is a linear operator fromA0 + A1 into B0 + B1 whose restrictions T : Ai �! Bi are bounded withnorm Mi (i = 0; 1), then the restriction of T to (A0; A1)�;q is a boundedoperator T : (A0; A1)�;q �! (B0; B1)�;q with norm M �M1��0 M�1 .To make clear the relationship between this interpolation method andour starting point, consider the couple (L1; L1). It turns out thatK(t; f) = Z t0 f�(s) ds; t > 0where f� is the non-increasing rearrangement of f on (0;1) de�ned byf�(t) = inf f� > 0 : �(fx : jf(x)j > �g) � tg :Hence, (L1; L1)�;p = Lp if 1p = 1� �;with equivalence of norms. In a more general way, one can check that(Lp0 ; Lp1)�;p = Lp if 1p = 1� �p0 + �p1 ;and if we interpolate with the second parameter q di�erent from p andp0 6= p1, then (Lp0 ; Lp1)�;q = Lp;q :Here Lp;q stands for the Lorentz function space de�ned as the collection ofall (equivalent classes of) �-measurable functions f such that the normkfkp;q = 8>><>>:�Z 10 �t1=p Z t0 f�(s) ds�q dtt �1=q (1 � q <1)sup0<t<1�t1=p Z t0 f�(s) ds� (q =1)is �nite. The space Lp;1 is often called the weak Lp-space.From the early 1960s a number of authors have investigated whether ornot Krasnosel'skii's theorem can be extended to abstract couples of Banach



96 Fernando Cobosspaces. In fact, a question that can be now considered as classical in interpo-lation theory is to determine if the interpolated operator T : (A0; A1)�;q �!(B0; B1)�;q inherits a certain property that T : A0 �! B0 has. My talks aredevoted to this question. We shall show some properties that pass to theinterpolated operators, others that do not pass, paying special attention toquantitative results.Concerning interpolation of compactness, the �rst abstract result is dueto Lions and Peetre [26] in 1964:Theorem (Lions-Peetre theorem). Let B be a Banach space, let A =(A0; A1) be a Banach couple, 0 < � < 1, 1 � q � 1 and let T be alinear operator.a) Assume that T : A0 �! B compactly;T : A1 �! B boundedly:Then T : (A0; A1)�;q �! B is compact.b) Assume instead that T : B �! A0 compactly;T : B �! A1 boundedly:Then T : B �! (A0; A1)�;q is compact.Note that although the rank of q is [1;1], in order to establish the theo-rem, it su�ces to prove a) when q = 1 and b) when q = 1. The reason isthat for any 1 � q � 1 the following continuous inclusions hold:(A0; A1)�;1 ,! (A0; A1)�;q ,! (A0; A1)�;1: (1)A Banach spaceX intermediate with respect to the couple A is said to beof class CK(�;A) [resp. CJ(�;A) ] if X ,! (A0; A1)�;1 [ resp. (A0; A1)�;1 ,!X ]. It is clear that if the assumptions of a) holds and X is of class CK(�;A),then T : X �! B is compact. Similarly, under the assumptions of b), if Xis of class CJ(�;A), then T : B �! X is compact.The Lions-Peetre theorem refers to special cases when one of the couplesreduces to a single Banach space. However, it is the main tool for provingall known compactness results in interpolation theory.A quantitative version of Lions-Peetre theorem in terms of entropy num-bers can be found in the book by Pietsch [32] (previous results in this di-rection were obtained by Peetre and by Triebel (see [35]). An analogue of



Interpolation theory and measures 97the Lions-Peetre theorem in terms of the measure of non-compactness wasestablished by Edmunds and Teixeira in [34].It has been also investigated if similar results hold for other propertiesof the operator T . Let me recall one of these results that refers to propertiesthat generalize the concept of compactness.An operator T 2 L(A;B) between Banach spaces A and B is said to bestrictly singular if the restriction of T to any in�nite-dimensional (closed)subspace of A is not an isomorphism into B. The operator T is called strictlycosingular if there is no in�nite-codimensional (closed) subspace F � B,such that �FT is surjective. Here �F stands for the quotient mapping fromB onto B=F .Every compact operator is strictly singular and strictly cosingular. More-over, the identity map I : `1 �! `2 is strictly singular but it is not compact,while I : c0 �! `1 is strictly cosingular failing also to be compact. Notethat I : c0 �! `1 is not strictly singular either. On the other hand, everysurjection from `1 onto `2 is strictly singular but it is not cosingular.The following duality relationship holds between singularity and cosin-gularity (see [31]): If the dual operator T � : B� �! A� is strictly singular(resp. cosingular), then T : A �! B is strictly cosingular (resp. singular).These operators have the following interpolation properties.Theorem 1. Let B be a Banach space, let A = (A0; A1) be a Banach cou-ple, 0 < � < 1, 1 � q � 1 and let T be a linear operator.a) If T : A0 �! B is strictly cosingular and T : A1 �! B is bounded, thenT : (A0; A1)�;q �! B is strictly cosingular.b) If T : B �! A0 is strictly singular and T : B �! A1 is bounded, thenT : B �! (A0; A1)�;q is strictly singular.Beucher gave in [6] examples showing that strict singularity [resp. cosin-gularity] cannot be interpolated in the situation a) [resp. b)]. Next we recallone of them.Example 1. Let A = (L1[0; 1]; L1[0; 1]), B = L1[0; 1] and choose T as theidentity mapping. It can be checked that I : L1[0; 1] �! L1[0; 1] is strictlysingular, and obviously I : L1[0; 1] �! L1[0; 1] is bounded. However, if1=p = �, I : Lp[0; 1] = (L1[0; 1]; L1[0; 1])�;p �! L1[0; 1]fails to be strictly singular. The reason is that, according to Khintchine'sinequality, the span of Rademacher functions in Lp[0; 1] and L1[0; 1] is iso-morphic to `2, so if we denote by E the span of Rademacher functions inLp[0; 1], IjE is an isomorphism into L1[0; 1].



98 Fernando CobosExample 2. In Beucher's example A0 +A1 = L1[0; 1] = B and T is equalto the natural embedding J from A�;p into A0 +A1.For any Banach couple A = (A0; A1), it is possible to give a necessarycondition for J : A�;p �! A0 + A1 to be strictly singular. Namely, anyin�nite dimensional closed subspace E of A�;p should contain a subspaceisomorphic to `p.Indeed, since JjE cannot be an isomorphism, E is not closed in A0 +A1.Then, according to a result due to Levy [25], E contains a subspace isomor-phic to `p.Let us investigate the common part of these two theorems. Recall thata class I of bounded linear operators is said to be an operator ideal ifeach component I \ L(A;B) = I(A;B) is a linear subspace of L(A;B)that contains the �nite rank operators and satis�es that STR 2 I(E;F )whenever R 2 L(E;A), T 2 I(A;B) and S 2 L(B;F ). The ideal I is calledclosed if each component I(A;B) is closed in L(A;B).An ideal I is called injective if for every isomorphic embeddingJ 2 L(B;F ) and every operator T 2 L(A;B) it follows from JT 2 I(A;F )that T 2 I(A;B). Injectivity means that it does not depend on the size ofthe target space B whether or not T 2 L(A;B) belongs to I.The ideal I is said to be surjective if for every surjection Q 2 L(E;A) andevery operator T 2 L(A;B) it follows from TQ 2 I(E;B) that T 2 I(A;B).If I is surjective then it does not depend on the size of the source space Awhether or not T 2 L(A;B) belongs to I.Compact operators K is an example of a closed injective and surjectiveoperator ideal. Strictly singular operators S is an ideal which is closed andinjective but it is not surjective, while the ideal C of strictly cosingularoperators is closed and surjective but it is not injective (see [32]).One may wonder if these properties have any role in the results. In fact,as Heinrich showed in [19], they are su�cient for the conclusion:Theorem 2. Let B be a Banach space, let A = (A0; A1) be a Banach cou-ple, 0 < � < 1, 1 � q � 1 and let T be a linear operator.a) If I is a surjective closed operator ideal, T 2 I(A0; B) and T 2 L(A1; B),then T 2 I(A�;q; B).b) If I is an injective closed operator ideal, T 2 I(B;A0) and T 2 L(B;A1),then T 2 I(B;A�;q).In order to derive a quantitative version of this result, take any operatorideal I and denote by Is its closed surjective hull, that is, the smallest closedsurjective operator ideal containing I. Put Ii for its closed injective hull.



Interpolation theory and measures 99These ideals can be characterized as follows (see [20]):i) Let T 2 L(A;B). The operator T belongs to Is(A;B) if and only if forevery " > 0 there is a Banach space E and an operator R 2 I(E;B)such that T (UA) � R(UE) + "UB :Here UA stands for the closed unit ball of A.ii) Let T 2 L(A;B). The operator T belongs to Ii(A;B) if and only if forevery " > 0 there is a Banach space F and an operator R 2 I(A;F )such that kTxkB � kRxkF + "kxkA ; x 2 A:In the light of these characterizations, it is natural to associate to I thefollowing functionals
I(T ) = 
I(TA;B) = inff� > 0: T (UA) � �UB +R(UE);R 2 I(E;B); E any Banach spaceg;�I(T ) = �I(TA;B) = inff� > 0: there is a Banach space F and R 2 I(A;F )such that kTxkB � �kxkA + kRxkF ; x 2 Ag:It is clear that 
I(T ) = 0 if and only if T 2 Is;�I(T ) = 0 if and only if T 2 Ii:So, 
I(T ) shows the deviation of T from the ideal Is, while �I(T ) gives thedeviation from Ii.The (outer) measure 
I was introduced by Astala [2], and the (inner)measure �I by Tylli [36]. These measures satisfy thatmax�
I(T ); �I(T )	 � kTk;they are subadditive
I(S + T ) � 
I(S) + 
I(T ); �I(S + T ) � �I(S) + �I(T )



100 Fernando Cobosand submultiplicative
I(ST ) � 
I(S)
I(T ); �I(ST ) � �I(S)�I(T ):Moreover, if IA is the identity mapping of A, then
I(IA) = (0 if IA 2 Is1 if IA =2 Is ; �I(IA) = (0 if IA 2 Ii1 if IA =2 Ii :Indeed, if 
I(IA) = � > 0, it is clear that � � kIAk = 1. On the other hand,using the submultiplicativity, we get� = 
I(IA) = 
I(IAIA) � 
I(IA)
I(IA) = �2:So � � 1 and therefore � = 1. The argument for �I(IA) is the same.If the ideal Ii is symmetric, that is, if the dual operator T � belongs toIi(B�; A�) whenever T 2 Ii(A;B), then (see [18], Prop. 1.2)�I(T ) = 
Ii (T �):Let us look at some concrete cases.Example 3. Take I = K the ideal of compact operators. It is easy to checkthat 
K(T ) is equal to the (ball) measure of non-compactness of T , i.e.,
K(T ) = inf �� > 0 : there exist a �nite number of elementsb1; b2; : : : ; bk 2 B such that T (UA) � k[j=1fbj + �UBg�:We have 
K(IA) = 0 if A is �nite dimensional;
K(IA) = 1 if A is in�nite dimensional:As we said before, K = Ki = Ks. The ideal K is also symmetric, so�K(T ) = 
K(T �). It turns out that �K(T ) = limn!1 cn(T ), where (cn(T ))is the sequence of the Gelfand numbers of T , i.e., �K(T ) coincides withthe in�mum of all � > 0 such that there is a subspace M of A with �nite



Interpolation theory and measures 101codimension, such that kTxkB � �kxkA, x 2 M . Under this form, themeasure �K was already considered by Lebow and Schechter in [24], wherethey establish that 
K and �K are equivalent:12
K(T ) � �K(T ) � 2
K(T ):Example 4. Let I =W the ideal of weakly compact operators. Recall thatT 2 L(A;B) is weakly compact if T carries the closed unit ball of A ontoa relatively weakly compact subset of B, or equivalently, for every normbounded sequence (an) of A, (Tan) has a weakly convergent subsequencein B. The ideal W is symmetric, injective, surjective, and closed.The measure 
W(T ) is equal to the measure of weak non-compactnessintroduced by De Blasi [17]:
W(T ) = inff� > 0 : there is a weakly compact set W in Bsuch that T (UA) �W + �UBg:We have 
W(IA) = 0 if A is re
exive;
W(IA) = 1 if A is nonre
exive:Again �W(T ) = 
W(T �) but this time 
W and �W are not equiva-lent. Namely, there is a Banach space E and a sequence of operators(Tn) � L(E; c0) such that �W(Tn) = 1 and 
W(Tn) � 1=n (see [3]).Example 5. Since strictly singular operators S form a closed injectiveideal, we can use �S(T ) as a measure of the deviation of T to S. The relevantfunctional in the case of strictly cosingular operators C is 
C because C isa closed surjective ideal.Example 6. Our last example refers to Rosenthal operators R. Recall thatT 2 L(A;B) is said to be a Rosenthal operator if for every bounded se-quence (an) � A, the sequence (Tan) admits a weak Cauchy subsequence.According to Rosenthal's theorem [33], the former condition is equivalent tothe fact that no subspace of T (A) is isomorphic to `1. The identity map Ic0of c0 is an example of Rosenthal operator; in particular R 6=W.The ideal R is injective, surjective, and closed. Moreover (see [37])R = Ss = Ci:



102 Fernando CobosWe have now 
R(IA) = 0 if and only if A does not contain any subspaceisomorphic to `1. The same condition is valid for �R(IA).The following result is taken from a joint paper with A. Manzano andA. Mart��nez [11] and refers to interpolation properties of 
I and �I in theLions-Peetre situation.Theorem 3. Let I be an operator ideal. Assume that B is a Banach space,A = (A0; A1) is a Banach couple, 0 < � < 1 and 1 � q �1.a) If T 2 L(A0 +A1; B), then
I(TA�;q;B) � C�;q
I(TA0;B)1��
I(TA1;B)�:b) If T 2 L(B;A0 \A1), then�I(TB;A�;q ) � C�;q�I(TA;B0)1���I(TA;B1)�:Proof. We only give the details of a). The proof of b) can be found in [11].It is enough to consider the case q = 1 because as we already pointedout A�;q ,! A�;1, being the norm of the embedding less than or equal to(q�(1� �))1=q .Since kak�;1 = sup0<t<1 �t��K(t; a)	, given any " > 0, t > 0 anda 2 UA�;1 , we can �nd a decomposition a = a0 + a1, with ai 2 Ai andkaikAi � (1 + ")t��i (i = 0; 1). ThusUA�;1 � (1 + ")t�UA0 + (1 + ")t��1UA1 :Take now any �i > 
I(TAi;B). By the de�nition of 
I , there is a Banachspace Ei and an operator Si 2 I(Ei; B) such thatT (UAi) � �iUB + Si (UEi) i = 0; 1:Hence T (UA�;1) � (1 + ")t��0UB + (1 + ")t�S0(UE0)+ (1 + ")t��1�1UB + (1 + ")t��1S1(UE1)� (1 + ")(t��0 + t��1�1)UB + St;"(UE);where E = (E0 � E1)`1 , i.e., E = f(x; y) : x 2 E0; y 2 E1g normedby k(x; y)kE = max fkxkE0 ; kykE1g and St;"(x; y) = (1 + ")t�S0x +



Interpolation theory and measures 103(1 + ")t��1S1y. Since I is an operator ideal, it is clear that St;" 2 I(E;B).Whence 
I(TA�;1;B) � inft>0�t�
I(TA0;B) + t��1
I(TA1;B)	= (1� �)��1���
I(TA0;B)1��
I(TA1;B)�:This theorem gives a quantitative version of Theorem 2 (Heinrich's re-sult), so it comprises Lions-Peetre theorem as well as the result on strictsingularity and cosingularity. Writing down the estimate for 
I when I = K,we get a result of Edmunds and Teixeira [34], Thm. 1/b on the measure ofnon-compactness. The choice I =W allows us do recover an estimate of Ak-soy and Maligranda [1], Thm. 2/a on the measure of weak non-compactness.Example 1 shows that it is not possible to change the role of 
I and �Iin the Theorem 3. The example also announces that in the general case oftwo Banach couples, estimates of similar type are only valid under extraassumptions on the ideal I.In order to describe the result in the general case, we �rst introducesome notation.Let `1(UA) be the Banach space of all absolutely summable families ofscalars (�a) indexed by the elements a of UA. We write QA : `1(UA) �! Afor the operator de�ned by QA(�a) = Pa2UA �aa. The operator QA isa metric surjection, i.e., QA( �U `1(UA)) = �UA.We denote by JB : B �! `1 (UB�) the isometric embedding JBb =(hf; bi)f2UB� . Here `1 (UB�) stands for the Banach space of all boundedfamilies of scalars indexed by the elements of UB� .For any T 2 L(A;B) we have
I(JBT ) � kJBk
I(T ) � 
I(T );�I(TQA) � �I(T )kQAk � �I(T ):Moreover, using the extension property of `1 (UB�) and the lifting propertyof `1(UA), one can check that operators JB and QA have the followingminimal property (see [2] and [11]):
I(JBT ) = minf
I(jT ) : j : B �! F isometric embeddingg;�I(TQA) = minf�I(T�) : � : E �! A metric surjectiong:



104 Fernando CobosGiven a sequence of Banach spaces (Em), we denote by `q(Em) the vectorvalued `q-space de�ned by`q(Em) = �x = (xm) : xm 2 Emand kxk`q(Em) = � 1Xm=�1 kxmkqEm�1=q <1�:Any operator T 2 I (`q(Em); `q(Fm)) can be imagined as an in�nite matrixwhose elements are QkTPn, where Pn : En �! `q(Em) is the embeddinggiven by Pnx = (�nmx), here �nm is the Kronecker delta, and Qk : `q(Fm) �!Fk is the projection given by Qk(y) = yk. Note that QkTPn 2 L(En; Fk).Let 1 < q < 1. We say that an operator ideal I satis�es the�q-condition if for any sequence of Banach spaces (Em), (Fm) and anyT 2 L (`q(Em); `q(Fm)), it follows from QkTPn 2 I(En; Fk) for any n; kthat T 2 I (`q(Em); `q(Fm)).This condition was introduced by Heinrich in [19], where he also showedthat weakly compact operators or Rosenthal operators satisfy it. Anotherexamples that can be also found in [19] are Banach-Saks operators and dualRadon-Nikodym operators. These ideals are injective, surjective and closed,as well.Note that a necessary condition for I to satisfy the �q-condition is thatI`q 2 I. Hence compact operators, strictly singular operators or strictlycosingular operators fails the �q-condition.Theorem 4. Let 1 < q < 1, 0 < � < 1 and let I be an operator idealsatisfying the �q-condition. Assume that A = (A0; A1), B = (B0; B1) areBanach couples and let T : A0 + A1 �! B0 + B1 be a linear operator suchthat its restrictions T : Ai �! Bi are bounded for i = 0; 1. Thena) 
I  hJB�;qT iA�;q ;`1(UB��;q )! � C
I(TA0;B0)1��
I(TA1;B1)�b) �I  hTQA�;qi`1(UA�;q );B�;q! � C�I(TA0;B0)1���I(TA1;B1)�:We refer to [11] for the proof.Using operators (Tn) mentioned in Example 4, one can construct anexample showing that estimate a) does not hold if we remove the operatorJB�;q (see [11], Remark 3.4).



Interpolation theory and measures 105When I =W, the ideal of weakly compact operators, Theorem 4 impliesthat T : A�;q �! B�;q is weakly compact provided T : A0 �! B0 isweakly compact and 1 < q < 1. The restriction on q is essential. Forinstance, let 1 < pi < 1, 0 < � < 1 and 1p = 1� �p0 + �p1 . The coupleA = (Lp0 [0; 1]; Lp1 [0; 1]) is formed by re
exive spaces, so if we choose T asthe identity mapping I , then I : Lpi [0; 1] �! Lpi [0; 1] is weakly compactfor i = 0; 1. However,(Lp0 [0; 1]; Lp1 [0; 1])�;q = Lp;q[0; 1]and since Lp;1[0; 1] (resp. Lp;1[0; 1]) contains a subspace isomorphic to`1 (resp. `1), it is not re
exive and so I : Lp;1[0; 1] �! Lp;1[0; 1] (resp.I : Lp;1[0; 1] �! Lp;1[0; 1]) cannot be weakly compact.Let us consider now the problem of �nding a necessary and su�cientcondition for T : A�;q �! B�;q to be weakly compact for 1 < q <1.The root of this problem is the classical result of Davis, Figiel, Johnsonand Pelczynski [16] on factorization of weakly compact operators:Theorem (DFJP Theorem). Let T 2 L(A;B) be a weakly compact opera-tor. Then there is a re
exive Banach space X and bounded linear operatorsR 2 L(A;X) and S 2 L(X;B) such that the following diagram commutesA BX ������
-@@@@@RR T S

The proof given in [16] has a clear interpolation 
avour. This motivatedthe investigation on the behaviour of weak compactness under interpolation.And in 1978 Beauzamy [4] proved that if 1 < q < 1 a necessary andsu�cient condition forA�;q to be re
exive is that the natural embedding Jfrom A0 \A1 into A0 +A1 is weakly compact. Later, in 1980, Heinrich [19]gave a new approach to this result that applies also to any injective surjectiveoperator ideal I satisfying the �q-condition. Other contributions are due toNeidinger [29], [30], Maligranda and Quevedo [27] and Mastylo [28].



106 Fernando CobosIn order to establish Heinrich's result, we shall �rst introduce other twonorms on (A0; A1)�;q.Sincekak�;q = �Z 10 �t��K(t; a)�q dtt �1=q= � 1Xm=�1 Z 2m2m�1 �t��K(t; a)�q dtt �1=q � � 1Xm=�1 �2��mK(2m; a)�q�1=qit follows that the functionalkak�;q;K = � 1Xm=�1 �2��mK(2m; a)�q�1=qis a norm on A�;q equivalent to k � k�;q.Note that kak�;q;K = k �2��mK(2m; a)� k`q :In particular, we can now establish the embeddings (1) just taking intoaccount that `p ,! `q if p � q.We denote by A�;q;K = (A0; A1)�;q;K the real interpolation space en-dowed with the norm k � k�;q;K . The interpolation property still holds forthe norm k � k�;q;K but we need the additional constant 2� in the normestimate. Namely kTkA�;q;K ;B�;q;K � 2�kTk1��A0;B0kTk�A1;B1 :Put now J(t; a) = max fkakA0 ; tkakA1g ; a 2 A0 \ A1and denote by (A0; A1)�;q;J the collection of all elements a 2 A0+A1 whichcan be represented by a = P1m=�1 um (convergence in A0 + A1) with(um) � A0 \ A1 and �P1m=�1 �2��mJ(2m; um)�q�1=q < 1. The norm of(A0; A1)�;q;J is given bykak�;q;J = inf�� 1Xm=�1 �2��mJ(2m; um)�q�1=q : a = 1Xm=�1um�:



Interpolation theory and measures 107It turns out (see [5] or [35]) that (A0; A1)�;q = (A0; A1)�;q;J with equivalenceof norms. To be precisekak�;q;K � 13� 2� � 21�� kak�;q;J ; kak�;q;J � 4kak�;q;K:In particular,kTkA�;q;J ;B�;q;K � 2�3� 2� � 21�� kTk1��A0;B0kTk�A1;B1 : (2)These discrete representations of (A0; A1)�;q allow us to relate thereal interpolation space with vector valued sequence spaces. Indeed, if2��mFm = �A0 +A1; 2��mK(2m; �)�and 2��mGm = �A0 \ A1; 2��mJ(2m; �)�then the map j : (A0; A1)�;q;K �! lq(2��mFm) de�ned by ja =(: : : ; a; a; a; : : : ) is an isometric embedding, and � : `q(2��mGm) �!(A0; A1)�;q;J given by �(um) =P1m=�1 um is a metric surjection.We are now ready to establish Heinrich's results.Theorem 5. Let 1 < q < 1, 0 < � < 1 and let I be an injective surjec-tive operator ideal satisfying the �q-condition. Assume that A = (A0; A1),B = (B0; B1) are Banach couples and T : A0 + A1 �! B0 + B1 is a lin-ear operator whose restrictions T : Ai �! Bi are bounded for i = 0; 1.A necessary and su�cient condition for T : A�;q �!B�;q to belong to I isthat T : A0 \ A1 �! B0 +B1 belongs to I.Proof. The necessity is clear because we have the factorizationA0 \ A1 ,! A�;q T�! B�;q ,! B0 +B1:Assume then that T : A0 \ A1 �! B0 + B1 belongs to I. Since2��mJ(2m; �) [resp. 2��mK(2m; �)] is an equivalent norm to k � kA0\A1[resp. k � kB0+B1 ], it follows that T : 2��kGk �! 2��nFn belongs to I forany k; n. Hence, by the �q-property of I, we derive thatjT� 2 I �`q(2��mGm); `q(2��mFm)� :Now taking into account surjectivity and injectivity of I, we conclude thatT 2 I �A�;q;B�;q�.



108 Fernando CobosNext we derive the general factorization result.Theorem 6. Let I be an injective surjective operator ideal satisfying the�q-condition and let T 2 I(A;B). Then there is a Banach space X suchthat IX 2 I and operators R 2 L(A;X) and S 2 L(X;B) so that thefollowing diagram commutesA BX ������
-@@@@@RR T SProof. Factorize �rst T as

A=Ker(T )A BB
-? - 6IBT� j0Here �(x) = [x] is the quotient mapping and j0[x] = Tx. Put A0 =A=Ker(T ) and A1 = B. Then j0 : A0 �! A1 is a continuous embedding,and therefore (A0; A1) is a Banach couple. It is clear that A0\A1 = A0 andA0 +A1 = A1. Moreover, since � is a quotient mapping and I is surjective,we get that j0 : A0 \A1 �! A0 +A1 belongs to I. Take any 0 < � < 1 andlet X = (A0; A1)�;q. By Theorem 5, the identity mapping IX of X belongsto I, and operators R = j0� 2 L(A;X), S = I 2 L(X;B) give the wantedfactorization.In the special case I = W we recover the theorem of Davis, Figiel,Johnson and Pelczynski.Next we shall describe a quantitative version of Theorem 5. Instead ofestimating the measure of the interpolated operator against the measuresof the restrictions T : Ai �! Bi, we are looking for something di�erentinvolving the measure of T : A0 \ A1 �! B0 +B1.



Interpolation theory and measures 109The �rst attempt in this direction was done by Aksoy andMaligranda [1].They considered the case of the measure of weak non-compactness andT : A0 +A1 �! B, trying to establish the inequality
W �TA�;q ;B� � C�;q
W(TA0\A1;B)�kTk1��A;B ; (3)where kTkA;B = max fkTkA0;B ; kTkA1;Bg. But this can only be true for0 < � � 1=2 as the following example shows.Example 7. Take any 0 < � < 1 and put �c0 = (c0; �k � kc0). ChooseA = (c0; �c0), B = c0 and T = I as the identity operator. ThenkTkA;B = maxf1; ��1g = ��1;
W �T�(A);B� = 
W (Ic0) = 1:On the other hand, (c0; �c0)�;q = ��c0with equivalence of norms, being the constants independent of �. Hence
W �TA�;q;B� = 
W �I��c0;c0� = ���:If (3) holds, then ��� � C�;q��(1��); 0 < � < 1or equivalently sup0<�<1 ��1�2�	 <1which only happens when 0 < � � 1=2.As we show next, inequality (3) is valid for the whole rank of � if wereplace � by � = minf�; 1� �g. Moreover, the argument we give works forany operator ideal I. The result as well as the former example are takenfrom a joint paper with A. Mart��nez [12].Theorem 7. Let I be an operator ideal. Assume that B is a Banach space,A = (A0; A1) is a Banach couple, 1 � q � 1, 0 < � < 1 and let � =minf�; 1� �g.



110 Fernando Cobosa) If T 2 L(A0 +A1; B), then
I(TA�;q;B) � C�;q
I(TA0\A1;B)�kTk1��A;B :b) If T 2 L(B;A0 \A1), then�I(TB;A�;q ) � C�;q�I(TB;A0+A1)�kTk1��B;A :Proof. We only sketch the main ideas of the proof of a). Statement b) followsfrom a) by duality arguments. Full details can be found in [12].It su�ces to consider the case q = 1. Let � � 1, and take t, s so thatt� > 1=�, s1�� > 1=�. A similar reasoning to that in [28], Thm. 8 (seealso [1], Thm. 2/b), gives that for any " > 0UA�;1 � 2(1 + ")�maxfs; tgUA0\A1 + 2(1 + ")�UA0+A1 :Let � > 
I (TA0\A1;B). By the de�nition of 
I , there is a Banach spaceE and an operator R 2 I(E;B) such thatT (UA0\A1) � �UB +R(UE):The operator S = 2(1 + ")�maxfs; tgR belongs to I(E;B) and satis�esT (UA�;1) � [2(1 + ")��maxfs; tg+ 2(1 + ")�kTkA;B ]UB + S(UE):Whence 
I �TA�;1;B� � 2(1 + ")��maxfs; tg+ 2(1 + ")�kTkA;Band so 
I �TA�;1;B� � 2�
I (TA0\A1;B)maxfs; tg+ 2�kTkA;B :Now choosing � = �
I (TA0\A1;B) =kTkA;B�� and taking the in�mumover all t > (1=�)1=� and s > (1=�)1=(1��), the result follows.For A = (A0; A1) and B = (B0; B1), Banach couples, we shall writeT : A �!B to mean that T is a linear operator from A0+A1 into B0+B1,whose restrictions to each Ai de�ne a bounded operator from Ai into Bi(i = 0; 1). We put kTkA;B = max fkTkA0;B0 ; kTkA1;B1gIn the general case the estimate has been obtained in another joint paperwith A. Mart��nez [13]. In order to describe it, we denote by Tm the restrictionof T from �A0 \A1; 2��mJ(2m; �)� into �B0 +B1; 2��mK(2m; �)�.



Interpolation theory and measures 111Theorem 8. Let 1 < q < 1, 0 < � < 1, put � = minf�; 1� �g, and let Ibe an operator ideal satisfying the �q-condition. Assume that T : A �!Band de�ne Tm as before. Thena) 
I  hJB�;qT iA�;q ;`1(UB��;q )! � C sup�
I(Tm)� : m 2 Z	kTk1��A;B ,b) �I  hTQA�;qi`1(UA�;q );B�;q! � C sup��I(Tm)� : m 2 Z	kTk1��A;B .See [13] for the proof.Comparing Theorems 7 and 8, it is natural to wonder if in the gen-eral case where B0 6= B1, all assumptions of Theorem 8 are necessaryfor the conclusion. This is just the case (see [13]). We shall only reviewan example showing that a �nite number of 
I(Tm) is not enough to domi-nate 
I�JB�;qT �.Example 8. Let 0 < � < 1, I = W, choose A = B = (c0; �c0) and letT = I be the identity operator. Then�A0 \ A1; 2��mJ(2m; �)� = 2��mmaxf1; �2mgc0�B0 +B1; 2��mK(2m; �)� = 2��mminf1; �2mgc0:Thus 
W(Tm) = min��2m; 1�2m� :Clearly kTkA;B = 1:Moreover, taking into account that (c0; �c0)�;q = ��c0 with equivalence ofnorms with constants independent of �, and using the extension propertyof `1-spaces, one can check that
W �JB�;qT� = 
W(I��c0;��`1) = 1:Consequently, if the inequality a) in Theorem 8 would be true with onlya �nite number of 
I(Tm), say �
I(Tm)	�N�m�N , it would follow1 � C(�2N )� for every � 2 �0; 12N �which is impossible.



112 Fernando CobosCompact operators do not satisfy �q-condition, so Theorems 4 and 8 donot apply to the ideal K. In fact, it is easy to show by means of examplesthat T : A0 \ A1 �! B0 + B1 may be compact and T : A�;q �!B�;q maynot be:Example 9. TakeA =B = (`q ; `q(n)), where `q(n) = f�n : (n�n) 2 `qg,and choose T as the identity operator. ThenA0 \ A1 = `q(n) ; B0 +B1 = `qand T : A0\A1 �! B0+B1 is compact because it is the limit of a sequenceof �nite rank operators. However (A0; A1)�;q = (B0; B1)�;q = `q(n�) and theidentity operator of this in�nite-dimensional space is not compact.In 1992, culminating the e�orts of several authors (see the papers [7],[8], [14]), Cwikel proved in [15] that a su�cient condition for compactnessof T : A�;q �!B�;q (1 � q � 1) is that one of the restrictions of T , sayT : A0 �! B0, is compact. I will �nish this talk by describing a quantitativeversion of this result in terms of the measure of non-compactness. The resultis taken from a joint paper with P. Fern�andez-Mart��nez and A. Mart��nez [9].Theorem 9. Let A = (A0; A1) and B = (B0; B1) be Banach couples andlet T : A �! B. Then, for any 1 � q � 1 and 0 < � < 1,
K �TA�;q;J ;B�;q;K� � 16 �
K(TA0;B0)1��
K(TA1;B1)�where � = 2�=(3� 2� � 21��).Proof. I will only sketch the main ideas. Full details can be found in [9].Let again Gm = (A0 \ A1; J(2m; : )) and Fm = (B0 +B1;K(2m; : )). Aswe have already said, the operator � : `q(2��mGm) �! A�;q;J de�ned by�(um) =P1m=�1 um is a metric surjection. Note that� : `1(Gm) �! A0 and � : `1(2�mGm) �! A1are also bounded with norm � 1.Let j be the operator associating to any b 2 B0 + B1 the constantsequence jb = (: : : ; b; b; b; : : : ). Then j :B�;q;K �! lq(2��mFm) is a metricinjection, and operators j : B0 �! l1(Fm), j : B1 �! l1(2�mFm) arebounded with norms � 1.



Interpolation theory and measures 113We have the following diagram of bounded operators`1(Gm) �����! A0 T����! B0 j�! `1(Fm)`1(2�mGm) �����! A1 T����! B1 j����! `1(2��mFm)`q �2��mGm� �����! (A0; A1)�;q T����! (B0; B1)�;q j����! `q �2��mFm� :Put T = jT�. We have that
K�T : (A0; A1)�;q;J �! (B0; B1)�;q;K�� 2
K�jT : (A0; A1)�;q;J �! `q(2��mFm)�= 2
K�T : `q(2��mGm) �! `q(2��mFm)�:So, in order to establish the theorem, it su�ces to show that
K �T : `q(2��mGm) �! `q(2��mFm)�� 8�
K(T : A0 �! B0)1��
K(T : A1 �! B1)�: (4)The advantage of working with T instead of T is that we can use thefollowing families of projections on the couples of vector valued sequences:For each positive integer n 2 N de�ne operators Pn ; Q+n ; Q�n byPn(um) = (: : : ; 0; 0; u�n; u�n+1; : : : ; un�1; un; 0; 0; : : : )Q+n (um) = (: : : ; 0; 0; un+1; un+2; : : : )Q�n (um) = (: : : ; u�n�2; u�n�1; 0; 0; : : : ):The following three conditions holds:I) The identity mapping on `1(Gm) + `1(2�mGm) can be decomposed asI = Pn +Q+n +Q�n for n = 1; 2; : : : .II) Operators Pn ; Q+n andQ�n are uniformly bounded in the couple, i.e.,kPn : `1(Gm) �! `1(Gm)k = kPn : `1(2�mGm) �! `1(2�mGm)k = 1and similarly for Q+n andQ�n .



114 Fernando CobosIII) kQ+n : `1(Gm) �! `1(2�mGm)k= 2�(n+1) = kQ�n : `1(2�mGm) �! `1(Gm)k.The same families of projections can be de�ned on the couple�`1(Fm) ; `1(2�mFm)� :Call them Rn ; S+n ; S�n . They satisfy the corresponding versions of (I), (II)and (III).Next we shall decompose the interpolated operator by means of theseprojections. We shall need a more re�ned splitting than the one use in [10]to develop a new approach to Cwikel's result.It follows fromT = T (Pn +Q+n +Q�n ) =TPn + (Rn + S+n + S�n )T (Q+n +Q�n )=TPn +RnT (Q+n +Q�n ) + S+nTQ�n + S�nTQ+n + S+nTQ+n + S�nTQ�nthat 
K(T ) � 
K(TPn) + 
K(RnT (Q+n +Q�n )) + kS+nTQ�n k+ kS�nTQ�n k+ kS+nTQ+n k+ kS�nTQ�n k:Here all operators act from `q �2��mGm� into `q �2��mFm�.It is not hard to check that the inclusions`q �2��mGm� ,! �`1(Gm); `1(2�mGm)��;q;J ;�`1(Fm); `1(2�mFm)��;q;K ,! `q �2��mFm�have norm less than or equal to 1. This remark and interpolation property(2) will be useful in our estimates.Let us consider �rst the (+;�)-term. We havekS+nTQ�n k � �kS+nTQ�n k1��`1(Gm);`1(Fm)kS+nTQ�n k�̀1(2�mGm);`1(2�mFm)� �kTk1��A0;B0kQ�n k�̀1(2�mGm);`1(Gm)� kTk�̀1(Gm);`1(Fm)kS+n k�̀1(Fm);`1(2�mFm)� �2�2(n+1)�kTkA0;B0 ! 0 as n!1:In the same way kS�nTQ+n k ! 0 as n!1:



Interpolation theory and measures 115Concerning the (+;+)-term, we shall show that for any " > 0, choosing nbig enough, we havekS+nTQ+n k � 2�
K(T : A0 �! B0)1��
K(T : A1 �! B1)� + ": (5)Indeed, according to (2) and (II),kS+nTQ+n k � �kS+nTQ+n k1��`1(Gm);`1(Fm)kS+nTQ+n k�̀1(2�mGm);`1(2�mFm)� �kTQ+n k1��`1(Gm);`1(Fm)kS+nTQ+n k�̀1(2�mGm);`1(2�mFm):The sequence (kTQ+n k) is decreasing since Q+nQ+n+1 = Q+n+1. Hence there is� � 0 such that kTQ+n k ! � as n!1. Choose (un) � U`1(Gm) so thatkTQ+nunk`1(Fm) ! � as n!1:By the de�nition of 
K , given any �0 > 
K(T : A0 �! B0) there are �nitelymany vectors b1; : : : ; bs in B0 such thatTUA0 � s[r=1 fbr + �0UB0g :Then there is some r, say r = 1, and some subsequence (n0) of N withT�Q+n0un0 2 fb1 + �0UB0g for any n0:This allows us to estimate K(2m; b1) because, using (III), we getK(2m; b1) � kb1 � T�Q+n0un0kB0 + 2mkT�Q+n0un0kB1� �0 + 2m�n0kTk1 ! �0 as n0 !1:Whence� = limn0!1 kTQ+n0un0k`1(Fm)� supn0 �kT�Q+n0un0 � b1kB0 + supm2ZfK(2m; b1)g� � 2�0 + ":This implies that there is N1 2 N such that for n � N1,kTQ+n k1��`1(Gm);`1(Fm) � �2
K(T : A0 �! B0)�1�� + ":



116 Fernando CobosLet now pass to kS+nTQ+n k. First note that the set D of all sequences havingonly a �nite number of non-zero coordinates is dense in `1(2�mGm). Givenany �1 > 
K(T : A1 �! B1), we can �nd a �nite set fvrgsr=1 � D so thatmin1�r�s�kTv �Tvrk`1(2�mFm)	 � 2�1 ; v 2 U`1(2�mGm):Then �Tvr	sr=1 � `1(Fm) \ `1(2�mFm), and by (III)kS+nTvrk`1(2�mFm) � " ; r = 1; : : : ; sfor any n � N2 2 N. Given v 2 U`1(2�mGm) we havekS+nTQ+n vk`1(2�mFm)� min1�r�s�kS+nTQ+n v � S+nTvrk`1(2�mFm) + kS+nTvrk`1(2�mFm)	� 2�1 + ":Hence kS+nTQ+n k`1(2�mGm);`1(2�mFm) � 2
K(T : A1 �! B1) + "for n su�ciently big and (5) follows.The (�;�)-term can be estimated in a similar way.The remaining terms require more elaborated arguments. The outcomeis 
K �TPn� � 2�
K(T : A0 �! B0)1��
K(T : A1 �! B1)�;
K �RnT (Q+n +Q�n )� � 2�
K(T : A0 �! B0)1��
K(T : A1 �! B1)�:Details can be found in [9].References[1] A.G. Aksoy and L. Maligranda, Real interpolation and measure of weaknoncompactness. Math. Nachr. 175 (1995), 5{12.[2] K. Astala, On measures of non-compactness and ideal variations in Banachspaces. Ann. Acad. Sci. Fenn. Ser. A. I Math. Dissertationes 29 (1980), 1{42.[3] K. Astala and H.-O. Tylli, Seminorms related to weak compactness andto Tauberian operators. Math. Proc. Cambridge Philos. Soc. 107 (1990),367{375.
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