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Interpolation theory and measures
related to operator ideals

FERNANDO COBOS

Abstract. Given any operator ideal J, there are two natural func-
tionals v, (T'), 8,(T") that one can use to show the deviation of the
operator 1" to the closed surjective hull of J and to the closed in-
jective hull of J, respectively. We describe the behaviour under in-
terpolation of v, and 3;. The results are part of joint works with
A. Martinez, A. Manzano and P. Ferndndez-Martinez.

Often in analysis we are dealing with an operator that can be consid-
ered acting between several Banach spaces. This is, for example, the case
of many integral operators that are studied simultaneously in the whole
family of L,-spaces (see [21] and [23]). For this reason it is important to
have results which give relationships between properties of a given oper-
ator considered in two different spaces. Non-trivial examples of such re-
sults are the famous interpolation theorems of Riesz-Thorin (1926/1938)
and Marcinkiewicz (1939). Let us recall the statement of Riesz-Thorin the-
orem.

Let (§2;, 1t;), i = 0,1, be measure spaces with o-finite positive measures
Wi, and let L, = L,(£2;, u;) denote the space of all (equivalent classes of)
ui-measurable functions f on (2;, such that

i1, = (/. |f<x>|pdui)l/p

Theorem (Riesz-Thorin theorem). Assume that 1 < p;,q; < oo for i =
0,1, and let T be a linear operator which maps L, (2o, f10) continuously into
Ly, (21, u1) with norm M;. If 0 < 6 <1 and 1/p=(1—0)/po+0/p1, 1/q =
(1—-6)/q0+6/q1, then T maps L,(2o, po) continuously into Ly (£, p1) with
norm M < My~ M},

is finite.

This theorem shows that boundedness can be interpolated between
L,-spaces. In 1960, Krasnosel’skii [22] proved that compactness can be also
interpolated. Namely, in the hypotheses of the Riesz-Thorin theorem, if
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T : Ly, (£20, tto) — Lg, ({21, 11) is not just bounded but also compact, then
T : L,(£2, p10) — Lq($21, p1) is compact too.

Recall that T' € L(A, B) is said to be compact if T' maps the unit ball
of A into a relatively compact set in B.

The proof given by Krasnosel’skii in [22] requires also the assumption
go < 00, but this condition is not essential for the result. It can be eliminated
by given different arguments.

At the beginning of the sixties, Lions, Peetre, Calderén, Gagliardo, Krein
and other authors investigated the validity of these results for general cou-
ples of Banach spaces. Two main interpolation methods were developed, the
complex method (based on ideas involved in the proof of the Riesz-Thorin
theorem) and the real method (connected with the Marcinkiewicz theorem).

In the following years the contributions of these and other authors turned
ideas and techniques related to these questions into a new field of study
in functional analysis, which is now called interpolation theory and that
has found important applications in harmonic analysis, partial differential
equations and approximation theory, among other branches of analysis (see
the books by Bergh and Lofstrom [5] and by Triebel [35]).

Let me recall the construction of the real interpolation method.

Let A = (Ag, A;) be a Banach couple, that is, two Banach spaces con-
tinuously embedded in a Hausdorff topological vector space A. Then we
can form their sum Ag+ 4 ={a € A: a =ao+ a1, a; € A;} and their
intersection Ag N A; ={a€A: a€ Ay and a € A;}. These spaces become
Banach spaces when endowed with their natural norms

lallag+a, =inf {llao|la, + lla1lla, : @ = ao + a1, a; € A},
lall 4ona, = max{||al| 4, |lalla, } -

The real interpolation method will allow us to construct intermediate
spaces between Ag and A;. In other words, spaces that contain continuously
Ap N Ay and that are continuously embedded in Ap + A;. For this aim, we
first modify the norm of Ag+ A; by inserting a scalar parameter ¢ > 0. Put

K(t,a) = inf {||aolla, + tllai|la, : @ = ao + a1, a; € A;}.

Then, given any 0 < 8 < 1 and 1 < ¢ < oo, we define Ag , = (Ao, A1)o,, as
the collection of all elements a € Ag + A; having a finite norm

o at\ e
lallo., = </ (t GI‘<t"’))q7> g <oo
q

sup {t"K(t,a)} if ¢ = 0.
>0
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The space (Ao, A1)g,q is called the real interpolation space. It is an in-
termediate space between Ay and A; and has the following interpolation
property for bounded operators:

If (Bo, B1) is another Banach couple and T is a linear operator from
Ag + A; into By + By whose restrictions T : A; — B, are bounded with
norm M; (i = 0,1), then the restriction of T to (Ao, A1)e,q is a bounded
operator T : (Ag, A1)9,q — (Bo, B1)e,q with norm M < Mé_ng.

To make clear the relationship between this interpolation method and
our starting point, consider the couple (L1, Lo, ). It turns out that

t
K(t, f) = / Fi(s)ds, >0
0
where f* is the non-increasing rearrangement of f on (0, 00) defined by

fr@) =f{6>0: u({z: |f(z)| >6}) <t}

Hence,
(L1,Loc)op=L, if —-=1-6,

with equivalence of norms. In a more general way, one can check that

1 1-6 6
Ly ,L, )o,=1L if —= + —,
( Po Pl) P p D Do I

and if we interpolate with the second parameter ¢ different from p and
Do # p1, then

(Lpoval)é,q =Lpg.

Here L, , stands for the Lorentz function space defined as the collection of
all (equivalent classes of) u-measurable functions f such that the norm

* ! e 1/q
1 £llpg = (/o (tl/p/o f*(S)ds> %) (1<g<o0)

sup {20 [ p(s)as} (4= )
0<t<oco 0
is finite. The space L, o is often called the weak L,-space.

From the early 1960s a number of authors have investigated whether or
not Krasnosel’skii’s theorem can be extended to abstract couples of Banach
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spaces. In fact, a question that can be now considered as classical in interpo-
lation theory is to determine if the interpolated operator T : (Ao, 41)p,q —
(Bo, B1)g,q inherits a certain property that T': Ag — Byg has. My talks are
devoted to this question. We shall show some properties that pass to the
interpolated operators, others that do not pass, paying special attention to
quantitative results.

Concerning interpolation of compactness, the first abstract result is due
to Lions and Peetre [26] in 1964:

Theorem (Lions-Peetre theorem). Let B be a Banach space, let A =
(Ag, A1) be a Banach couple, 0 < 0 < 1,1 < ¢ < oo and let T be a
linear operator.

a) Assume that

T: Ay — B compactly,
T:A — B boundedly.

Then T : (Ao, A1)e,q — B is compact.
b) Assume instead that

T:B— Ay compactly,
T:B— Ay boundedly.

Then T : B — (A, A1)a,q is compact.

Note that although the rank of ¢ is [1, o], in order to establish the theo-
rem, it suffices to prove a) when ¢ = oo and b) when ¢ = 1. The reason is
that for any 1 < ¢ < oo the following continuous inclusions hold:

(Ao, A1)o1 — (Ao, A1)e,q — (Ao, A1) 00- (1)

A Banach space X intermediate with respect to the couple A is said to be
of class Cr (#;A) [resp. Cs(0;A) | if X — (Ao, A1)p.00 [ Tesp. (Ao, A1)p,1 —
X]. It is clear that if the assumptions of a) holds and X is of class Cx (8;4),
then T': X — B is compact. Similarly, under the assumptions of b), if X
is of class €;(6;A4), then T : B — X is compact.

The Lions-Peetre theorem refers to special cases when one of the couples
reduces to a single Banach space. However, it is the main tool for proving
all known compactness results in interpolation theory.

A quantitative version of Lions-Peetre theorem in terms of entropy num-
bers can be found in the book by Pietsch [32] (previous results in this di-
rection were obtained by Peetre and by Triebel (see [35]). An analogue of
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the Lions-Peetre theorem in terms of the measure of non-compactness was
established by Edmunds and Teixeira in [34].

It has been also investigated if similar results hold for other properties
of the operator T'. Let me recall one of these results that refers to properties
that generalize the concept of compactness.

An operator T' € L(A, B) between Banach spaces A and B is said to be
strictly singular if the restriction of T' to any infinite-dimensional (closed)
subspace of A is not an isomorphism into B. The operator T is called strictly
cosingular if there is no infinite-codimensional (closed) subspace F' C B,
such that T is surjective. Here @ stands for the quotient mapping from
B onto B/F.

Every compact operator is strictly singular and strictly cosingular. More-
over, the identity map I : {1 — {5 is strictly singular but it is not compact,
while I : ¢g — { is strictly cosingular failing also to be compact. Note
that I : ¢g — (. is not strictly singular either. On the other hand, every
surjection from ¢; onto {5 is strictly singular but it is not cosingular.

The following duality relationship holds between singularity and cosin-
gularity (see [31]): If the dual operator T* : B* — A* is strictly singular
(resp. cosingular), then T': A — B is strictly cosingular (resp. singular).

These operators have the following interpolation properties.

Theorem 1. Let B be a Banach space, let A = (Ao, A1) be a Banach cou-
ple, 0<0<1,1<qg< o0 andletT be a linear operator.

a) If T : Ag — B 1is strictly cosingular and T : Ay — B is bounded, then
T : (Ao, A1)g,q — B is strictly cosingular.

b) If T : B — Aq is strictly singular and T : B — A1 is bounded, then
T :B — (Ao, A1)e,q is strictly singular.

Beucher gave in [6] examples showing that strict singularity [resp. cosin-
gularity] cannot be interpolated in the situation a) [resp. b)]. Next we recall
one of them.

Example 1. Let A = (L[0,1], L1[0,1]), B = L[0, 1] and choose T as the
identity mapping. It can be checked that I : L[0,1] — L;[0,1] is strictly
singular, and obviously I : L;[0,1] — L4[0,1] is bounded. However, if
1/p=9,

I: LP[07 1] = (LOO[07 1]7 L1[07 1])0,;; - L1[07 1]

fails to be strictly singular. The reason is that, according to Khintchine’s
inequality, the span of Rademacher functions in L,[0,1] and L4[0, 1] is iso-
morphic to {5, so if we denote by E the span of Rademacher functions in
L,[0,1], I|g is an isomorphism into L;[0, 1].
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Example 2. In Beucher’s example Ay + A; = L1]0,1] = B and T is equal
to the natural embedding J from f_lg’p into Ag + A;.

For any Banach couple A = (Ag, A;), it is possible to give a necessary
condition for J : Ag, — Ag + A; to be strictly singular. Namely, any
infinite dimensional closed subspace E of Ay, should contain a subspace
isomorphic to £,.

Indeed, since Jjg cannot be an isomorphism, E is not closed in Ag + A;.
Then, according to a result due to Levy [25], E contains a subspace isomor-
phic to .

Let us investigate the common part of these two theorems. Recall that
a class J of bounded linear operators is said to be an operator ideal if
each component J N L(A,B) = J(A,B) is a linear subspace of L(A, B)
that contains the finite rank operators and satisfies that STR € J(E, F)
whenever R € L(E,A), T € J(A,B) and S € L(B, F). The ideal J is called
closed if each component J(A, B) is closed in L(A, B).

An ideal J is called injective if for every isomorphic embedding
J € L(B, F) and every operator T' € L(A, B) it follows from JT € J(A, F)
that T € J(A, B). Injectivity means that it does not depend on the size of
the target space B whether or not T' € L(A, B) belongs to J.

The ideal J is said to be surjective if for every surjection @ € L(E, A) and
every operator T € L(A, B) it follows from TQ € J(E, B) that T' € J(A, B).
If J is surjective then it does not depend on the size of the source space A
whether or not T' € L(A, B) belongs to J.

Compact operators X is an example of a closed injective and surjective
operator ideal. Strictly singular operators § is an ideal which is closed and
injective but it is not surjective, while the ideal C of strictly cosingular
operators is closed and surjective but it is not injective (see [32]).

One may wonder if these properties have any role in the results. In fact,
as Heinrich showed in [19], they are sufficient for the conclusion:

Theorem 2. Let B be a Banach space, let A = (Ao, A1) be a Banach cou-
ple, 0<0<1,1<qg< o0 andletT be a linear operator.

a) IfJis a surjective closed operator ideal, T € J(Ag, B) and T € L(A1, B),
then T € I(Ag 4, B).

b) IfJ is an injective closed operator ideal, T € J(B, Ag) and T € L(B, A1),
then T € 3(B, Ay 4).

In order to derive a quantitative version of this result, take any operator
ideal J and denote by J its closed surjective hull, that is, the smallest closed

surjective operator ideal containing J. Put 7' for its closed injective hull.
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These ideals can be characterized as follows (see [20]):

i) Let T' € L(A, B). The operator T belongs to J° (A, B) if and only if for
every ¢ > 0 there is a Banach space E and an operator R € J(E, B)
such that

T(Ua) C R(Ug) + eUsp.

Here Uy stands for the closed unit ball of A.

ii) Let T € L(A, B). The operator T belongs to I (4, B) if and only if for
every £ > 0 there is a Banach space F' and an operator R € J(A4, F)
such that

Tl < | Rellr +ellzlla, @€ A

In the light of these characterizations, it is natural to associate to J the
following functionals

V4(T) = 74(Ta,8) =inf{oc > 0: T(Ua) C oUp + R(Ug),
R € IJ(E, B), E any Banach space},

B,(T) = B,(Ta,p) =inf{c > 0: there is a Banach space I and R € J(A, F)
such that ||Tz| g < o||z||a + ||Rz||r, = € A}.

It is clear that

7,(T) =0if and only if T €T,

B;(T) =01if and only if T' € 7.

So, 7, (T') shows the deviation of 7' from the ideal J°, while B,(T) gives the

deviation from 7.
The (outer) measure 7, was introduced by Astala [2], and the (inner)
measure 3, by Tylli [36]. These measures satisfy that

max {fyj (T), B, (T} <7,

they are subadditive

Y5 (S +T) <7,(S) +9,(T), By(S+T) < B,(S) + B,(T)
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and submultiplicative
V4 (ST) < 7, (S)y(T),  B,(ST) < B,(5)B,(T).
Moreover, if 14 is the identity mapping of A, then

0 if I4e7 0 if I,€T
VJ(IA): . as 63( A): . —i -
1 if Ia g7 1 if Io¢7

Indeed, if 7, (I14) = A > 0, it is clear that A < ||Z4]| = 1. On the other hand,
using the submultiplicativity, we get

A=7,(I1a) =7, (Tala) <7, (Ia)y,(1a) = X%

So A > 1 and therefore A = 1. The argument for 3, (I4) is the same.

~ If the ideal ji is symmetric, that is, if the dual operator T belongs to
7' (B*, A*) whenever T € J (A, B), then (see [18], Prop. 1.2)

By (T) = ., (7).
Let us look at some concrete cases.

Example 3. Take J = X the ideal of compact operators. It is easy to check
that v,.(T) is equal to the (ball) measure of non-compactness of 7', i.e.,

Yoo (T) = inf {a > 0: there exist a finite number of elements
k
b1,b2,...,b; € B such that T(U,a) C U{bj +UUB}}.
j=1

We have

Vg (La) = 0 if A is finite dimensional,

Vg (Ia) =1 if A is infinite dimensional.

As we said before, X = K' = K. The ideal X is also symmetric, so
By (T) = 74 (T). It turns out that B,.(T) = limp . ¢, (T'), where (¢, (T))
is the sequence of the Gelfand numbers of T', i.e., B, (T) coincides with
the infimum of all 7 > 0 such that there is a subspace M of A with finite
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codimension, such that ||Tz||p < 7||z]la, * € M. Under this form, the
measure /J’K was already considered by Lebow and Schechter in [24], where
they establish that ~,. and /J’K are equivalent:

L (T) < B (T) < 27, (T).

2
Example 4. Let J ='W the ideal of weakly compact operators. Recall that
T € L(A, B) is weakly compact if T carries the closed unit ball of A onto
a relatively weakly compact subset of B, or equivalently, for every norm
bounded sequence (a,) of A, (Ta,) has a weakly convergent subsequence
in B. The ideal W is symmetric, injective, surjective, and closed.

The measure v, (T) is equal to the measure of weak non-compactness
introduced by De Blasi [17]:

Yy (I') = inf{o > 0 : there is a weakly compact set W in B
such that T(Ua) CW + oUgp}.

We have

Yy (La) = 0 if A is reflexive,

Yy (La) =1 if A is nonreflexive.

Again 3,,(T) = 7,,(T") but this time 7,, and 3, are not equiva-
lent. Namely, there is a Banach space E and a sequence of operators
(Th) € L(E, co) such that 3, (T,) = 1 and v,,(T) < 1/n (see [3]).

Example 5. Since strictly singular operators § form a closed injective
ideal, we can use 3¢ (T') as a measure of the deviation of T to 8. The relevant
functional in the case of strictly cosingular operators € is Ve because € is
a closed surjective ideal.

Example 6. Our last example refers to Rosenthal operators R. Recall that
T € L(A, B) is said to be a Rosenthal operator if for every bounded se-
quence (a,) C A, the sequence (T'a,,) admits a weak Cauchy subsequence.
According to Rosenthal’s theorem [33], the former condition is equivalent to
the fact that no subspace of T'(A) is isomorphic to ¢;. The identity map I,
of ¢g is an example of Rosenthal operator; in particular R #'W.

The ideal R is injective, surjective, and closed. Moreover (see [37])

R=8 =¢.
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We have now 7, (Ix) = 0 if and only if A does not contain any subspace
isomorphic to ¢;. The same condition is valid for B, (1a).

The following result is taken from a joint paper with A. Manzano and
A. Martinez [11] and refers to interpolation properties of 7, and B, in the
Lions-Peetre situation.

Theorem 3. Let J be an operator ideal. Assume that B is a Banach space,

A = (Ao, A1) is a Banach couple, 0 <6 <1 and 1 < g < 0.

a) If T € L(Ag + Ay, B), then
(T, . 8) < Coqy (Tag,8)" 7 (Tay,n)°.
b) If T € &(B, Ao N A1), then

By(Tpz,,) < Cob, (T,a\,Bo)l_gﬂj (TaB,)".

Proof. We only give the details of a). The proof of b) can be found in [11].
It is enough to consider the case ¢ = co because as we already pointed
out Ag, — Ag o, being the norm of the embedding less than or equal to
(ab(1 = 6))1/1.
Since [lallg,0 = SUPgeicoo {tTVK(t,a)}, given any e > 0, t > 0 and
a € Uge‘x, we can find a decomposition a = ag + a1, with a; € A; and

llailla, < (1+¢)t?~* (i = 0,1). Thus

Ui C(1+e)t’Un, + (1 +e)t" Uy,.

6.00

Take now any o; > 7, (T'a,,B). By the definition of 74, there is a Banach
space E; and an operator S; € J(E;, B) such that

T(Ua,) CoiUp + Si (Ug,) i=0,1.
Hence
TUz, ) C A +e)t00Up + (1 + )t So(Ug,)
+ 1+ )t o U + (1 +e)t? 715, (Ug,)
CA+e)(tloo+ "7 o) U + Si . (Ug),

6,00

where E = (Ey & Ey)o_, ie., E = {(z,y): z € Ep, y € E1} normed
by l@ y)lle = max{|lzllg,. llylle,} and Sic(w,y) = (1 + &)t?Sox +
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(14 ¢)t?"1Syy. Since J is an operator ideal, it is clear that S, . € J(E, B).
Whence

% (Tr, .5) < b {79 (Tan.) + 1712 (T, )}
=(1- o9)‘9*1o9*‘97j (TAO,B)17073 (Ta,,5)°.

O

This theorem gives a quantitative version of Theorem 2 (Heinrich’s re-
sult), so it comprises Lions-Peetre theorem as well as the result on strict
singularity and cosingularity. Writing down the estimate for ¥y when J = X,
we get a result of Edmunds and Teixeira [34], Thm. 1/b on the measure of
non-compactness. The choice J = W allows us do recover an estimate of Ak-
soy and Maligranda [1], Thm. 2/a on the measure of weak non-compactness.

Example 1 shows that it is not possible to change the role of 7, and /J’j
in the Theorem 3. The example also announces that in the general case of
two Banach couples, estimates of similar type are only valid under extra
assumptions on the ideal J.

In order to describe the result in the general case, we first introduce
some notation.

Let ¢1(Ua) be the Banach space of all absolutely summable families of
scalars (\,) indexed by the elements a of Us. We write Q4 : (1(Us) — A

for the operator defined by Qa(Aa) = > ,cp, Aaa. The operator Q4 is

a metric surjection, i.e., QA(IOJZI(UA)) = IOJA.

We denote by Jg : B — (o (Up+) the isometric embedding Jgb =
((f,0) serr,,. - Here Lo (Up+) stands for the Banach space of all bounded
families of scalars indexed by the elements of Ug-.

For any T' € L(A, B) we have

By(TQa) < By (T)Qall < B,(T).
Moreover, using the extension property of ¢, (Ug+) and the lifting property
of ¢4(U4), one can check that operators Jg and Q4 have the following
minimal property (see [2] and [11]):
Y4 (J8T) = min{~,(jT) : j: B — F isometric embedding},
By(TQa) = min{3,(T) : 7: E — A metric surjection}.
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Given a sequence of Banach spaces (E,,), we denote by ¢,(E,,) the vector
valued {4-space defined by

(y(E) = {ac = (Tm) ¢ Tm € En,

oo 1/q
and ||z, (£,.) = ( Z [l %) < OO}'

m=—0o0

Any operator T € I ((,(E,,), {4(F,,)) can be imagined as an infinite matrix
whose elements are QT P,,, where P, : E, — {(,(E,,) is the embedding
given by P,z = (6, 2), here 67 is the Kronecker delta, and Qy, : €4(Fy) —
F}, is the projection given by Q(y) = yr. Note that QT P, € L(E,, F}).

Let 1 < g < oo. We say that an operator ideal J satisfies the
Y4-condition if for any sequence of Banach spaces (E,,), (Fy,) and any
T e L(l(En),l(Fy)), it follows from QT P, € I(E,, Fy) for any n,k
that T € T (y(Em), g (Fn)).

This condition was introduced by Heinrich in [19], where he also showed
that weakly compact operators or Rosenthal operators satisfy it. Another
examples that can be also found in [19] are Banach-Saks operators and dual
Radon-Nikodym operators. These ideals are injective, surjective and closed,
as well.

Note that a necessary condition for J to satisfy the X;-condition is that
I,, € J. Hence compact operators, strictly singular operators or strictly
cosingular operators fails the X;-condition.

Theorem 4. Let 1 < g < 00, 0 < 0 < 1 and let I be an operator ideal
satisfying the X,-condition. Assume that A = (Ao, A1), B = (Bo, B1) are
Banach couples and let T : Ag + A1 — Bg + By be a linear operator such
that its restrictions T : A; — B; are bounded for 1 =0,1. Then

1-6 [4
a) vj<[J§6_qT]Ag.q,zx(UB; ))scmmo,m) % (T, 5,)

b) B, ([TQZG-q]gl(UAO Q)Bqu) < CpB, (TonBo)l_gﬂg (TA1,31)0~

We refer to [11] for the proof.
Using operators (7,) mentioned in Example 4, one can construct an

example showing that estimate a) does not hold if we remove the operator
I5,., (see [11], Remark 3.4).
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When J ='W, the ideal of weakly compact operators, Theorem 4 implies
that T : Ay, — DBy, is weakly compact provided T' : A4y — By is

weakly compact and 1 < ¢ < oo. The restriction on ¢ is essential. For
instance, let 1 < p; < 00, 0 < § < 1 and E = 1-0 + i The couple
— p Po p1

A = (L,,[0,1], L,,[0,1]) is formed by reflexive spaces, so if we choose T as
the identity mapping I, then I : L,,[0,1] — L,,[0,1] is weakly compact
for ¢ = 0, 1. However,

(LPU [07 1]7 LP1 [07 1]) = LP,CI[Oa 1]

0,9
and since Ly 1[0,1] (resp. Ly o[0,1]) contains a subspace isomorphic to
0y (resp. ls), it is not reflexive and so I : L,1[0,1] — L, 1[0,1] (resp.
I:L,[0,1] — L, [0,1]) cannot be weakly compact.

Let us consider now the problem of finding a necessary and sufficient
condition for T': Ag , — By, to be weakly compact for 1 < ¢ < oc.

The root of this problem is the classical result of Davis, Figiel, Johnson
and Pelczynski [16] on factorization of weakly compact operators:

Theorem (DFJP Theorem). Let T € L(A, B) be a weakly compact opera-
tor. Then there is a reflexive Banach space X and bounded linear operators
Re L(A X) and S € L(X, B) such that the following diagram commutes

T
A B

The proof given in [16] has a clear interpolation flavour. This motivated
the investigation on the behaviour of weak compactness under interpolation.
And in 1978 Beauzamy [4] proved that if 1 < ¢ < oo a necessary and
sufficient condition for Ay , to be reflexive is that the natural embedding J
from Ag N A; into Ag + A; is weakly compact. Later, in 1980, Heinrich [19]
gave a new approach to this result that applies also to any injective surjective
operator ideal J satisfying the X,-condition. Other contributions are due to
Neidinger [29], [30], Maligranda and Quevedo [27] and Mastylo [28].
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In order to establish Heinrich’s result, we shall first introduce other two
norms on (Ao, A1)oq
Since

llallo.q = (/Ooo (t_gK(La))q %)Uq

( Z /22 (t K (t,a))" %)Uqw< i (ZQmK(vaa))qy/q

m—1
m=—0oQ m=—oo

it follows that the functional

o

lallo.gc = ( >y

m=—oo

1/q
(2‘9mfx'(2m,a))q>

is a norm on Ay , equivalent to || - [|g 4.
Note that

lallo,g;xc = Il (277" K (2™, @)) lle, -

In particular, we can now establish the embeddings (1) just taking into
account that ¢, — {, if p < gq.

We denote by Ag ,.;c = (Ao, A1),k the real interpolation space en-
dowed with the norm || - ||g,q:x. The interpolation property still holds for
the norm || - ||g,g:c but we need the additional constant 27 in the norm
estimate. Namely

0
1Tl v 50 < 2°IT I, TN,
Put now
J(t,a) = max {||al| oy, tllalla, }, a € Ag N Ay

and denote by (Ao, A1)g,q;7 the collection of all elements a € Ao+ A; which
can be represented by a = > °°_ _ u, (convergence in Ay + A;) with

(um) € Ao N Ay and (Z (2*9mj(2m7um))Q)1/q
(Ao, A1)g,q.s is given by

||a||€,q;J:inf{< i (zemJ(zm,um))q>l/q;a: i um}.

m=—oo m=—o0

< 00. The norm of

m=—0oC
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It turns out (see [5] or [35]) that (Ao, A1)e,q = (Ao, A1)e,q;7 With equivalence
of norms. To be precise

lallo.re < 5= =g llalleqs,  llallo.gsr < 4llallo,qgixc-

In particular,

20 —0
1Tz, .., By < W”T”}%,BOHT”ZhBl' (2)

These discrete representations of (Ag, A1)g,, allow us to relate the
real interpolation space with vector valued sequence spaces. Indeed, if

270, = (Ao + Ay, 27K (2™, )
and
279G, = (4o N Ar, 27T (2™, )

then the map j : (Ao, A1)ox — [,(279™F,) defined by ja =
(...,a,a,a,...) is an isometric embedding, and 7 : (,(27'"G,,) —
(Ao, A1)o,q;0 given by m(um) = >~ um, is a metric surjection.
We are now ready to establish Heinrich’s results.

Theorem 5. Let 1 < ¢ < 00, 0 < 8 < 1 and let J be an injective surjec-
tive operator ideal satisfying the X,-condition. Assume that A = (Ao, A1),
B = (By, B;) are Banach couples and T : Ay + Ay — Bo + By is a lin-
ear operator whose restrictions T : A; — B; are bounded for i = 0,1.
A necessary and sufficient condition for T : Ag ;, — By, to belong to J is

that T : Ap N Ay — By + By belongs to J.

Proof. The necessity is clear because we have the factorization
AoN Ay — Ay, 5 By, — Bo+ B

Assume then that T : Ag N Ay — By + B; belongs to J. Since
279m J(2™ ) [resp. 279K (2™, )] is an equivalent norm to || - ||4,na,
[resp. || - | Bo+B,], it follows that T : 279*G), — 279" F, belongs to J for
any k,n. Hence, by the X -property of J, we derive that

JTm €9 (0,(27°"G,), 0y(27 " F)) .

Now taking into account surjectivity and injectivity of J, we conclude that
Tel (Ag’mBg’q). O
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Next we derive the general factorization result.

Theorem 6. Let J be an injective surjective operator ideal satisfying the
X, -condition and let T € J(A,B). Then there is a Banach space X such
that Ix € J and operators R € L(A,X) and S € L(X,B) so that the
following diagram commutes

T

A B

R S
X
Proof. Factorize first T' as

T

A B

é Ip

A/ Ker(T) B

Jo

Here &(z) = [z] is the quotient mapping and jo[z] = Tz. Put 4y =
A/Ker(T) and Ay = B. Then jo : Ag — A; is a continuous embedding,
and therefore (Ag, A1) is a Banach couple. It is clear that AgNA; = Ag and
Ap + A1 = A;. Moreover, since @ is a quotient mapping and J is surjective,
we get that jo : AgN A} — Ao + A; belongs to J. Take any 0 < 6 < 1 and
let X = (Ao, A1)g,q. By Theorem 5, the identity mapping Ix of X belongs
to J, and operators R = jo@ € L(A,X), S =1 € L(X, B) give the wanted
factorization. O

In the special case J = W we recover the theorem of Davis, Figiel,
Johnson and Pelczynski.

Next we shall describe a quantitative version of Theorem 5. Instead of
estimating the measure of the interpolated operator against the measures
of the restrictions 7' : A; — B;, we are looking for something different
involving the measure of T': AgN Ay — By + B.
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The first attempt in this direction was done by Aksoy and Maligranda [1].
They considered the case of the measure of weak non-compactness and
T: Ay + A; — B, trying to establish the inequality

g (T,8) < Co (Taueinn,n) ' ITIS 2. 3)

where ||T'|| 7 5 = max{||T||4,,5,||T||4,,5}. But this can only be true for
0 < 0 < 1/2 as the following example shows.

Example 7. Take any 0 < A < 1 and put Acg = (co, Al| - [l¢;)- Choose
A = (co,Ac0), B=co and T = I as the identity operator. Then

ITll5 5 = max{L. A} = A",
Tw (TA(Z),B) =Yy (Leg) = 1.
On the other hand,
(co, Aco)o,q = Moo

with equivalence of norms, being the constants independent of A. Hence

Tw (TZH‘Q,B) =Yy Integ,ey) = A77
If (3) holds, then
A<D 0<a<
or equivalently

sup {)\1*26} < o0
0<A<1

which only happens when 0 < 6 < 1/2.

As we show next, inequality (3) is valid for the whole rank of 6 if we
replace 6 by © = min{#, 1 — 8}. Moreover, the argument we give works for
any operator ideal J. The result as well as the former example are taken
from a joint paper with A. Martinez [12].

Theorem 7. Let J be an operator ideal. Assume that B is a Banach space,
A = (Ag, A1) is a Banach couple, 1 < ¢ < 00, 0 < 0 < 1 and let © =
min{6,1 — 8}.
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a) If T € L(Ao + A1, B), then

% (T5,.,5) < Couty Taurar ) IT I
b) If T € L(B, Ao N Ay), then

3, (TBEM) < Co 4B, (TB,A0+A1)9||T||;3TA?@~

Proof. We only sketch the main ideas of the proof of a). Statement b) follows
from a) by duality arguments. Full details can be found in [12].

It suffices to consider the case ¢ = co. Let 7 < 1, and take ¢, s so that
t% > 1/n, 7% > 1/n. A similar reasoning to that in [28], Thm. 8 (see
also [1], Thm. 2/b), gives that for any ¢ > 0

Uz, . C2(1+e)npmax{s, t}Usyna, +2(1 +&)nUay+ 4, -

Let o > 7, (T'ayn4,,8). By the definition of v, , there is a Banach space
E and an operator R € J(E, B) such that

T (Uayna,) CoUp + R(Ug).
The operator S = 2(1 + ¢)pmax{s,t} R belongs to J(E, B) and satisfies
T(Uz, ) C[2(1+¢)pomax{s,t} +2(1 +e)nl|T'||z g]Us + S(UE).
Whence
Yy (T, ) < 201+ <)o max{s, t} +2(1+ )il T3,
and so

Vg (TZS_%,B) < 217’73 (TA()ﬁAl,B) max{s, t} + 277||T||Z,B'

6
Now choosing n = (fyj (Tayn4,,B) /”T”Z,B) and taking the infimum
over all t > (1/7)"/% and s > (1/1)*/(*=9 | the result follows. O

For A = (Ao, A;) and B = (By, B;), Banach couples, we shall write
T : A — B to mean that T is a linear operator from Ay + A; into By + By,
whose restrictions to each A; define a bounded operator from A; into B;
(1 =0,1). We put

”T”Z,E = maX{HT”AU,Bm ||T||A17B1}

In the general case the estimate has been obtained in another joint paper
with A. Martinez [13]. In order to describe it, we denote by T}, the restriction
of T from (Ag N Ay,279™J(2™, ")) into (Bo + By, 27K (2™, ).
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Theorem 8. Let 1 < g <00, 0<6 <1, put @ =min{f,1 -0}, and let I
be an operator ideal satisfying the X,-condition. Assume that T : A — B
and define T, as before. Then

a) ’YJ <[J§8-QT]A6~Q’ZOC(UB§ )) S Csup {,yj(Tm)O -me Z} ||T||I%_T§9}
b) B, <[TQZ*’-4]Z1(U )B ) < C'sup {6J(Tm)9 . me Z} ||T|j{§@,
A0.

q 7397‘1

See [13] for the proof.

Comparing Theorems 7 and 8, it is natural to wonder if in the gen-
eral case where By # Bj, all assumptions of Theorem 8 are necessary
for the conclusion. This is just the case (see [13]). We shall only review
an example showing that a finite number of +, (T:») is not enough to domi-
nate -y, (JEMT)~

Example 8. Let 0 < A < 1, J = W, choose A = B = (¢, Acg) and let
T = I be the identity operator. Then

(Ao N Ay, 270 J(2™, ) = 27 max{1, A2 }¢o
(Bo + By,27"K(2™,+)) = 27" min{1,\2" }co.
Thus

1
Clearly

ITl55 =1

Moreover, taking into account that (cg, Acg)g,q = Ao with equivalence of
norms with constants independent of A, and using the extension property
of {.-spaces, one can check that

’YW (JESqT) = ,YW(IAOC(),AOZX) =1.

Consequently, if the inequality a) in Theorem 8 would be true with only

a finite number of v, (T},), say {73 (Tm)}_N<m<N7 it would follow

1
1< C(\2M)®  for every A € (0, 2—N>

which is impossible.
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Compact operators do not satisfy X;-condition, so Theorems 4 and 8 do
not apply to the ideal X. In fact, it is easy to show by means of examples
that T': Ay N Ay — By + B; may be compact and T : Ay, — By, may
not be:

Example 9. Take A = B = ({,,(,(n)), where (,(n) = {&, : (n&,) € {,},
and choose T' as the identity operator. Then

AoﬁAlzfq(n), Bo+31:£q

and T : AN Ay — By + Bj is compact because it is the limit of a sequence
of finite rank operators. However (Ao, A1)g,4 = (Bo, B1)e,q = {q(n?) and the
identity operator of this infinite-dimensional space is not compact.

In 1992, culminating the efforts of several authors (see the papers [7],
[8], [14]), Cwikel proved in [15] that a sufficient condition for compactness
of T : Ag, — By, (1 < g < 00) is that one of the restrictions of T', say
T : Ag — By, is compact. I will finish this talk by describing a quantitative
version of this result in terms of the measure of non-compactness. The result
is taken from a joint paper with P. Ferndndez-Martinez and A. Martinez [9].

Theorem 9. Let A = (Ao, A1) and B = (Bg, By) be Banach couples and
letT:A— B. Then, forany1<g¢< oo and0<6<1,

Yoe (Tt B ) < 1609 (T 5)* 1 (T 5,)°
where § = 2°/(3 — 20 — 21-9),

Proof. T will only sketch the main ideas. Full details can be found in [9].

Let again G,, = (Ao N A1, J(2™,.)) and F,, = (By + By, K(2™,.)). As
we have already said, the operator 7 : (,(279™G,,) — Ay 4. defined by
T(Wm) = D o_ U i8 a metric surjection. Note that

7l (Gm) — Ao and 7:0(27"Gn) — Ay

are also bounded with norm < 1.

Let j be the operator associating to any b € By + B; the constant
sequence jb = (...,b,b,b,...). Then j : By . — l,(27%"F,,) is a metric
injection, and operators j : By — loo(Fy), j : Bi — loo(27™F,,) are
bounded with norms < 1.
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We have the following diagram of bounded operators

T

0(G) —=— Ap Bo L (oo (F)

T

027 ™Gry) —— Ay B, —X— . (27°"F,,)

Eq (2_9me) L’ (A07A1)0,q L’ (BO7B1)0,q ;) Eq (2_9mFm) .

Put T = jTx. We have that
Ve (T : (Ao, A1)0,6.0 — (Bo, B1)o,¢;x)
< 27, (4T : (Ao, A1)o,g0 — Lg(27°™Fy))
=27, (T : 4g(27 " G) — (,(27""F)).
So, in order to establish the theorem, it suffices to show that
Voo (T2 6427 G ) — £ (27 F)) @
< 867, (T : Ag — Bo)' 7, (T : Ay — By)’.

The advantage of working with T instead of T is that we can use the
following families of projections on the couples of vector valued sequences:
For each positive integer n € N define operators P, , Q' , Q,, by

Po(um)=(..,0,0,U_p, U—pt1,- -, Un—1,Un,0,0,...)
Qr (wm) = (-+,0,0,Uns1, Un g2, - - )
Q, (Um)=(..;u_p_9,u_p_1,0,0,...).

The following three conditions holds:

I) The identity mapping on ¢1(G,) + ¢1(27™G,,) can be decomposed as
I=P,+Qr+Q, forn=1,2,....

IT) Operators P, , Q; and Q,, are uniformly bounded in the couple, i.e.,

and similarly for Q; and Q.
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I0) |QF : 61(Gm) — L1 (27™Gw)|l
=270 = ||Q;, 1 (127 G) — G (G-

The same families of projections can be defined on the couple
(loo(Frn) s loc (27 Fpy)) -

Call them R,,, S, S,. They satisfy the corresponding versions of (I), (II)
and (III).

Next we shall decompose the interpolated operator by means of these
projections. We shall need a more refined splitting than the one use in [10]
to develop a new approach to Cwikel’s result.

It follows from

T=T(P.+Qy+Qy) =TP,+ (R + 5+ S)T(Q} +Qy)
=TP, + RI(Qy + Qn) + SiTQ, + S, TQ; + S;TQ; + 8, TQ,
that
Voc (T) € 75 MPa) + 75 (RI(Q + Q) + 1S3TQ |
+1S.TQL | + IISHTQE | + 115, TQ, |-

Here all operators act from ¢, (279"G,,) into {, (279" F,,).
It is not hard to check that the inclusions

ly (277 Gn) = ((1(G), (27" G)),
(goo(Fm%eoo(Q_mFm))é,q;K - &1 (Z_QmFm)

NI

have norm less than or equal to 1. This remark and interpolation property
(2) will be useful in our estimates.
Let us consider first the (+, —)-term. We have

1S2TQu Il < 813 TQu 117G,y e ()
< ONT N o 19 s 2 ) G
XN, ().t ) 15

< 627200 7| 4 g, — 0 as n — oo,

=110
SaTQu 0y 2-m Gyt (2 Fo)

[
Loo(Fin)sloc (27 Fin)

In the same way

1S;TQ; 1| — 0 as n — oo,
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Concerning the (+, +)-term, we shall show that for any £ > 0, choosing n
big enough, we have

ISTTQN < 267, (T : Ag — Bo)' *7, (T : Ay — B1)’ +e.  (5)
Indeed, according to (2) and (II),

ISETQEN S ASITQU & NSO e rme
< 5||TQ+|| SITQY ”Zl(2*"“Gm),éx(2*"“Fm)'

G )sloc(Fin)

The sequence (|['Q};||) is decreasing since @} Qf,, = Q. Hence there is
A > 0 such that |[TQ}|| — A as n — oco. Choose (un) € Uy, (G, so that

Q% unller () — A asn— oo
By the definition of 7,., given any oo > 7,.(T : Ag — By) there are finitely
many vectors by,...,bs in By such that

S
TUAU - U {bT + UOUBU} .
r=1
Then there is some 7, say r = 1, and some subsequence (n') of N with
TWQI,unI € {b1 + ooUp, } for any n'.
This allows us to estimate K (2™,b;) because, using (III), we get
K(2™,b1) < |Iby = TrQuw || 5, + 2" | T7Q 5w || 5,
<00+ 2" ||T|ly — 00 as 0’ — oo

Whence

A= i |ITQ o

< sup{ang,un, ~ bull gy + sup {K(ﬂbl)}} <200+
n’ meEZ

This implies that there is N1 € N such that for n > Ny,

—0
ITQH ey < (275 (T Ao — Bo)) ' ™" +e.
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Let now pass to ||SITQ;||. First note that the set D of all sequences having
only a finite number of non-zero coordinates is dense in ¢, (27™G,,). Given
any o1 > 74 (T : Ay — By), we can find a finite set {v,},_; C D so that

min {ITv =To llo @-mp,)} <201, v eUya-ma,.)-
Then {Tv,} _, C loo(Fn) N loe(27™F,,), and by (I1I)

IS5 Tvr e 2-mp) < € r=1,...,s

for any n > N> € N. Given v € Uy, (2-mg,,) We have

m

1SATQ vl 2-m )
< min {|[S;TQ v = SiTvrlle 2= F) + 1S3 TVrlle 2= ) }

<201 +e.
Hence
ISAT QN er(2-m G b (2= o) < 275 (T 2 At — Bi) +¢

for n sufficiently big and (5) follows.

The (—, —)-term can be estimated in a similar way.

The remaining terms require more elaborated arguments. The outcome
is

Y (TPn) < 267K(T : AO I BO)l_gfy:K(T t A — Bl)97
Vo (BT (QF 4+ Q) <267, (T : Ao — Bo)' "7, (T : Ay — By)’.

Details can be found in [9]. O
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