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Functions of least gradient and BV functions

WILLIAM P. ZIEMER

In these lectures I will present work concerning applications of BV theory
to a variety of problems including the problem of least gradient. In Sections
1 through 3 I will discuss the problem of least gradient whose work is based
on [SWZ1], [SWZ2], [SWZ3], [SZ] and [ISZ].

1 Functions of least gradient

For a bounded Lipschitz domain 2 C R", and for g: 92 — R! continuous,
we consider the problem

inf{||Vul| (£2) : w € BV(2)N C%(2),u = g on 312}. (1.1)

Here, || Vul| (£2) denotes the total variation of the vector-valued measure Vu
evaluated on 2. In (1.1), the direct method can be easily seen to provide
a minimizer, utilizing the compactness ensured by the constraint. How-
ever, in (1.1), the compactness in L'({2) of a sequence whose BV -norms
are bounded does not ensure, a priori, continuity of the limiting func-
tion or that it will assume the boundary values g, thus making the ques-
tion of existence more subtle. We will show (Theorem 3.6) that a solution
u € BV(£2) N C°(N) exists provided 912 satisfies two conditions, namely,
that 92 has non-negative mean curvature (in a weak sense) and that 942 is
not locally area-minimizing. Furthermore, if either condition fails, it can be
shown that there exists boundary data g for which the corresponding prob-
lem (1.1) has no solution. It should be noted that the question of existence
was treated by Parks [P1], [P2] where it was shown that for a strictly con-
vex domain with boundary values satisfying the bounded slope condition,
a unique Lipschitz solution exists. Other authors also investigated proper-
ties of least gradient, including [M], [PZ] and [BDG]. In [BDG] it was shown,
among other things, that the superlevel sets of a function of least gradient
are area-minimizing. This result provides the major motivation for the tech-
niques employed here. Indeed, this fact, along with the co-area formula (see
(2.12) below), suggests that the existence of a function of least gradient can
be established by actually constructing each of its superlevel sets in such
a way that they reflect the appropriate boundary condition and that they
are area-minimizing. The main thrust of this work is to show that this is
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possible. Thus, we show that there exists a solution to (1.1) and we also
show (Theorem 3.9) that it is unique. Both existence and uniqueness are
developed by extensive use of BV theory and sets of finite perimeter as well
as certain maximum principles.

Finally, concerning regularity, in two dimensions, functions of the form
u(z,y) = f(y/z) are functions of least gradient, thus showing that in gen-
eral, functions of least gradient have regularity in the interior no better than
that at the boundary. However, we show that for boundary data of class
C%« the solution is of class C%*/2. Examples are given which demonstrate
that this result is optimal.

2 Notation and preliminaries

The Lebesgue measure of a set E C R* will be denoted by |E| and H*(E),
a > 0, will denote a-dimensional Hausdorff measure of E. Throughout, we
almost exclusively employ H"~!. The Euclidean distance between points
x,y € R” will be denoted by |z — y|. If 2 C R™ is an open set, the class of
functions v € L'(£2) whose partial derivatives in the sense of distributions
are measures with finite total variation in {2 is denoted by BV ({2) and is
called the space of functions of bounded variation in 2. The space BV ({2)
is endowed with the norm

lullgy (o) = llullyo + 1Vull (£2) (2.1)

where ||ul|,., denotes the L'-norm of u on {2 and where |[Vu|| is the total
variation of the vector-valued measure Vu.

The following compactness result for BV ({2) will be needed later, cf.
[G2] or [Z].

Theorem 2.1. If 2 C R” is a bounded Lipschitz domain, then
BV (£2) n{u: |lull gy (o) < 1}

is compact in L*(§2). Moreover, if u; — w in L*(§2), and U C 2 is open,
then

lim inf [[Vug[| (U) > [[Vul| (U).

A Borel set E C R” is said to have finite perimeter in {2 provided
the characteristic function of E, Xg, is a function of bounded variation
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in £2. Thus, the partial derivatives of X g are Radon measures on {2 and the
perimeter of E in {2 is defined as

P(E, ) = ||[Vxzg| (2). (2.2)

A set E is said to be of locally finite perimeter if P(E,{2) < oo for every
bounded open set 2 C R™.

One of the fundamental results of the theory of sets of finite perimeter
is that they possess a measure-theoretic exterior normal which is suitably
general to ensure the validity of the Gauss-Green theorem. A unit vector v
is defined as the measure-theoretic exterior normal to E at z provided

limr " |B(z,7)N{y: (y—z)-v<0,y¢ E}|=0

r—0

and
lirr(ljr*”|B(x7r)ﬂ{y: (y—z) -v>0,y € E} =0, (2.3)

where B(x,r) denotes the open ball of radius r centered at x. The measure-
theoretic normal of E at x will be denoted by v(x, E) and we define

O"E ={z: v(z, E) exists}. (2.4)

Clearly, 0*E C OF, where OF denotes the topological boundary of E. Also,
the topological interior of E is denoted by E* = (R® — dE) N E and the
topological exterior by E€ = (R* —9E)N(R™ — E). We employ E° to denote
R™ — E. The notation E CC F means that the closure of E is a subset of F".
If E C R” is a Borel set, we define the measure-theoretic boundary of E as

. IEﬁB(x,T)I} { .. . |EnB(x,7)]| }

oyFE =Lz2z:0<limsuyp———————rN<z: liminf ————— < 1.
M { o [B(a,n)] r—0  |B(z,7)]

(2.5)

In other words, the measure-theoretic boundary of E is all points at which
the metric density of E is neither 1 nor 0. Clearly, 0*E C dyE C OE.
Moreover, it is well known that

E is of finite perimeter if and only if H" (9 E) < 0o (2.6)
and that

P(E,Q) = H" Y(2ndyE)

ot . (2.7)
=H" 7 (2NJ'E) whenever P(E, 2) < oo,
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cf. [F2], §4.5. From this it easily follows that
P(EUF, Q)+ P(ENF,2)<P(E,?)+ P(F, ), (2.8)

thus implying that sets of finite perimeter are closed under finite unions and
intersections.

The definition implies that sets of finite perimeter are defined only up
to sets of measure 0. In other words, each set determines an equivalence
class of sets of finite perimeter. In order to avoid this ambiguity, whenever a
set of finite perimeter, E, is considered we shall always employ the measure
theoretic closure as the set to represent E. Thus, with this convention, we
have

|EN B(z,7)|

x € E if and only if limsu > 0. 29
v if limsup a2 (2.9)

Also, it can be shown with convention (2.9) that,
°E = 0FE, (2.10)

cf. [G2], Theorem 4.4. Here, A denotes the topological closure of A. This
convention will apply, in particular, to all competitors of the variational
problems (2.21) and (2.22) below as well as to the sets defined by (2.18).

Of particular importance to us are sets of finite perimeter whose bound-
aries are area-minimizing. If E is a set of locally finite perimeter and U
a bounded, open set, let

Y(E,U) = ||VXg| (U) —inf{||VXp| (U) : EAF CcC U}, (2.11)
where EFAF denotes the symmetric difference of E and F'. The set OF is
said to be area-minimizing in U if ¥(E,U) = 0 and locally area-minimizing
if (E,U) = 0 whenever U is bounded.

Another tool that will play a significant role in this paper is the co-area
formula. It states that if w € BV (2), then

IVul| (2) = / P(E,, 0) dt (2.12)
where E; = {u > t}. In case u is Lipschitz, we have

[wiae= [~ wn g
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Conversely, if u is integrable on {2 then
/ P(E;, 2)dt < oo implies u € BV (12). (2.13)

See [F1], [FR].

The regularity of OF will play a crucial role in our development. In
particular, we will employ the notion of tangent cone. Suppose OF is area-
minimizing in U and for convenience of notation, suppose 0 € U N JE.
For each r > 0, let E, = R* N {x : ro € E}. It is known (cf. [S1], §35,
[MM], §2.6) that for each sequence {r;} — 0 there exists a subsequence
(denoted by the full sequence) such that X, converges in Lj (R") to X¢,
where C is a set of locally finite perimeter. In fact, dC is area-minimizing
and is called the tangent cone to E at 0. Although it is not immediate, C' is
a cone and therefore the union of half-lines issuing from 0. It follows from
[S1], §37.6, that if C' is contained in H where H is any half-space in R
with 0 € 0H, then OF is regular at 0. That is, there exists » > 0 such that

B(0,7) N OE is a real analytic hypersurface. (2.14)
Furthermore, OF is regular at all points of 9* E and
H*((OE—-9"E)nU) =0 foralla>n-S§, (2.15)

cf. [G2], Theorem 11.8.

Finally, we conclude with a result which is a direct consequence of a max-
imum principle for area-minimizing hypersurfaces which was established in-
dependently in [Mo] and [S2].

Theorem 2.2. Let By C Ey and suppose OE, and OE, are area-minimizing
in an open set U C R™. Further, suppose x € (0E1) N (0E2) NU. Then OE;
and 0Fs agree in some neighborhood of x.

Let
[a,b] = {NI : I an interval containing ¢g(9£2)}. (2.16)

The boundary data g admits a continuous extension G € BV (R® — £2) N
CO(R* — 2), [G2], Theorem 2.16; in fact, G € C®(R" — §2), but we will
only need that G is continuous on the complement of (2. Clearly, we can
require that the support of G is contained in B(0, R) where R is chosen so
that 2 CcC B(0, R). We have

G € BV(R" — 2)n C°(R™ — ) with G = g on 9. (2.17)
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We now introduce sets that will ensure that our constructed solution satisfies
the required Dirichlet condition u = g on 9f2. Thus, for each ¢ € [a, b], let

Lo=(R" - 2)n{z: Gz) >t} (2.18)

Note that the co-area formula (2.12) and the fact that G € BV (R" — £2)
imply that P(L¢, R® — §2) < oo for almost all ¢. For all such ¢, we remind
the reader that we employ our convention (2.9) in defining L.

We let

T=la,bln{t: P(L;, R" — 2) < o0}. (2.19)
Thus, by (2.7) and the fact that H"~1(92) < oo, we obtain
H" 1 (0,,L4) = P(L, R — 2) + H" ' [(0,nL1) N (002)] < 0. (2.20)
For each t € T', the variational problems

min{P(E,R"): E— 2 =L, — 2} (2.21)
max{|E|: E is a solution of (2.21)} (2.22)

will play a central role in our development. In light of Theorem 2.1, a solution
to both problems can be obtained from the direct method. (2.20) is also used
to obtain existence in (2.21). We will denote by E; the solution to (2.22).
In this regard, note that our convention (2.9) ensures E; — 2 = L; — {2;
furthermore, because of our convention, £; need not be a closed set.

3 Construction of a function of least gradient

In this section we will construct a solution u of (1.1) by using E;N{2 to define
the set {u > t} up to a set of measure zero for almost all ¢. This construction
will be possible for bounded Lipschitz domains {2 whose boundaries satisfy
the following two conditions.

(i) For every = € 942 there exists gg > 0 such that for every set of finite
perimeter A CC B(z,<q)

P(2,R") < P(QU A,R"). (3.1)

(ii) For every x € 942, and every ¢ > 0 there exists a set of finite
perimeter A CC B(x,¢) such that

P(2,B(x,)) > P(2 — A, B(x,¢)). (3.2)
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Clearly, we may assume that x € A.

The first condition states that 9f2 has non-negative mean curvature
(in the weak sense) while the second states that 9f2 is not locally area-
minimizing with respect to interior variations. Also, it can be easily verified
that if 942 is smooth, then both conditions together are equivalent to the
condition that the mean curvature of {2 is positive on a dense set of 92.

Since {2 is a Lipschitz domain, for each z¢ € 942, 312 can be represented
as the graph of a non-negative Lipschitz function h defined on some ball
B'(zf,r) C R"~! where 2, € R*™. That is, {(z', h(z')) : 2’ € B'(x},7)} C
912. Throughout we will use the notation B’(z{,r) and 2’ to denote ele-
ments in R" ! and thus they will be distinguished from their n-dimensional
counterparts B(zg,r) and z.

We assume our configuration is oriented in such a way that {(2',2") :
0 < 2" < h(2")} C 2. Using the fact that 2 is a Lipschitz domain, we
have that §2 is a set of finite perimeter and P(2,U) = H*~1(0*2NU) =
H"=1(82 N U), whenever U C R" is an open set, cf. [F2]. Also, with
S ={(z',h(a")) : 2" € B'(z(,r)} we have that

HL(S) :/BI( | )\/1+|Vh|2dH”*1(x’
.T077‘

These facts lead almost immediately to the following result.

Lemma 3.1. If 2 is a Lipschitz domain with non-negative mean curvature
in the sense of (3.1), then the function h, whose graph represents 012 lo-
cally, is a weak supersolution of the minimal surface equation. That is, for

r sufficiently small,
[T
I()’T

\/1+|Vh|?

whenever o € Cy (B! (), 7)), @ > 0.
Proof. For t >0 and ¢ € Cy"' (B'(zh,7)), ¢ > 0 let

f(t) z/ \/1+|Vh|2+2ch~V<p+t2|V<p|2dx’,
B'(zq,r)

A={(@,a"): ha') < 2" < h(@') + ('), 2’ € B(ah,7)}.

Assuming that r has been chosen sufficiently small so that condition (3.1)
can be invoked, we have P({2) < P(AU {2) and hence

0< P(AUN) — P(2)=H"Y9(AUN)) — H 1 (90)
= f(t) — £(0).
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Hence, f'(0) > 0, which establishes our conclusion. O

We will also need the following result from [SWZ3], Lemma 4.2, whose
proof is an easy consequence of the weak Harnack inequality.

Lemma 3.2. Suppose W is an open subset of R*~1. If vy, vy € COL(W)
are respectively weak super and subsolutions of the minimal surface equation
in W oand if v (z() = va(xp) for some xy € W while vi(x') > va(2") for all
x' € W, then

for all ' in some closed ball contained in W centered at xJ,.
An important step in our development is the following lemma.
Lemma 3.3. For almost all t € [a,b], 0E, N 92 C g~ (t).

Proof. We will prove the lemma for all ¢ € T', where T is defined by (2.19).
The proof will proceed by contradiction and we first show that dF; is locally
area-minimizing in a neighborhood of each point zo € dE; N 32 — g~1(t);
that is, we claim there exists ¢ > 0 such that for every set F with the
property that FAE; CC B(xg,¢), we have

P(Et,B(CL'(),E)) SP(F,B((L‘(),E)) (33)
or equivalently,
P(E,,R") < P(F,R").

By our assumption, either g(xg) < t or g(xg) > t. First consider the case
g(xg) < t. Since G(xg) = g(xo) < t and G is continuous on R™* — 2, there
exists ¢ > 0 such that B(zg,c) N Ly = (). We will assume that e < gg, where
€0 appears in condition (3.1). We proceed by taking a variation F' satisfying
FAE, CC B(xg,¢). Note that because of (3.1) and (2.8) we have for every
ACC B(xo,é‘o)7

P(An2,R") + P(AU 2,R")

< P(A,R") + P(22,R")
< P(4,

(A, R*) + P(AU 2, R™).
Hence,

P(AN 2,R") < P(A,R"). (3.4)
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Define F' = (F — B(x¢,¢)) U (F N 2). Clearly,

F' — Q2= (F — B(xg,¢)) — 2
= (F —2) = B(zo,e) = (B, — 2) — B(xo,¢)
=Ly — 2 — B(xg,e) = Li —

Thus F’ is admissible in (2.21) and therefore
P(E,,R") < P(F',R").

It remains to show P(F',R") < P(F,R"). First observe from E;AF CC
B(xo,¢) and (E;—2)NB(wo,¢) = (L;—2)NB(x0,¢) = @ that F'NB(xo,¢) =
FNB(z,e) N 2 and F'AF CC B(wo,¢). Hence, we obtain by (3.4),
P(F, ")~ P(F', R") = P(F, B(xo, <)) -
:P(FﬂB(ﬂfo, )7 (‘roa ))
— P(F N B(xg,e) N 2,B(x0,¢)) (3.5)
= P(F N B(x,¢),R") — P(F N B(zg,e) N 2,R")
> 0.

(FlvB(an 5))

This establishes (3.3) when g(x¢) < t.

The argument to establish (3.3) in case g(x¢) > t is analogous to the first
case, but we present it for the sake of completeness. Since G(xo) = g(z0) > t,
the continuity of G in ¢ implies that B(zg,e) — 2 C L, provided ¢ is
sufficiently small. We also require that ¢ < ¢g. Let F' be a variation such
that FAE; CC B(zg,¢) and now define F' = F U (B(xg,e) — 2). Then

F' — Q2= (F-02)U(B(xg,¢) — 02)
= [(F = B(xo,¢)) — 2] U (B(xo,¢) — 2)
= [(E: — B(xg,¢)) — 2] U (B(x0,¢) — )
= (L4 — B(xo,2) — 2) U (B(zo0,¢) — )
= (Ly — B(wo,¢) — _)U

(B
(Le — 20 Blao, €)) = L¢ — 2.
2

Thus, since F’ is a competitor for (2.21), it follows that P(E;,R™) <
P(F',R™). Then it remains to show

P(F',R™) < P(F,R"). (3.6)

For this, note that E;AF CC B(xo,¢) and B(xg,¢)—2 = B(xo,e)NL; C E;
imply (F')¢ N B(xg,c) = F° N B(xg,2) N 2 and (F')°AF° CC B(zg,¢). In
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light of P(F,R™)—P(F',R*) = P(F°,R*)—P((F')¢,R"), (3.6) follows from
(3.5) with F' and F' replaced by F and (F')c.

We thus have demonstrated that OE; is area-minimizing in B(zq,¢). We
will show that this leads to a contradiction. Assume first that g(zo) < t so
that G < t on (R™ — ) N B(xo,¢) provided ¢ has been chosen sufficiently
small. Consequently,

E; N B(zg,¢) C 2N B(xo, ). (3.7

We recall the notation concerning the representation of 92 as the graph of
a Lipschitz function that preceded Lemma 3.1. Thus, with zo € OE; N 02 —
g~ 1(t), we express 92 locally about x¢ as {(z',h(2')) : 2' € B'(x},¢")}
where zo = (z{, z() and z{ = h(z{) > 0. For simplicity of notation, we take
xy = 0. The number &’ is chosen so that ¢ < ¢ and that

{(@',h(z")) : |2'| < €'} C B(xog,e). (3.8)

We define the half-infinite cylinder above B'(0,e') as C = B'(0,&') x
[0,00). Because of the local nature of the argument, we may assume that
2nC={("2"): |a'| <e0< 2" <h(z")}.

Now consider the solution to the minimal surface equation on B’(0,¢’)
relative to the boundary data f = h|sp(0,), [MM], Chapter 3. Thus we
let v be the unique solution of

\%
div [ —2— | =0 on B'(0,¢"),

\/ 1+ Vol

v = fondB'(0,&").

Since h is a weak supersolution of the minimal surface equation by
Lemma 3.1, we have that h > v on B’(0,¢’), cf. [GT], Theorem 10.7. In fact
h > v on B'(0,¢') because the set {h = v} is obviously closed in B’(0,&")
and it is also open in B’(0,¢’) because of Lemma 3.2. Hence, if this set is
non-empty, h = v in B'(0,¢') which would contradict (3.2). Consequently,
with § = h(0) — v(0), we have § > 0. Now consider a 1-parameter family of
graphs v, (z') = v(z') + 7 and let

7% = max{7 : there exists 2’ € B'(0,¢') such that (2',v,(z')) € E, N 2}.

Note that 7* > 6 since v(0) + 6 = h(0) and (0,R(0)) € OF; N 2. Let

Voo ={(2',2") : 2’| < €',2" <wv(a') + 7"}
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and, in view of our choice of &', observe that
Ein{z: |2'| <&} C Ve

Observe also that if a point (2/,v,«(2')) is an element of (9FE;) N £2, then
|z'| < &' for otherwise we would have v(z") + 7% < h(z'), which would imply
that 7% < 0. Thus, the set I[E, N{z : |2'| < '} n{(z',v-+(2")) : || < €'}
is non-empty and according to Theorem 2.2, it is open as well as closed in
the connected set {(z',v,«(a')) : |2'| < &'}. This implies that

IEN{z: |2'| <} D{(@, v (2")) : |2'] <&} (3.9)

Since 7 > 0, it follows that v.«(z') > h(2') whenever |2'| = ¢'. Conse-
quently, using the continuity of v,., the graph {(z',v.-(2")) : |2'| < &'}
contains points in R — 2, say (y',v.-(y")), |v'| < &', as well as points in
2N B(ao.2), say (+',vr-(=))), || < &'. The point (5/, v, (y")), |y'] < €'
could possibly be an element of R* — B(z,<). Consider the line segment,
A, in B'(zo,¢") that joins y' and z’. Let a’ be that point on A closest to y’
with the property that (a’,v,«(a’)) € 92. Then, all points a on A that are
closer to ¥’ than o' and that are sufficiently near a’ have the property that
(a,v,+(a)) € R* — 2N B(zo,e). Here we have used (3.8) and the continuity
of v,+. In view of (3.9), this implies that E; N B(zg,c) NR® — 2 # §, con-
tradicting (3.7). This contradiction was reached under the assumption that
g(xo) < t and the fact that JF; is area minimizing in B(xo, ). A similar
proof is employed in case g(xg) > t. O

In order to ultimately identify E; N2 as the set {u >t} (up to a set of
measure zero) for almost all ¢, we will need the following result.

Lemma 3.4. If s,t € T with s < t, then By CC E;.
Proof. We first show E; C E,. Note that

(E,NE) -0 =(E,—2)n(E - 0)

and
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Thus EsNE; is a competitor with F;, and E;UE}; is a competitor with E; in
(2.21). Thus P(EsNE;,R*) > P(E;,R"), and P(E; UE;,R") > P(E;,R").
Then employing (2.8), we obtain

P(E,U E,,R") = P(E,,R").

Reference to (2.22) yields |EsUE; = |Eg|, which in turn implies
|E; — Es| = 0. In view of (2.9), E; C Es.

It remains to show that this containment is in fact strict. This will follow
from a general maximum principle, Theorem 2.2. For this purpose, first note
that

E,-Q=L—0CCL;—N=E;— 0. (3.10)
relative to the topology on 2¢. Now observe that Lemma 3.3 implies
OE,NOE,NIN = 0. (3.11)
In view of (3.10) and (3.11), it remains to show that
OE,NOE;NN =10 (3.12)

in order to establish the Lemma. For this purpose, let S = 0E; N JE; N (2.
Assume by contradiction that S # (). Observe that S is open relative to
OFE; for if x € S, then since E; C E, and since both 0F; and 0F, are area
minimizing in {2, we can apply Theorem 2.2 to conclude that 0E; and 0FE;
agree on a neighborhood in 9FE; containing x. Since S is obviously closed
relative to 9E, it follows from (3.11) that S consists only of components
of OE; that do not intersect 9f2. We now could appeal to the proof of
Theorem 4.4 (parts 2,3, and 3) of [SWZ3] to conclude that S is empty. This
method uses only topological arguments along with (2.22). Alternatively, we
will use the area-minimizing property of S and proceed as in the proof of
Theorem 2.2. Thus, suppose S’ is a component of the set of regular points
of S. We first show that S’ is a cycle in the sense of currents; that if, we
wish to show that

/, dp =0 (3.13)

whenever ¢ is a smooth (n — 2)-form supported in B(0, R) where B(0, R) is
the ball introduced earlier having the property that 2 CC B(0, R). Since S’
is area-minimizing in {2, we appeal to the monotonicity formula [S1], §17.6,
to conclude that only a finite number of components of (9E;) can intersect
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any given compact subset of {2, in particular, spt ¢ N 'S'. Thus, there exists
a smooth function ¢ that is 1 on spt N S” and 0 in a neighborhood of
OFE; — S'. Then, (3.13) is established by

/,d‘p:/,d(éw) :/&)Es d(¢y) = 0.

Thus, S’ is an (n — 1)-rectifiable cycle in the sense of currents; that is,
95" = 0. Now appeal to [S1], 27.6, to conclude that there is a measurable set
F C B(0, R) such that 0F = S'. It follows from elementary considerations
that for a given vector v € R", there is a hyperplane, P, with normal v such
that PN S’ # () and

Fc{x: (x—z0) - v<0}

where 29 € PN S’. Theorem 2.2 implies P N S” is open as well as closed
in P, thus yielding P = S’, a contradiction. [l

We now are in a position to construct the solution u to problem (1.1).
For this purpose, we first define for t € T,

At:EtﬂQ.

Observe that FE; is closed relative to {2 since each point of JE; is either
a regular point of JE; or a point at which a tangent cone exists. This
implies that each point of E; is an element of 9, E;. From our convention
(2.9), we therefore have A; N 2 = E; N 2. Also, with the help of Lemma
3.3, observe that for t € T',

{g>t} C(E)'NaN C A, Nan, (3.14)
{g>t}CANINCENIN=[(E) UdE]NAN C{g>t} (3.15)

Finally, note that (3.15) and Lemma 3.4 imply

A, CC A, (3.16)

relative to the topology on {2 whenever s,t € T with s < t. We now define
our solution u by

u(x) = sup{t: x € A;}. (3.17)
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Theorem 3.5. The function u defined by (3.17) satisfies the following:
(i) u =g on 912,

(ii) u s continuous on 2,

(iii) Ay C{u >t} for allt € T and |[{u >t} — Ay| =0 for almost allt € T.

Proof. To show that u = g on 92, let zy € 92 and suppose g(xg) = t. If
s < t, then G(x) > s for all z € 2° near xo. Hence, zo € (E;)' N 902 by
(3.14) and consequently, zo € A, for all s € T such that s < ¢t. By (3.17),
this implies u(z) > ¢. To show that u(z) = ¢ suppose by contradiction that
w(z) =7 > t. Select r € (t,7)NT. Then x € A,. But A, N3N C {g > r}
by (3.15), a contradiction since g(x) =t < 7.

For the proof of (ii), it is easy to verify that

{u>t}={NA4s: seT,s<t}and{u>t}={JAs: s€T,s>t}.

The first set is obviously closed while the second is open relative to 2 by
(3.16). Hence, u is continuous on 2.

For the proof of (iii), it is clear that {u >t} D A;. Now, {u >t} — A, C
u=!(t). But [u='(¢)| = 0 for almost all ¢ because [£2| < cc. O

Theorem 3.6. If {2 is a bounded Lipschitz domain that satisfies (3.1) and
(3.2), then the function u defined by (3.17) is a solution to (1.1).

Proof. Let v € BV (£2), v = g on 912 be a competitor in problem (1.1). We

recall the extension G € BV(R" — 2) of g, (2.17). Now define an extension
v€ BV(R") of v by 7 =G in R* — (2. Let F;, = {v > t}. It is sufficient to
show that

for almost every t € T (see (2.19)), because then v € BV ({2) and (2.12)

would imply

b oo

/ P(E,, 0)dt < / P(F, Q) dt = | Vo] (2) < oc.

Hence, by (2.13), u € BV (£2); furthermore, || Vul|| (£2) < ||Vo|| (£2) by (2.12).
We know that E; is a solution of

min{P(E,R"): E— Q2= L, — 2},



284 William P. Ziemer

while Fy, — 2 = L, — {2 almost everywhere. Hence,
P(E;,R") < P(F;,R™). (3.19)
Next, note that

P(E,,R*) = H" Y(0"E; — )
+ H" Y 9"E;noN) + H" 9" E, N ) (3.20)
> H" 10" Ly — )+ P(Ey, Q).

We will now show that
P(F,R") = H”fl(é*ﬁt - ﬁ) + H”fl(é*Ft N {§2)

. = (3.21)

=H" " (0"Ly — 2) + P(F;, ),

which will establish (3.18) in light of (3.19) and (3.20).
Observe

P(F;,R*) = H" 0" Ly — 2)+ H 1 (0" F, N 9N2) + H" (9" F; n ).

We claim that H"~1(9* F; N d£2) = 0 for almost all ¢ because 9*F; C dF; C
1 (t) since v € C°(R™). But H* }(v=1(t) N 9£2) = 0 for all but countably
many t since H" 1(9£2) < . O

In [BDG], the least gradient problem was posed in terms of minimizing
the total variation among (possibly discontinuous) functions in BV (£2). The
following result shows that the function u defined by (3.17) is a solution to
this problem as well.

Theorem 3.7. If {2 is a bounded Lipschitz domain that satisfies (3.1) and
(3.2), then the function u defined by (3.17) is a solution to

inf {||Vv|| (2) : v € BV(§2),v =g on 92}, (3.22)

where g : 02 — R! is continuous. Here, v = g on 052 is understood in the
sense of trace theory in BV.

Proof. Obviously, the infimum defined by (3.22) is no greater than that
defined by (1.1). To show they are equal, the proof proceeds as in Theo-
rem 3.6. Thus, we consider a competitor v € BV ({2) in problem (3.22) and
let 7 € BV(R™) be the extension as defined above. Note that since g is
continuous on 912, we have v € BV (R") N C°(R" — §2). As in the proof of
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Theorem 3.6, we need only establish (3.18) for almost all ¢ € T'. For this,
we argue as follows. Since g is the trace on 92 of 7 € BV ({2) in the sense
of BV theory, we know (cf. [Z], §5.14) for H"~!-almost all z € 92

lim [v(y) — g(z)| dy = 0. (3.23)
=Y B(z,r)N$2
Consider such an x that is also an element of 9*F; N 9f2. For such an x,

observe that g(z) = t. Indeed, if g(z) < t, say g(x) =t — &, then

1
0=lim 07— (/ o(y) — g(z)| dy
r=0 |B(z,7) N 2| \/B(a,r)nen{o<t} | |

+ o(0) ~ g(o)] dy
B(z,r)n2n{v>t}

1
> limsup ————
r—0  |B(@,7) N 2] Jp@,nnenfz>t

. |B(z,r) N 20N {v >t}
> el .
= £7msup |B(z,7) N £

[5(y) — g(x)| dy

Using also the fact that g is the trace of 7 € BV (R™ — {2), we can employ
a similar argument to show that

. |B(z,7) N (R* —2)n{v >t}
0 = limsu .
s 1B(z,r) N (R" — Q)]

Hence, we conclude that

v >
L BEn e

r=0 |B(z,7)|

This implies that x ¢ 0*F}, a contradiction. Similarly, a contradiction is
reached if g(z) > t. In view of (3.19), it follows that H"~1(8* F, N 912) = 0.
Thus,

P(F,,R*) = H* (0" Ly — 2) + P(F,, )
and as in Theorem 3.6, this is sufficient to establish (3.18). O

We conclude this section with the observation that conditions (3.1) and
(3.2) are necessary to ensure existence of solutions to (1.1) with arbitrary
boundary data g. To support this claim, we state the following without
proof.



286 William P. Ziemer

Theorem 3.8. Suppose 2 is a bounded Lipschitz domain which fails to
satisfy (3.2). Then there exists continuous boundary data g for which the
problem (1.1) has no solution.

Thus having demonstrated the existence of our solution, the questions of
uniqueness and regularity become important. We quote the following results
without proof.

Theorem 3.9. Let 2 C R" be a bounded, Lipschitz domain satisfying (3.1)
and (3.2). If uy,us € C°(2)NBV () are solutions of (1.1) relative to their
own boundary data, then

sup [uy — uz| = sup [uy — uy|.
2 a0

In particular, the solution to (1.1) is unique.

Concerning regularity, note that in two dimensions, one can readily con-
struct functions of least gradient by ensuring the level sets are straight line
segments. Thus, functions of the form u(z,y) = f(y/z) have least gradi-
ent. It is then easy to construct functions of least gradient having regularity
properties in the interior no better than the regularity of the boundary data.

It can be shown that if the Dirichlet boundary data is of class C%%, then
the solution will be of class C%?/2. In fact, a similar result can be obtained
in terms of the modulus of continuity of the boundary data. Our result on
regularity is as follows.

Theorem 3.10. Suppose £2 is a bounded, open subset of R* with C? bound-
ary having strictly positive mean curvature. Suppose g € C%(992) for some
0<a<1andu€ COR)N BV () is a function of least gradient in 2
relative to its boundary data, g. Then u € C%*/2(02).

4 Area minimizing sets subject to a volume constraint

The work in this and the next section is based on [StZ] and is concerned
with the problem of minimizing area subject to a volume constraint in a
given convex set. In precise terms we have the following. Let 2 C R” be a
bounded convex set. Thus, |2| < co where |£2| denotes Lebesgue measure.
For a number 0 < v < |£2|, let E C 2 denote a set with |E| = v such that

P(E) < P(F)
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for all sets F' C 2 with |F| = v, where P(E) denotes the perimeter of E.
The main question we investigate is whether E is convex.

It should be emphasized that the perimeter of a competitor F' is taken
relative to R™, or what is the same, the perimeter is taken relative to the
closure of (2 since F' is assumed to be a subset of 2. This problem is con-
siderably different from minimizing perimeter relative to the interior of 2.
This was considered in [Gr] where it was shown that a minimizer is regular
and intersects 92 orthogonally.

The question of existence of a solution to our problem is resolved imme-
diately in the context of sets of finite perimeter. Regularity questions have
been considered by other authors. Tamanini [T] has shown that an area min-
imizing set E subject to a volume constraint has the property that 0E N {2
is real analytic except for a closed set whose Hausdorff dimension does not
exceed n — 8. Also, under the assumption that 02 € C', it was shown in
[GMT?2] that OF is an (n — 1)-manifold of class C' in some neighborhood
of each point in OE N 2. In R?, and in R, n > 2 under an additional
condition on {2, we are able to obtain regularity results and ultimately es-
tablish that a minimizer F is convex. Assuming only that 2 is bounded and
convex, the convexity of E is an open question in R, n > 2.

The additional condition we impose on {2 if n > 2 is the following.

We assume that a largest closed ball, By, contained in {2 has

a great circle that is a subset of 0f2. A great circle of By, is

defined as the intersection of 0By with a hyperplane, T,,, (4.1)
passing through the center of By,. The equatorial “disk” is

defined as Dg,, = T, N Bg.

Also, assuming initially that 962 € C? and strictly convex, we invoke a re-
sult of [BK] to conclude that E € C*! at points near 9£2. We then show,
Theorem 5.9, that E is convex. Finally, through an approximation proce-
dure, we show that E is convex with C! boundary assuming only that
{2 satisfies a great circle condition. Clearly, there is no uniqueness if v is
too small. However, with H, denoting the union of all largest balls in (2,
it |Hp| < v < |£2|, then E is unique. In addition for such v we show that
perimeter minimizers E are nested as a function of v. In general for non-
convex {2 one can expect neither uniqueness nor nestedness as indicated by
examples in [GMT1].

Definition 4.1. Let M denote a k-dimensional C! submanifold of R”,
0 <k <mn,andlet f: M — R be an arbitrary function. We will say that f is
differentiable at xg € M if f is the restriction to M of a function f: U — R
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where is U C R is some open set containing x¢ and where f is differentiable
at xg. We leave the proof of the following to the reader.

Lemma 4.2. Let M be an (n — 1)-dimensional C* submanifold of R* and
let f: M — R be a Lipschitz function. Then f is differentiable at H™™!
almost all points of M.

In view of the preceding Lemma, we can define the directional derivative
of f relative to M at H™ '-almost all 2 € M in the usual manner. Given
a vector 7 in the tangent space to M at x, let v: (—=1,1) — M be any C*
curve with v(0) = 2 and 7/(0) = 7. Define

D f(z) = (fo)'(0)

where it is understood that f is differentiable at x. Observe that this defi-
nition is independent of the extension f.

If we are given a Lipschitz vector field X: M — R", by using usual
methods, it now becomes clear how to define the divergence of X relative
to M, denoted by div X.

If the closure M of M is a C'-manifold with boundary OM = M — M
and if X: R® — R” is a C! vector field with the property that for each
x € M, X(z) is an element of the tangent space to M at z, then the
classical divergence theorem states

/ divyy X dH™ ! = X -ndH"? (4.2)
M oM

where 7 is the outward pointing unit co-normal of M. That is, |n| = 1,
7 is normal to M, and tangent to M.

Definition 4.3. Let M be an oriented (n — 1)-dimensional submanifold of
R™ of class C1'!; that is, M is of class C! and its unit normal v is Lipschitz.
From Lemma 4.2, we have that the components of v are differentiable at
H" '-almost all points of M. Thus, divys v is defined H™!-almost every-
where on M. At such points, we define the mean curvature of M at x as

Hy (x) = divy v(x)

If X: R* — R” is a C! vector field, consider its decomposition into its
tangent and normal parts relative to M,

X=XT+Xx"*
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where
Xt =(X v
Then, at H" !-almost all points in M, it follows that
divy Xt = (X -v)divy v
Hence,
divyy Xt =HyX -v.

On the other hand, from (4.2) we have

/ divyy X TdH" ! = X .-ndH" 2
M oM

Since divy X =divas X T + divy, X+, we obtain

/divMXdH”—lz/ HyuX -vdH"™ + X -ndH" 2,
M M oM

5 Main results

In this section we consider the following situation.

Let £2 be a bounded, convex domain in R*,n > 2. Let E C 2 )
denote a set which minimizes perimeter in the closure of {2
subject to a volume constraint |E| = v < |{2|. Thus

P(E,R") < P(F\R")

for all sets F' C 2 with |F| = v.

7

289

(5.1)

We will first establish boundary regularity and curvature properties for such
perimeter minimizers under the assumption that (2 is strictly convex and
that 82 € C2. Convexity, nestedness and uniqueness results will then be

established under the further assumption that

n =2 or {2 satisfies a great circle condition.

The assumption of strict convexity and C? regularity will then be dispensed

with in part through an approximation argument.
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Associated with (5.1) is some further notation. We let H denote the
convex hull of a minimizer E of (5.1), and we denote by H™ that part of H
that lies “above” the equatorial disk Dp,, of B as defined in (4.1). Since
P divides H into two parts, we arbitrarily call one of them the part that
lies “above” P.

Next, we recall some facts concerning area minimizing sets with a volume
constraint. The main result of [GMT1] is that if E is area minimizing with
a volume constraint, then

Y(x,r) < Cr" (5.2)

for each x € OF and for all sufficiently small » > 0. Consequently, it fol-
lows from work of Tamanini [T] that an area minimizing set E with a
volume constraint possesses an area minimizing tangent cone at each point
of (OE) N 2. From this it follows that (OE) N {2 enjoys the same regular-
ity properties as an area minimizing set; that is, (OE) N {2 is real analytic
except for a closed singular set S whose Hausdorff dimension does not ex-
ceed n — 8. Furthermore, it was established in [GMT2], Theorem 3, that
JFE is an (n — 1)-manifold of class C'! in some neighborhood of each point
x € 0ENIN.

The object of this section is to prove that E is convex and we begin by
proving C11 regularity of OF near 042. For this we will need the following
result of Brézis and Kinderlehrer, [BK].

Theorem 5.1. Leta: R"™' — R*™! be a C? vector field satisfying the con-
dition that for each compact C C R*™1, there exists a constant v = v(C) > 0
such that

(a(p) —a(q))-(p—q) > v|p—qf°

for all p,q € C. Let U C R*™! be an open connected set and let 3 € C*(U)
satisfy B <0 on OU. Let f € CY(U). With K = Kg denoting the convez set
of Lipschitz functions v satisfying v > 3 in U and v =10 on U, let u € K
be a solution of

/Ua(Vu)~V(v—u)dx2/Uf(v—u)dac

for allv € K. Then u € CYY (V) on any domain V with V. C U.

We now apply this result to obtain C1! regularity of the boundary of
a minimizer F of the variational problem (5.1) near 942 . Since dE is an
(n—1)-manifold of class C* in some neighborhood of each point z € dENIS2,
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it follows that near such a point x, we may represent both OF and 942 as
graphs of functions u and (3, respectively, defined on an open set U’ € R* !
containing x' where z = (2/,y"), y" € R. We will assume u and 3 chosen
in such a way that v > 3, v = 0 on U’ and 8 < 0 on 9U’. Using the
convexity of 2, this can be accomplished by considering a hyperplane Fy
passing through E and parallel to the tangent plane to OF at x. By taking Py
sufficiently close to the tangent plane, U’ can be defined as Py N E. Now
select v € K and for 0 < e < 1, define u, on U’ as u. = u+¢e(v —u). We will
assume ¢ chosen small enough so that the graph of u. remains in 2. Note
that u. € K. Select a point z € (OE) N 2 at which JF is regular. Thus,
OF is real analytic near z and its mean curvature is a constant K there.
In a neighborhood of z, we can represent OF as the graph of a function w
defined on some open set V' C R*! containing 2’ where z = (z’, 2”). The
neighborhoods about x and z where JF is represented as a graph are taken
to be disjoint. Let ¢ € C§°(V') denote a function with the property that

/IgadH”_l - /I(v ) dH™, (5.3)

and define w. = w — ep. The graphs of the functions u. and w. produce
a perturbation of the set E, say E.. Because of (5.3), we have that |E| =

|E.|. With
F<e>=/ \/1+|w5|2+/ N
U’ A%

the minimizing property of F implies that F'(0) < F(¢) for all small ¢ and
therefore that F’(0) > 0. Thus,

[ - [ v
U1+ [Vl Vi1 4 [Vl
Since w has constant mean curvature K, we obtain
\Y
/ w —-ch:—/ ch:—K/ cp:—l(/(v—u),
v /1 + |VU}|2 1 1 i

and therefore

v—u)>—K/l(v—u). (5.4)

/ Vu v(
v \/1+|VU|2 B
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If n € C§°(U') denotes an arbitrary non-negative test function, then
with v —u = 7, (5.4) states that u is a weak solution of Hgr < K. This
combined with the C1:!- regularity of u implies that Hpr < K pointwise
almost everywhere in a neighborhood of 912. Since Hog = K in 0EN(2\S)
with H"~1(S) = 0 we have the following result.

Theorem 5.2. Assume that 2 is bounded, convex and has a C? boundary.
If E is a minimizer of (5.1), then OE € CY! in some neighborhood of 92
and Horp < K H™ -almost everywhere on OE.

We now will exploit Theorem 5.2 to establish both regularity and a mean
curvature estimate for the boundary of the convex hull of E.

Theorem 5.3. Assume that 2 is bounded, strictly conver and has a C?
boundary. If E is a minimizer of (5.1) with convex hull H then 0H € C*1
and Hopr < K H" -almost everywhere on 0H.

Proof. Note that the singular set S in JF is a closed subset of 2 and
thus separated from 92, in fact it is contained in the interior of H, for if
x € OENJH N {2, then the tangent cone to OF at x must be a hyperplane
because E C H and H is convex. Consequently OF is regular at x. Let NV
be an open neighborhood of S with compact closure in the interior of H.
Thus by Theorem 5.2 and the analyticity of OF in 2\ S we see that OF is
CH1 at points in G := OE \ N. Therefore for some C' we have

|v(z) — v(z)] < Clax — 2|, z,z€G (5.5)

where v(x) is the outward unit normal to E at z. Also since 9E is C! at
points in G there exists an ¢ such that for all x € G and z € E N B(x,¢)
we have

1
v(a) - (&= ) < gl — 2] (5.6)
Choose x € OENOH C G and let 0 < a < 1/2. Then define
d = amin{e, dist(0H, N), (2C) !, diam E}.

Let y = = — dv(z) and observe that y is in the interior of E since 0F
cannot intersect the line segment Ty at a point z # z due to (5.6). Let
r = dist(y, dE) and note that 0 < r < d. Now choose any z € OF such that
|y — z| = r. Note that z € G, for otherwise we would have z € N and since
|z — 2| < |z —y|+ |y — 2|, it would follow that

2d > |x — z| > dist(0H,N) > — > 2d,
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a contradiction. Then, |z — z| < |z —y| + |y — 2| < 2d < ¢ and both (5.5)
and (5.6) hold. Thus, since z = y + dv(z) and z = y + rv(z), we have
|d —r| < |v(z) - (z—2)| and

[z — 2| = |(d = r)v(z) +r(v(z) —v(z))] < (Yot Cr)le — 2| < 3afe -2,

(since r < d < a/(2¢) < 1/(4c)) which implies that £ = z and therefore
r = d. This implies that for every x € 0E N OH there exists a ball B, C E
of radius d containing x.

Given any p € OH we claim that p is a convex combination of points
{z;} in JENJH. To see this note that if C' is a convex set with £ C C then
E C C since if ¢ € E then either x € C or € dC; in the later case x lies in
a support plane of C so if x € {2, regularity theory implies that x € E C C,
and if # € 912 then x is not in the singular set S of E (since S is a compact
subset of £2) so again x € E C C. Consequently from the definition of convex
hull H of E as the intersection of all convex sets containing F, we see that
E C H. Moreover H is the convex hull of E from which we conclude by a well
known result that H is closed since E is a compact subset of R”. Note that
the set of finite convex combinations of points from E is convex, contains E,
and is contained in any convex set which contains E and so equals H. Thus
if p € OH we have p € H, since H is closed, and consequently p = Zle \iZ;

for x; € E and Zle Ai=1,A2>0,i=1,... k. If we take k to be as small
as possible then either £ = 1 and p € E and the claim is trivially true, or p
lies in the k& dimensional interior of the convex hull M of {z;} in which case
no x; can lie in the interior of H since then the same would be true of p.
Consequently x; €e 0OENOH, 1 =1,...,k, as claimed.

Taking the convex hull of Ule B, we see that there exists aball B, C H
of radius d containing p, i.e. H satisfies a uniform interior sphere condition.
We claim that this implies H is C™'. To see this, consider the problem
of prescribing unit vectors v1,v2 € R, and finding a convex set H, satis-
fying the interior sphere condition noted above, and points z,y € H with
v(z) = v1, v(y) = va, such that |z — y| is minimized. It is clear that x,y
must lie in a two dimensional plane orthogonal to the intersection of two
hyperplanes having vy, v, as normals, i.e. one needs only consider the two
dimensional case where it is easy to see that one must have B, = B,. Taking
the center of this ball to be the origin then v(z) = z/d,v(y) = y/d and we
trivially have

v(w) = v(y)] < Sl =yl
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Since this is the case when |z — y| is smallest for fixed v(z),v(y) we have
established that v(z) is Lipschitz in general.

We now prove that Hoy < K H" '-almost everywhere in dH. Note that
Horn = Hor H™ '-almost everywhere on OE N OH by Theorem 5.2. Thus
we need only consider points p € dH \ OE. In fact since 9H is C1! we need
only consider p € 0H \ OF at which dH is classically twice differentiable. As
above, any such p lies in the k dimensional interior of the convex hull M of
certain points p; € dE, i =1,...,k. Note that k # 1 due to p ¢ OE. Choose
a coordinate system such that points in R™ are represented as (z,v, 2),
reRF, y € RP-F1 2 € R, with z = 0 the tangent plane to 9H at p,
pi = (2:,0,0),i=1,...,k and z > 0 in H. We will construct an analytic
function g whose graph does not lie below 0H, contains M, and has mean
curvature bounded above by K + ¢ (for any ¢ > 0) in a small neighborhood
of p. This will lead to the conclusion that Hoyg < K at p.

Let OF be represented as z = f(x,y) for f defined in a neighborhood in
RE x R*=*=1 of U(z;,0). Thus

(xivyaf(xivy)) €e0ECH

for small |y|, and consequently

k k

S Niwiy, flaiy) €H i D A=1,4>0 (5.7)

=1 =1

for small |y|. For any given x in N, where N is the convex hull of the
points x;, ¢ = 1,...,k, let A = Aa) = (M (x),...,Ae(x)) be the unique
vector such that

Thus if we define

g(z.y) = > Xi(@) f(wi,y)
=1
we see from (5.7) for € N and small |y| that
(z,y,9(x,y)) € H,

and so the surface z = g(x,y) does not lie below 0H at such (z, y).
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Note that M N2 = (), for otherwise the plane z = 0, which contains M,
would be a tangent plane to 92, thus contradicting the strict convexity of
082. Also M does not intersect the singular set of OF since M C 0H. Thus
OF is analytic at each p; and therefore both f(z;,y) and g(x,y) are smooth
for small |y|. Furthermore,

0< A, f(z:,0) < Af(2:,0) < K

since Vf(x;,0) = 0, Hpr equals Af at points where the gradient is zero,
and the second derivatives of f are non-negative at (x;,0) due to the fact
that f >0, f(x;,0) = 0 for all i. Hence, for any ¢ > 0, A, f(z;,y) < (K +¢)
for small enough |y|, so Ayg(z,y) < (K +¢) as well. However A,g = 0 and
so Ag < (K + ¢) for small |y|. Recall that 0H is trapped between {z = 0}
and the graph of g over a region which contains p in its interior. Since
g(p) = 0 and OH is twice differentiable at p we conclude that Hom (p) < K
as required. O

Theorem 5.4. Assume that 2 is bounded, strictly convexr and satisfies
a great circle condition. If E is a minimizer of (5.1) with |Bg| < |E| then

Bo CFE
where By, is the largest ball in 2.

Proof. If |E| = |Bg| then clearly E must be a ball. Since there is only
one largest ball in {2 due to strict convexity, we have £ = Bg. Otherwise
|Ba| < |E|. In this case translate the upper and lower hemispheres of By
by a distance d in opposite directions orthogonal to T'5,, until H, the convex
hull of the two translated hemispheres, intersects E in a set of measure | By|,
ie.

|HN E| = |Bgl. (5.8)

This is possible because of the great circle condition and because (2 is
bounded and convex. Now translate the hemispheres back to their original
positions while rigidly carrying along the parts of E lying in the exterior
of H. Let E be the union of the translated parts of F with Bg. Note that

|E| = |E| and therefore P(E) > P(E). (5.9)
Using a standard inequality, cf. [MM], we have

P(E)+ P(H) > P(ENH) + P(E U H)
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where P(S) denotes P(S, R™). For brevity, write D = Dp,,. Observe that

P(H) =2dH" %(dD) + P(By), P(EUH)=P(E)+2dH" ?(9D)

and thus

P(E)+ P(Bgp)> P(ENH)+ P(E).

In view of (5.9) it follows that P(E N H) < P(Bg). But then the isoperi-
metric inequality and (5.8) imply that E N H is a ball. However {2 contains
only one largest ball and so we must have EN H = Bg,ie. Bp C E. O

Suppose M is an oriented (n — 1)-dimensional C'-submanifold of R* and
f: M — R* ! a C! mapping. Let Jf(z) denote the Jacobian of f at z and
note that the sign of the Jacobian depends on the orientation of M. We recall
the following result, cf. [F2], Theorem 3.2.20: For any H" !-measurable set
E C M and any H"'-measurable function ¢,

/E Af @) | f(2)] dH" " (z) = / o(y)N(f, E.y) dy (5.10)

where N(f,E,y) denotes the number (possibly infinite) of points in
f~Y(y) N E. Here equality is understood in the sense that if one side is
finite, then so is the other. In our application (5.11) below, we will know
the left side is finite, therefore ensuring that N(f, E,y) is finite for almost
all y.

Lemma 5.5. There is a constant C = C(n) such that for each x € (OE)N{2
we have

H"1((0E) N B(x,7))

Tnfl

<C

for almost all sufficiently small r > 0.

Proof. It follows from (5.2) that we may as well assume JF is area mini-
mizing. In this case the result follows immediately from the fact that

H"Y((9E) N B(z,r))

T’n,—l

is non-decreasing in r, for r > 0 sufficiently small, cf. [F2], Theorem 3.4.3.
([l
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Lemma 5.6. For every ¢ > 0 and any open set V.C R* containing the
singular set S of OF, there exists an open set W and a Lipschitz function
f such that

ScWc{f=1}
spt f CV,

/ |Vf| dH" ™ <e.
OF

Proof. Let V' be any open set containing S and let § = 1/2(dist S,R* —V).
Since H"~7(S) = 0 and S is compact, there is a finite collection of open
balls {B(z;,7;)}™, such that 2r; < §, B(z;,m;) NS # 0,5 C U~, B(zs,74)
and

C as in Lemma 5.5. We will assume that each ball B(z;, ;) has been chosen
so that r; < 1 and that 2r; satisfies Lemma 5.5. Let W denote the union of
these balls and define f; by

1 if |z —xz; <1

—M if r; <l|z—xz; <2r;

i

0 if 2r; <|z—x.

In view of Lemma 5.5, it follows that

K2

/ IVfi| dH" ™' < CrP=2 < CrP".
B(zi,T,')ﬂaE

Now let f := maxi<;<.m fi. Then f is Lipschitz, W C {f =1}, sptf C V
and

/ |Vf| dH" ! < Z/ |V fi| dH™?
oOF i=1 B(x,',’r‘,')ﬁaE

m
<C ZT?J <e.
i=1
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Lemma 5.7. Let T denote the (n — 1)-rectifiable current determined by
(OE)*, the part of OF that lies above the equatorial disk D := Dp,, of Bg.
Then 9T is the (n — 2)-sphere given by 0T = 8D.

Proof. Clearly, the support of 9T contains the (n — 2)-sphere, but we must
rule out the possibility of it containing points of .S as well. For this purpose,
choose z € S and let ¢ be any smooth differential form supported in some
neighborhood of z that does not meet (OE)* N dD. It suffices to show
that T'(dp) = 0. Let p denote H™ ! restricted to (OE)*. Appealing to
Lemma 5.6, we can produce a sequence of Lipschitz functions {w;} such
that

w; — 1 pae.
|[Vwi| — 0 pae.
w; vanishes in a neighborhood of S

/ |Vwi| d/.l, — 0.
(0E)*

Thus, we obtain

0=T(d(pw;)) =T(dp ANw;) +T(p A dw;)

/ dga/\wi—k/ @ A dw;.
(0E)* (0E)*

The first integral tends to

/ dp = T(dy)
(0E)+

while the second tends to 0. Thus, T'(dyp) = 0. O

Let E denote a minimizer of (5.1), where {2 is strictly convex with
C? boundary. Since OE is locally an (n — 1)-manifold of class C* except
for a singular set S whose Hausdorff dimension does not exceed n — 8, it
follows that OF can be regarded as an oriented n — 1 integral current whose
boundary is 0; i.e. an oriented n — 1 integral cycle.

Let T denote the n — 1 integral current represented by (O0E) N HT.
Since F is of class C**! in a neighborhood of each point of (OE) N (942), it
follows that the tangent cone to OF at such points is in fact a tangent plane.
Consequently, OF is analytic near such points and therefore the singular set
S of OF lies in the interior of (OE) N HT. We know from Lemma 5.7 that
the boundary of T' is the (n — 2)-sphere determined by 0D g, , the equator
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of Bp. Let p: R* — Tp,, denote the orthogonal projection and consider
the current R := px(T'). Note that OR = px(9T) = dDp,,. Furthermore,
Dpg,, is the unique current in 7’5, whose boundary is dDp,, and therefore,
we conclude that R = Dp,,. Let us consider the action of R operating on
an (n — 1)-form ¢. For this we will let a(z) denote the Grassman (n — 1)-
vector of norm one that is in the tangent plane orthogonal to v(E, x), the
exterior normal to E at z. The vector a(z) is chosen in such a way that
a(z) A v(E,x) forms the Grassman unit n-vector that induces a positive
orientation of R™. Also, we let dp(a(z)) denote the value of the differential
of p operating on a(z). Then, with the help of (5.10), we have

R(¢) =T(p*¢)

= / Pro-a
(OE)NH+

N / ¢lp(@)] - dp(a()) dH" " (z)
(OE)NH+
- /D e([N*(p,0E,y) — N~ (p,0E,y)]dy

where N1 (p,0E,y) denotes the number of points of p~!(y) N IE at which
Jp is positive and similarly, N~ (p,0F,y) denotes the number of points of
p~1(y) NOE at which Jp is negative. Since R = Dp,,, we conclude that

N+(p,8E,y)—N7(p,8E,y):1 (511)
for almost all y € Dp,,. O

Lemma 5.8. Assume that §2 is bounded, strictly convez, has a C? bound-
ary, and satisfies a great circle condition. Let H denote the convex hull for
any minimizer E of the variational problem (5.1). Then there is a constant
K such that Hop = K at H" -almost all points of (0H) N £2.

Proof. First, we recall that OE N 2 is C! at all of its points except for
a singular set S C 0E N {2 whose Hausdorff dimension does not exceed
n — 8. Furthermore, we know that 0E N (2 is real analytic at all points
away from S and that OH is C':'. Finally, we know that E contains Bg,.
Let (OE)* and (OH)™ denote the parts of OF and OH respectively that lie
above the equatorial plane P of By. Let p: R* — P denote the orthogonal
projection. The mean curvature of OF is equal to a constant K at all points
of OEN(2—1S5). Let X denote the vertical unit vector. We wish to apply (4.3)
with (OE)* replacing M. Referring to the proof of Lemma 5.7, we see that
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this can be done in spite of the singular set S € (OE)*. Thus, applying (4.3),
we obtain

/ +H3HX'I/H dH" ! = / +HOEX'I/E dH"™ ! (512)
(0H) (OF)

where vy and vg denote the unit exterior normals to H and E respectively.
Let

A= (OE)* n(0H)T,
B=(0H)" —A)n{x: Hou(z) < K},
C=(0H)" —A)n{z: Hou(x) = K}.

Since Hog < K H" '-a.e. in (0H)T N £2, it suffices to prove that
H"Y(B) =0. (5.13)

Observe that both B and C are subsets of 9Ht. Note also that A, B, and C
are mutually disjoint subsets of (OH)" with H" [(0H)" —(AuBUC)] = 0.
Thus, p(A), p(B) and p(C) are mutually disjoint and their union occupies
almost all of Dp,,. Clearly, vg and vy as well as Hpy and Hagp agree
H"~lalmost everywhere on A. Therefore,

/ HouX - vy dH" ! = / HoeX -vg dH™ L. (514)
A A

Since X vy is the Jacobian of the mapping p: 8H+ — Dgp,,, it follows from
(5.10) that

/ HonX vy dH™* < KH™ '[p(B)],

B

/ Hog X -vy dH™™ = KH" ' [p(C)].
C

Now let

Next, observe that both B* and C* are subsets of 2. To see this, consider
x € B*. If it were true that x € B* N 9f2, then x € (0H)" and thus z € A.
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This is impossible since p(A) and p(B) are disjoint. A similar argument
holds for C*. Referring to (5.10) and (5.11), we obtain

HopX -vpdH"*
B*

= K/ X -vpdH"!
B*N{z: X -vg(z)>0}

—+—I&’/ X -vpdH™!
B*N{z: X-vEp(z)<0}

= K/ N*(p,0E,y) — N~ (p,0E,y) dH" ' (y)
p(B*)

= KH" '[p(B")]

= KH" ' [p(B)].

Similarly,

HopX -vg dH"™' = KH"'[p(C*)] = KH"[p(C)]
C*

and
/ KX -vgdH" ' = KH" *(p(A)).

Finally, because A C (0H)T and consequently N*(p,A,y) = 1 and
N~ (p,A,y) =0 for H* 1-almost all y € p(A), we obtain

/ KX -vpdH" ' = KH" '(p(A)).
A

Now, using the facts that A* — A C 2 and Hgg = K on A* — A — 5, we
obtain

HopX -vp dH™ !
A*
:/ KX -vg dH™! +/ (Hop — K)X -vpdH" !
= / KX -vpdH"" + / (Hop — K)X -vpdH"™"
* A
=KH" ' (p(A)) — KH" ' (p(A)) + / HopX -vpdH"™!
A

= / HopX -vg dH™ 1.
A
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Under the assumption H"1(B) > 0, we would obtain
/ HouX - vy dH™ !
(0H)*
< / Hog X - vy dH™ ' + KH" ' [p(B)] + KH"[p(C)]
A
= / HopX -vpdH"™' + KH" *p(B*)|+ KH" ' [p(C*)]
A

= HopX -vpdH" ™' + KH" ' [p(B*)] + KH"~[p(C*)]

A*

= HopX -vpdH™ ' + HopX -vgdH™ ™!
A* B*
+ | HopX - -vgdH™!

C*

:/ HaEX~l/EdHn_1

A*UB*UC*

g/ HopX -vg dH™ L,
(9E)+

where we have used that A*, B* and C* are mutually disjoint. This would
contradict (5.12), thus establishing (5.13). O

A function u € CY(W) is called a weak subsolution (supersolution) of
the equation of constant K mean curvature if

Vu -V

Mu(yp) = /W m

whenever p € C§(W), ¢ > 0.
We note that if u € C1+! and classically satisfies the equation of constant
mean curvature equation almost everywhere, then u is a weak solution.
The following result will be stated in the context of R*~! because of its
applications in the subsequent development.

—Kpdez <0 (>0)

Theorem 5.9. Suppose 2 is a bounded, strictly conver domain with C?
boundary that satisfies a great circle condition. Then any minimizer E of
the variational problem (5.1) is convez.

With the results above, by means of an approximation procedure, it
can be shown that F is convex with C*! boundary assuming only that {2
satisfies a great circle condition. The proof of this can be found in [StZ].
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6 The inner trace of Sobolev functions

In this and the next two sections, I will discuss results that are based on
[SwZ].

If 2 C R™ is an open set, WP (£2), p > 1, will denote the Sobolev space
of functions f € LP({2) whose distributional derivatives of order up to and
including & are also elements of L?(£2). The norm on W*?(2) is defined by

1/p
sy = (3 [ 107517 ac)

lo|<k

and W2P(£) is defined as the closure in W*?(£2) of the family of C
functions in {2 with compact support. It is well known that the space of
Bessel potentials

LFP(R") :={f: f=Grxg, g€ L*(R")}

with norm || f[|, = |lgl|, is isometric to W*?(R"). For arbitrary o > 0,
the Bessel kernel G, is that function whose Fourier transform is

Gal(w) = (2m) 72 (1 + J2f*) 7/,
The Bessel capacity of an arbitrary set £ C R" is defined as
Chp(E) :=inf{llgll, : g € L*(R"), g >0, Gy xg > 1 on E}

where the infimum is taken over all non-negative functions g € L?(R™) such
that Gy*g > 1on E. When k =1 and 1 < p < n, this capacity is equivalent
to the p-capacity, v,, whose definition for bounded sets E C R™ is given by

) =ut{ [ (17 +1Df7)

where the infimum is taken over all f € WP(R") for which E is contained
in the interior of {f > 1}. When p > n the p-capacity of any non-empty
set is positive. The Lebesgue measure of a set E C R" is denoted by |E|
and B(zx,r) is the open ball of radius r centered at x. It will be clear from
context the dimension of the Euclidean space on which Lebesgue measure
is defined. Hausdorff (n — 1)-dimensional measure will be denoted by H"~!.
The integral average of a function f over a set E is denoted by

]{Ef=ﬁ/Ef<x>dx.
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An integrable function f is said to possess a Lebesgue point at xq if there
is a number [ = I(zg) such that

lim Fw) = 1] dy = 0.
r— B(I(],’I‘)
Recall that [ = f almost everywhere. Also, f is said to be approximately
continuous at xg if there is a measurable set E with metric density one at
o such that

lim |f(z) = f(zo)| = 0.

T—Tq

zEFR

Note that if f has a Lebesgue point at xz¢ and l(zg) = f(zo), then f is
approximately continuous at xg.
If fe W(f’p(()), then the function f* defined as

vy Jf@) if zen
flw) = {0 it x¢0 (6.1)

is an element of W"P(R"). It is well known that a Sobolev function
f € WFP(R™) possesses a Lebesgue point everywhere except for a Cj , null

set, cf. [Z], Theorem 3.3.3. Furthermore, if f € W4*(£2), it is not difficult
to prove that

li “(y) dy = li =0 6.2
Tli% B(m,r)f (y) 7}_{% |B €, T | / (z,7) ( )

for C p-q.e. x € R™ \ (2, in particular for Cy ,-q.e. ¢ € 912. The converse of
this is one of the main results in [AH] which states the following.

Theorem 6.1 ([AH], Theorem 9.1.3). Let k be a positive integer, let
1<p<oo and let f € WFP(R™). If 2 C R" is an arbitrary open set,
then f € W(f’p(Q) if and only if

lim D7 f(y)|dy =0 (6.3)
=) B(z,r)

for Ci_ i), p-q.e. x € R* \ 2 and for all multiindices 3, 0 < |B] <k — 1.

For WHP(R"), 1 < p < 00, this result is due independently to Havin [H]
and Bagby [B].
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A natural question arises whether the assumption that f € W?(R")
can be replaced by the weaker one, f € W*P?({2), in which case (6.3) would
have to be replaced by

lim T*”/ |DP f(y)|dy = 0.
B(z,r)N$2

r—0

A similar question is raised in [AH], Section 9.12.1, concerning a different
result. The purpose of this note is to provide an affirmative answer to this
question.

In the course of this development, we will utilize the space BV, the class
of functions of bounded variation.

Definition 6.2. The space BV ({2) consists of all real-valued integrable
functions f defined on {2 with the property that the distributional par-
tial derivatives of f are totally finite Radon measures. The total variation
measure of the vector valued measure associated with the gradient of f
is denoted by ||Df||. When viewed as a linear functional, its value on a
non-negative real-valued continuous function g supported in {2 is

IDF] (9) = sup{/ggdiwdx v € CR(LRY, [o(@)| < fla).a € 9}

and its value on a set E is ||Df]|| (E). The space BVio.({2) consists of all
functions f defined on 2 with the property that f € BV (£2') for every open
set 2' compactly contained in (2. The measure theoretic boundary of a set
E C R" is defined as

. IEﬁB(x,r)l} { .. |EnB(x,7)| }
OnE =<2z:0<limsup —————*+— z: liminf —————~— < 1.
{ iy Tes I A R S TS|

If H"=1(9,,E N 2) < 0o, then E is said to have finite perimeter in (2.

Functions in BV (R™) can be characterized in terms of their behavior as
functions of one variable. For this, consider a real valued function g defined
on the interval [a,b]. The essential variation of g on [a,b] is defined as

k
ess V2 (g) == sup {Z lg(t:) — g(ti—1)|}
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where the supremum is taken over all finite partitions of [a, b] induced by
a <ty <ty <ty <--- <t <b where g is approximately continuous at
each point of {tg,t1,...,tx}.

Now let us consider f € BV(R") as a function of a single variable
Z, while keeping fixed the remaining n — 1 variables. Thus, let Z, :=
(x1,2a,...,2,—1) and define fz (t) := f(Zn,t). In a similar manner, we can
define the remaining functions fz,, fz,,-- ., fz,_,- A function f € BV,.(R")

if and only if for almost every 7, € R™!, ess V' f5, (-) < o0 and

/ ess Vab:fgk(-) dzy, < 00 (6.4)
R

for each rectangular cell R C R*! k€ {1,2,...,n}, —00 < ay < by < 00.

Another characterization of BV ({2) is due to Fleming and Rishel [FR],
and its statement most suitable for our purposes can be found in [Z], The-
orem 5.4.4.

Theorem 6.3. If 2 C R™ is open and f € BV ({2), then
|IDfIl (£2) :/ H" (0, A N 02) dt, (6.5)
R1

where Ay = {x : f(x) > t}. Conversely, if f € L*(2) and A; has finite
perimeter in (2 for almost all t with

/ H" Y (0,,A; N N)dt < o0, (6.6)
Rl

then f € BV (£2).

In addition we will need the following known results concerning BV and
Sobolev functions.

Theorem 6.4 ([F2], Theorem 4.5.9(29)). If f € BV(R™) is approzimately
continuous at H" ' -almost all points of R™, then f is continuous on almost
all lines parallel to the coordinate azes.

Theorem 6.5 ([GZ], Theorem 7.45). A function f defined on [a,b] is ab-
solutely continuous if and only if f is of bounded variation, continuous, and
carries sets of measure zero into sets of measure zero.

Theorem 6.6 ([Z], Theorem 2.1.4). Suppose f € WYP(2), p > 1. Let
2" cc N. Then [ has a representative f that is absolutely continuous on
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almost all line segments of £2' that_are parallel to the coordinate azes and
the classical partial derivatives of f agree almost everywhere with the dis-
tributional derivatives of u. Conversely, if f has such a representative and
the classical partial derivatives Dy f, ..., D, f together with f are in LP(£2")
then f € Whr(82').

7 The inner trace

We are now in a position to prove our theorem.

Theorem 7.1. Let 2 C R" be an arbitrary open set and let f be a function
defined on (2 with the property that f € BV (£2") for every open bounded
subset 2" C 2. If f* is approzimately continuous H" 1-a.e. in R", then
f* € BVioe(R™).

Proof. Let Ay == {f > t} and A} := {f* > t}. For each t # 0 we claim
that H"~1[0,,A; \ £2] = 0. For this purpose, let zg € R" \ 2 be a point of
approximate continuity of f*. Then f*(z¢) = 0 and

lim f*(z)=0 (7.1)

T—xT0

z€EFE

for some set E C R® whose metric density is one at zq. If ¢ > 0 this implies
that
147 0 B(ao, )]
r=0  |B(zo,7)|
and therefore that xo & 9, A;. Similarly, if ¢ < 0 let B} := {f* < t}. Then
equation (7.1) implies that
B;nNB AiNB
lim [Bi 0 Blxo, )| =0 and therefore lim [4: 0 B(zo, 7| =1,
r=0  [B(zo,7)| r=0  |B(zo,r)|
thus showing that zg & 9, A;. Since H™ !-a.e. point of R™ \ {2 is a point of
approximate continuity of f*, this shows that H" 1[9,, A} \ 2] = 0 for all
t #0.
Having established our claim, it follows that for any bounded open set
UcCR",

=0

/ H”*l(émA;*ﬂU)dtz/ H Y (0,4 N2 NU)dt

:/ H" (0,4, 0 2NU)dt

= [IDfI(2NTU) < oo
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where the third equality is implied by (6.5) and is finite by the assumption
that f € BV(2NnU). That f* € BV (U) now follows from the first equality
and (6.6). Since U is arbitrary, we conclude that f* € BVj,.(R"), as desired.

O

Theorem 7.2. Let 2 C R* be an arbitrary open set and assume that
feWbr(2), 1< p< oo, has the property that

tim [ )y =0 (72)
T B(z,r)N{2

for vp-q.e. & € 3N. Then f € Wy (£2).

Except for a factor of 1/2, the left side of (7.2) could be interpreted as
the inner trace of f on domains with sufficient regularity, for example, on

domains of finite perimeter. Thus our theorem states that if the inner trace
of f is zero y,-q.e. on 912, then f € Wy P(12).

Proof. Define f* asin (6.1). The proof consists of the following steps.
Step 1. f* is approximately continuous H” !-a.e. in R".

Recall that f has a Lebesgue point at 7,-q.e. point in {2. Furthermore,
for any set E, 7,(E) = 0 implies H"~?T¢(E) = 0 for all € > 0, cf. [Z], The-
orem 2.6.16. In particular, H" !(E) = 0. Consequently, f* has a Lebesgue
point at H™ 1-almost all points in {2. Furthermore, for v,-q.e. z € 92, we
know that

im{  1f*@)|dy = lim / F()]dy =0,
B(z,r)N$2

r—0 B(z,r) r—0

so f* has a Lebesgue point at H® !-a.e. point in 9f2. Finally, f* is iden-
tically zero on R™ \ {2 and therefore we conclude that f* is approximately
continuous at H" !-a.e. on R".

Step 2. We know from Theorem 7.1 that f* € BVj,.(R™).

Step 3. f* is continuous on almost all line segments parallel to the coordi-
nate axes.

This follows from Steps 1, 2 and Theorem 6.4.

Step 4. f* is of bounded variation on each bounded interval of almost all
lines parallel to the coordinate axes.

This follows from Step 2 and (6.4).
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Step 5. f* is absolutely continuous on almost all line segments parallel to
the coordinate axes.

In view of Theorem 6.5 we must show that on almost all line segments
parallel to the coordinate axes, f* (as a function of one variable) carries
sets of Lebesgue measure zero (linear measure zero) into sets of Lebesgue
measure zero. For this, consider for example a line segment A\ parallel to
the n'" coordinate axis passing through the point # = (Z,2,) with the
property that f*(Z, -) is continuous and of bounded variation and that f(z, -)
is absolutely continuous on each bounded interval contained in AN (2. Recall
from steps 3 and 4 and Theorem 6.6 that almost all Z in R*~! have this
property. Let E C X be a set of linear measure zero and let I be any
bounded, open interval of A N {2. For any closed interval J C I, it follows
from Theorem 6.6 that f*(J N E) is of measure zero and therefore, by
a limiting process, f*(I N E) is of measure zero. Hence, EN AN 2 is carried
into a set of measure zero. Finally, f* is constantly zero on ENAN(R™ \ 2),
and so f* carries sets of measure zero into measure zero.

Step 6. From Step 5 we see that the distributional partial derivatives
of f* are functions and Step 2 implies that |[Df*| € Ll (R'). Since the
classical partial derivatives of f* exist almost everywhere on R", we have
that Df* =0 a.e. on R* \ 2 and that Df* = Df on 2. Consequently,

|Df*| € LP(R™). Theorem 6.6 implies that f* € W1P(R") and since

lim [f*(y)ldy =0
=% B(z,r)

for y,-q.e. x € R™ \ £2, it follows from Theorem 6.1 that f* € W, ?(£2). As
f* = f on 2, it follows that f € W, *(£2) as desired. O

8 Extensions to W*P(£2)

As in Theorem 7.2, we address the problem of replacing the requirement
that f € WhP(R™) with f € W*P(£2). This will be an easy consequence of
Theorems 6.1 and 7.1.

For this, we begin with the following observation. If {2 C R" is an arbi-
trary open set and f € Wéc’p(ﬁ), then f* € WP(R") and

Def = (D) (8.1)

for each multiindex 0 < |a| < k.
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We now are in a position to prove the following.

Theorem 8.1. Let k be a positive integer, let 1 < p < oo and let
fewkr(2). If 2 C R™ is an arbitrary open set, then f € Wéc’p(ﬁ) if
and only if

r—0

lim 7'7"/ |DP f(y)| dy = 0 (8.2)
B(z,r)N{2

for Ci_i1,p-q-¢. © € R* \ 2 and for all multiindices 3, 0 < |B] <k —1.

Proof. The proof of sufficiency is immediate and thus we will consider only
necessity. This proceeds by induction on k with the case k = 1 having been
established by Theorem 7.2. Assume that f € W*P({2) satisfies condition
(8.2). Then f € W* 1P(£2), and since Cy_1_|g,, < Cr_|s),p for every mul-
tiindex 3, 0 < |f] < k — 2, it follows that f satisfies condition (8.2) as an
element of W*~1:7(£2). Thus by the induction hypothesis we conclude that
f e Wy™P(02) and hence that f* € W+ 1LP(R?).

Let 3 be a multiindex with |3] = k — 1, and define g := DFPf. Then
g € WHP(£2) satisfies the hypotheses of Theorem 7.2, which implies that
g* € WHP(R™). Thus by (8.1), we have that D?f* = (DP f)* € WhP(R")
whenever |3| = k — 1. It follows that f* € W*P(R"). Now we may ap-
ply Theorem 6.1 to conclude that f* € W(f’p(ﬁ). This yields our desired
conclusion since f* = f on {2. O
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