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BV SPACES AND RECTIFIABILITY FOR

CARNOT-CARATHÉODORY METRICS:

AN INTRODUCTION

Bruno Franchi

Abstract. This paper is meant as a (short and partial) introduction to
the study of the geometry of Carnot groups and, more generally, of Carnot-
Carathéodory spaces associated with a family of Lipschitz continuous vector

fields. My personal interest in this field goes back to a series of joint papers
with E. Lanconelli, where this notion was exploited for the study of point-
wise regularity of weak solutions to degenerate elliptic partial differential
equations.

As stated in the title, here we are mainly concerned with topics of Geo-
metric Measure Theory in Carnot groups and in particular with rectifiability
theory in this setting. Thus, the core of the paper consists of Section 3 (ded-
icated to the study of BV functions with respect to Carnot-Carathéodory

metrics), of Section 4 (dedicated more specifically to the theory of Carnot
groups and, in particular, to the calculus associated with their differential
structure as differential bundles) and of Section 5 (dedicated to the theory of

intrinsic hypersurfaces and to rectifiability theory in Carnot groups). These
sections rely basically on a group of results obtained in several papers in
collaboration with R. Serapioni and F. Serra Cassano, starting from
1996. On the other hand, Section 2 and 6 are dedicated to the notion of

Carnot-Carathéodory metric, to the properties of related Sobolev spaces and
to Poincaré inequality associated with a family of Lipschitz continuous vector
fields. In particular, relying on a group of joint papers with R. L. Whee-
den, S. Gallot, C. Gutiérrez, P. Haj lasz, P. Koskela, G. Lu and

C. Pérez, deep relationships between Poincaré inequality and the geometry
of Carnot-Carathéodory spaces are studied.
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1. Introduction

The aim of these lectures is to illustrate some recent results concerning rec-
tifiable sets in Carnot groups and to provide a short introduction to the
subject and, more generally, to some aspects of Geometric Measure Theory
in Carnot-Carathéodory spaces.

I must thank the organizers of the Spring School NAFSA 7 and Professors
Bohuḿır Opic and Luboš Pick in particular, for this opportunity, for their
warm hospitality and for the friendly atmosphere of the School.

It is also a great pleasure to acknowledge the help and the support of sev-
eral friends that made possible this work: first of all, all the results concern-
ing BV functions and Geometric Measure Theory in Carnot-Carathéodory
spaces presented here have been obtained jointly with Raul Serapioni and
Francesco Serra Cassano. Our long collaboration has been always an
invaluable source of scientific and human enrichment. Without their col-
laboration and their friendship, I would never have been able to attack this
hard subject. I have to thank them also for permitting the large quotation
of our joint papers.

Special thanks go also to my friends Ermanno Lanconelli and Richard
L. Wheeden. With them not only I shared mathematical interests and
a fruitful scientific collaboration that goes far behind the number of joint
papers we have written, but also the great pleasure of a long friendship.
It is a pleasure to acknowledge that I owe to Ermanno Lanconelli the
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idea of approaching degenerate elliptic equations by means of the control
metric associated with a family of vector fields (that is currently called
Carnot-Carathéodory metric). This approach in the early 80’s was the begin-
ning of my interest towards the study of Carnot-Carathéodory spaces, and
the origins of the present paper can be tracked to those pioneering works.
I learned from Dick Wheeden plenty of mathematics and of new ideas. He
introduced me to the magic of integral inequalities, and the section concern-
ing the Poincaré inequality relies on several of our joint papers with Sylvain
Gallot, Cristian Gutiérrez, Guozhen Lu and Carlos Pérez.

I am very grateful to Valentino Magnani and Roberto Monti, who
made their beautiful PhD theses [87] and [96] available to me. In fact,
I followed [96] at several points.

I have to thank also several friends with whom I shared hours of fruitful
discussions and whose work appears here, more or less explicitly: Luigi Am-
brosio, Zoltan Balogh, Giovanna Citti, Thierry Coulhon, Piotr
Haj lasz, Martin H. Reimann, Fulvio Ricci.

These notes are not meant to be a complete — and not even a partial
— survey of the field of Carnot-Carathéodory metrics, since they are based
on the content of a few lectures given in Prague during the NAFSA 7. The
reader interested to an exhaustive overview of the subject, with a full biblio-
graphy, sharp statements and detailed proofs, may refer to P. Haj lasz
([66]), P. Haj lasz and P. Koskela ([67]), and to the PhD theses of
V. Magnani [87] and R. Monti [96], whereas, for more specific facets
we restrict ourselves to recommend the reader to the general monographs
[29], [67], [69], [64], [63], [114], [116], [95], to the papers [3], [4], [5], [11], [19],
[26], [28], [50], [52], [53], [60], [62], [72], [102], [103], [104], [105], [106], [117]
and to the references therein.

Since these lectures are focused on Geometric Measure Theory and rec-
tifiability theorems in particular, there are two wide fields of research that
are not mentioned at all here, the fields of degenerate elliptic equations as-
sociated with a family of vector fields, or subelliptic equations, as they are
currently called by several authors, and control theory. A not utterly unsat-
isfactory picture of these fields goes indeed behind the aim (and the size) of
these lectures.

2. Sobolev spaces and Poincaré inequality

2.1. Vector fields
Consider a family X of vector fields X = (X1, . . . ,Xm) ∈ Lip(Rn; Rn)m.
Since we are dealing with local properties, for the sake of simplicity, we
assume thatX1, . . . ,Xm are bounded in Rn. This assumption gives a simpler
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form to some statements below. Later on, when the vector fields will be
associated with a Carnot group structure, we shall drop the boundedness
assumption. This will not yield contradiction or lack of coherence since the
local estimates we are dealing with are easily extended in groups to the whole
space by translations and dilations.

As usual we shall identify vector fields and differential operators. If

Xj(x) =
n∑

i=1

cji (x)∂i, j = 1, . . . ,m,

we define the m× n matrix

C(x) = [cji (x)] i=1,...,n
j=1,...,m

.

We shall denote by X∗
j the operator formally adjoint to Xj in L2(Rn), i.e.,

the operator which for all ϕ,ψ ∈ C∞
0 (Rn) satisfies

∫

Rn

ϕ(x)Xjψ(x) dx =
∫

Rn

ψ(x)X∗
j ϕ(x) dx.

Moreover, if f ∈ L1
loc is a scalar function and ϕ ∈ (L1

loc)
m is an m-vector

valued function, we define the X-gradient and X-divergence as the following
distributions:

Xf := (X1f, . . . ,Xmf), divX(ϕ) := −
m∑

j=1

X∗
j ϕj .

Let Ω be an open subset of Rn. One can define the Sobolev space W 1,p
X (Ω),

1 ≤ p ≤ ∞, associated with the family X as the space of all the functions
with finite norm ‖u‖W 1,p

X
= ‖u‖p +‖Xu‖p, where |Xu|2 =

∑ |Xju|2 and the
derivatives Xju are understood in the sense of distributions. The Lp-norms
should be considered with respect to the Lebesgue measure.

Throughout this paper, if E ⊂ Rn, both |E| and Ln(E) denote its
Lebesgue measure. Analogously, if µ is a measure in a set X, we write
µ(E) or |E|µ for the µ-measure of the set E ⊂ X.
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2.2. Sobolev spaces associated with vector fields

Proposition 2.1. Endowed with its natural norm, W 1,p(Ω), 1 ≤ p ≤ ∞,
is a Banach space, which is reflexive if 1 < p < ∞. Moreover, W 1,2(Ω) is
a Hilbert space.

Another way to define the space for 1 ≤ p < ∞ is to take the closure
of C∞ functions in the above norm. As in the Euclidean case, the two
approaches are equivalent. This was obtained independently in [51] and [60].
The method goes, however, back to K. O. Friedrichs ([59]). The result
can be stated as follows (the statement for smooth manifolds is due to [34]
and [35]).

Theorem 2.2. Let X be a family of Lipschitz continuous vector fields.
Then, if 1 ≤ p <∞, we have

C∞(Ω) ∩W 1,p
X (Ω) is dense in W 1,p

X (Ω).

If, in addition, ∂Ω is a smooth manifold, then

C∞(Ω) is dense in W 1,p
X (Ω).

In view of Theorem 2.2, the following definition is natural.

Definition 2.3. Let X be a family of Lipschitz continuous vector fields.
Then, if 1 ≤ p <∞, we put

◦
W 1,p

X (Ω) := D(Ω)
W 1,p

X (Ω)
.

When 1 < p < ∞, Theorem 2.2 provides also a further characterization
of the spaces W 1,p

X (Ω) through a relaxation argument. To this end, let p ≥ 1
and let f : Ω× Rm → [0,∞) be a Carathéodory function such that

f(x, ·) is a convex function on Rm for every x ∈ Ω (1)

and there exist two positive constants λ0 and Λ0 for which

λ0|η|p ≤ f(x, η) ≤ Λ0(1 + |η|p) for every (x, η) ∈ Ω× Rm. (2)

Let us define the functional Fp : Lp(Ω) → [0,∞],

Fp(u) :=
{ ∫

Ω
f(x,Xu(x)) dx, if u ∈ C1

0 (Ω)
+∞, otherwise,
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and its relaxed functional (see [113] and [17])

F̄p(u) := inf
{

lim inf
h→∞

Fp(uh) : (uh)h ⊂ Lp(Ω), uh → u
}
.

It is well known (see, for instance, [17]) that F̄p is the greatest Lp(Ω)-lower
semicontinuous functional smaller or equal to Fp and that it coincides with
Fp on C1

0 (Ω) ∩ Lp(Ω). Then the following characterization of the spaces
W 1,p

X (Ω) holds when 1 < p <∞ (see [50]).

Theorem 2.4. Let p > 1 and let Ω be an open subset of Rn. Let
f : Ω × Rm → [0,∞) be a Carathéodory function for which (1) and (2)
hold. Then

(i) dom F̄p := {u ∈ Lp(Ω) : F̄p(u) <∞} = W 1,p
X (Ω),

(ii) F̄p(u) =
∫
Ω
f(x,Xu(x)) dx for every u ∈W 1,p

X (Ω).Remark 2.5. We have discussed here spaces of order 1. Fractional order
spaces are discussed by D. Morbidelli in [100]. For higher order spaces,
see for instance [39], [78], [7], [24], [25], [23], [79], [77], [21], [81].

2.3. Carnot-Carathéodory distance
Let us recall now the following standard definition of the Carnot-Carathéo-
dory metric associated with X (see, e.g., [37], [45], [101]).

Definition 2.6. We say that an absolutely continuous curve γ : [0, T ] → Rn

is a sub-unit curve with respect to X if

〈γ̇(t), ξ〉2 ≤
m∑

j=1

〈Xj(γ(t)), ξ〉2

for any ξ ∈ Rn and for a.e. t ∈ [0, T ]. If x1, x2 ∈ Rn, we define

d(x1, x2) = inf{T > 0 : there exists a sub-unit curve γ,

γ : [0, T ] → Rn, γ(0) = x1, γ(T ) = x2}.

If the above set of curves is empty, we put d(x1, x2) = ∞.

Throughout this paper we shall assume that the following hypothesis (H1)
holds:

(H1) d(x, y) <∞ for any x, y ∈ Rn, so that d is a distance in Rn. Moreover,
the distance d is continuous with respect to the usual topology of Rn.
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If x ∈ Rn and r > 0, we shall denote by Ud(x, r) = {y ∈ Rn : d(x, y) < r}
the metric balls with respect to d. The boundedness of X1, . . . ,Xm yields
the existence of C > 0 such that

d(x, y) ≥ C|x− y| for all x, y ∈ Rn.

In particular, metric balls are bounded with respect to the Euclidean dis-
tance.

We stress explicitly that, in general, Carnot-Carathéodory distances are
not Euclidean at any scale, and hence not Riemannian. A beautiful proof
can be found in [112] (for a more general statement see also [85]).

If X satisfies (H1), then the total variation of a curve γ : [0, 1] → Rn is
by definition

Var
X

(γ) = sup
0≤t1<···<tk≤1

k−1∑

i=1

d(γ(ti+1), γ(ti)).

The supremum is taken over all finite partitions of [0, 1]. If VarX(γ) < +∞,
the curve γ is called rectifiable.

A continuous rectifiable curve γ : [0, 1] → Rn is said to be a geodesic, or
a segment, if VarX(γ) = d(γ(0), γ(1)). By an arclength reparametrization,
a geodesic γ can always be reparametrized on the interval [0,VarX(γ)] in
such a way that d(γ(t), γ(s)) = |t− s| for all s, t ∈ [0,VarX(γ)] (see [16]).

Theorem 2.7. Let X be a family of bounded Lipschitz continuous vector
fields satisfying (H1). Then for all x, y ∈ Rn there exists a geodesic connect-
ing them.

Carnot-Carathéodory metrics can be viewed as “limits” of Riemannian
metrics (see [40], [64] and [96]).

Indeed, for the sake of simplicity, assume that X = (X1, . . . ,Xm) is a sys-
tem of smooth vector fields. For any k ∈ N let d(k) be the C-C metric induced
on Rn by the vector fields

X(k) =
(
X1, . . . ,Xm,

1
k
∂1, . . . ,

1
k
∂n

)
.

The distance d(k) is in fact a Riemannian distance (see again [96]), basically
since X(k) contains n linearly independent vector fields. Every X(k)-subunit
curve is X(h)-subunit for all h > k and also X-subunit. Then

d(k)(x, y) ≤ d(k+1)(x, y) ≤ d(x, y) for all k ∈ N and x, y ∈ Rn.
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In addition, since C-C balls in the metric d(1) are bounded in the Eu-
clidean metric, then, by an Ascoli-Arzelà argument, we can obtain that

lim
k→∞

d(k)(x, y) = d(x, y)

for all x, y ∈ Rn and finally, by (H1), the convergence is uniform on compact
sets.

The following property is known as the doubling property of d. It is not
always satisfied by Carnot-Carathéodory distances associated with vector
fields satisfying (H1) but it holds in several important cases and most of the
subsequent results rely on it.

(H2) For any compact K ⊂ Rn there exists a positive constant CK such
that

|Ud(x, 2r)| ≤ CK |Ud(x, r)|
for any x ∈ K and r < rK .

From now on we shall call geometric constant any constant depending
only on the dimension n, on the Lipschitz norm of the coefficients and on
the constants appearing in (H2).

Moreover, for the sake of simplicity, we shall omit the index d in Ud when
there is no way of misunderstanding and we shall denote different geometric
constants by the same letter C.Remark 2.8. Assumptions (H1) and (H2) are satisfied by several impor-
tant families of vector fields. For instance:

(i) If the vector fields X1, . . . ,Xm are smooth and the rank of the Lie
algebra generated by them equals n at any point of Rn (Hörmander
condition), then (H1) and (H2) hold (see [101]).

(ii) If the vector fields are as in [45] and [41], then (H1) and (H2) hold.
These assumptions still hold if the vector fields are as in [43].

On the other hand, taking into account Proposition 2.9 (i) and Corollary 6.2
below, it is easy to see that the Carnot-Carathéodory distance associated
with X = (∂x1 , exp(−1/x2

1)∂x2) in R2 satisfies (H1) but not (H2).
The following properties of the metric balls follow straightforwardly from

(H2).

Proposition 2.9. Let (H1) and (H2) hold. If K ⊂⊂ Rn, then there exist
geometric constants Q ≥ n, rK > 0, c1 > 0, c2 > 0, c3 > 0, c4 > 0 such that

(i) |U(x, s)| ≥ c1(s/r)Q|U(x, r)| for x ∈ K, 0 < s < r ≤ rK ,
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(ii) |U(x, s)| ≤ c2 s
n for x ∈ K, 0 < s ≤ rK .

(iii) c3|U(x, d(x, y))| ≤ |U(y, d(x, y))| ≤ c4|U(x, d(x, y))| for x, y ∈ K,
d(x, y) ≤ rK .

We refer to Q as to the (local) homogeneous dimension of (Rn, d,Ln) (with
some ambiguity, since Q is clearly not uniquely defined).

Lipschitz functions in general C-C spaces always have weak derivatives
along the vector fields that are essentially bounded functions. For the case
when the function is the distance function, this result was first proved in
[51], and then in [61] for a generic Lipschitz function. A more precise result
is the following one taken from [44] (see also [18]).

Theorem 2.10. Let (Rn, d) be a C-C space associated with a family of
locally Lipschitz vector fields X = (X1, . . . ,Xm). Assume that (H1) holds.
If f : Rn → R is a function such that, for some L ≥ 0,

|f(x)− f(y)| ≤ Ld(x, y) for all x, y ∈ Rn,

then the derivatives Xjf , j = 1, . . . ,m, exist in distributional sense, are
measurable functions, and |Xf(x)| ≤ L for a.e. x ∈ Rn.

Another relevant property of the Carnot-Carathéodory distance is that it
satisfies (at least in several important cases) an eikonal equation, like the
Euclidean distance. This beautiful result has been proved by R. Monti and
F. Serra Cassano in [99].

Theorem 2.11. Let X be a family of Lipschitz continuous vector fields
in Rn and assume that the associated Carnot-Carathéodory distance d sat-
isfies (H1) and (H2). Suppose that the vector fields satisfy one of the cases
A, B or C below:
Case A. X1, . . . ,Xm ∈ C∞(Rn; Rn), m < n, satisfy Hörmander’s rank
condition and they are of the form

Xj = ∂j +
n∑

i=m+1

aij(x)∂i, j = 1, . . . ,m,

where aij ∈ C∞(Rn).
Case B. X1, . . . ,Xn ∈ C∞(Rn; Rn) are of the form

X1 = ∂1, X2 = p2(x1)∂2, . . . , Xn = pn(x1, . . . , xn−1)∂n,

where pj ∈ C∞(Rj−1), j = 2, . . . , n, are functions vanishing on a set of null
(j − 1)-dimensional Lebesgue measure.
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Case C. X1, . . . ,Xm ∈ C∞(Rn; Rn) and span{X1(x), . . . ,Xm(x)} = Rn for
every x ∈ Rn.

Let K ⊂ Rn be a closed set and let dK be the distance from K. Then

|XdK(x)| = 1

for a.e. x ∈ Rn \K.Remark 2.12. Vector fields in Case A may be called “of Carnot type”.
This expression is motivated by the analogy with the canonical generating
vector fields of a Carnot group (see below). Analogously, vector fields in
Case B may be called “of Grushin type”, since the model is provided by
the so-called Grushin type vector fields studied in [45], [41], [43] (see below).
Finally, vector fields in Case C may be called “of Riemann type”, since in this
case the distance d is the Riemannian distance associated with the matrix
CCT .

2.4. Poincaré inequality

Definition 2.13. Let 1 ≤ p ≤ q < ∞. We say that the system X satisfies
a (p, q)-Poincaré inequality (in a compact set K) if for any x ∈ K, for
any r ∈ (0, rK) and for any Lipschitz continuous function f the following
Poincaré inequality holds: Let U = U(x, r(U)) be a Carnot-Carathéodory
ball and denote by fU the average of f in U . Then

(
1
|U |

∫

U

|f(x)− fU |q dx
)1/q

≤ c r(U)
(

1
|U |

∫

U

|Xf(x)|p dx
)1/p

. (3)

Examples of systems of vector fields satisfying a (p, q)-Poincaré inequality
are provided by systems of smooth vector fields of Hörmander type, as we see
below. Further classes of nonsmooth vector fields yielding a (p, q)-Poincaré
inequality are introduced in [45], [41] (see also Appendix 6), [73] and [93].

Sometimes in the literature, when p < q we refer to (3) as to a Sobolev-
Poincaré inequality, the term “Poincaré inequality” being reserved to the
case q = p. On the other hand, the expression “(p, q)-Sobolev inequality”
indicates the weaker property

(
1
|U |

∫

U

|f(x)|q dx
)1/q

≤ c r(U)
(

1
|U |

∫

U

|Xf(x)|p dx
)1/p

for all Lipschitz continuous functions f supported in U .
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For systems of smooth vector fields of Hörmander’s type, a (p, p)-Poincaré
inequality was proved first by D. Jerison in [70]. This result was improved
in the case p > 1 in [76] by showing that the estimate holds for 1 < p < Q
and q = pQ/(Q − p). In fact, (3) holds for 1 ≤ p < q < ∞ if p and q
are related by a natural balance condition which involves the local doubling
order of the Lebesgue measure (for metric balls). The limit case p = 1 is very
important, since it is equivalent, as we see later, to an intrinsic isoperimetric
inequality. This inequality was proved independently in [20], [46], [67] and
[88] (see also [12]). Here we give a simple formulation.

Theorem 2.14. Let X be a system of smooth vector fields satisfying Hör-
mander’s rank condition. Let 1 ≤ p < q < ∞ be such that the following
balance condition holds:

r(Ũ)
r(U)

( |Ũ |
|U |

)1/q

≤ C

( |Ũ |
|U |

)1/p

for all balls Ũ , U such that Ũ ⊂ U . Then, denoting by fU the average of f
on U ,

(
1
|U |

∫

U

|f − fU |q dx
)1/q

≤ C r(U)
(

1
|U |

∫

U

|Xf |p dx
)1/p

with C independent of f .

The proof of Theorem 2.14 can be carried out directly. However, the
(p, q)-Poincaré inequality can be derived from the (1, 1)-Poincaré inequality
in [70]. This is a more elegant (and deeper) proof relying on the so-called self-
improving property of Poincaré inequality. In fact, starting with the work
of L. Saloff-Coste (see [109]), it is known that — thanks to the doubling
property of the Carnot-Carathéodory metric with respect to the Lebesgue
measure — Poincaré inequalities have a self-improving nature in the sense
that it is possible to derive estimates for general p, q from particular special
cases such as

1
|U |

∫

U

|f(x)− fU | dx ≤ c r(U)
(

1
|U |

∫

U

|Xf |p0 dx

)1/p0

for some p0, provided p and q satisfy a suitable balance condition involving
the volume of the metric balls.

We refer to [110] for an introduction to this property of the Poincaré
inequalities.
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Saloff-Coste’s result has been successively extended to more general situ-
ations in [48] and [49]. In fact, Theorem 2.14 can be derived from the (1, 1)-
Poincaré inequality in [70] by means of the following result ([49, Corollary
2.16]).

Theorem 2.15. Let µ and ν be doubling Borel measures in (Rn, d), p0 > 0,
and let T be a differential operator such that

1
|U |µ

∫

U

|f − fU | dµ ≤ C r(U)
(

1
|U |ν

∫

U

|Tf |p0 dν

)1/p0

for all balls U and all Lipschitz functions f . Let p0 ≤ p < q < ∞ and
assume that ω is a doubling measure in (Rn, d) and that the following balance
condition holds:

r(Ũ)
r(U)

( |Ũ |ω
|U |ω

)1/q

≤ C

( |Ũ |ν
|U |ν

)1/p

for all balls Ũ , U such that Ũ ⊂ U . Then

(
1

|U |ω

∫

U

|f − fU |q dω
)1/q

≤ C r(U)
(

1
|U |ν

∫

U

|Tf |p dν
)1/p

with C independent of f and U .Remark 2.16. We stress that the self-improving property of Theorem 2.15
does not rely on any smoothness of the vector fields. In fact, the smooth-
ness of the vector fields — together with Hörmander’s rank hypothesis —
is required only in order to obtain the doubling property of the d-balls and
the (1, 1)-Poincaré inequality providing the starting point in order to apply
Theorem 2.15. Thus, Theorem 2.15 applies whenever the doubling property
of the d-balls and the (1, 1)-Poincaré inequality hold.

There is another proof of Theorem 2.14 starting from the (1, 1)-Poincaré
inequality, that relies on a representation formula of a function f with zero
average on a metric ball in terms of the norm of its X-gradient |Xf |. In
fact, it is possible to prove that the (1, 1)-Poincaré inequality associated
with X is equivalent to such a formula. This result was proved first under
supplementary hypotheses in [47] and then in the present sharp form in [58]
and [80].

Theorem 2.17. Let (S, ̺,m) be a complete metric measure space, where ̺
is a distance in S and m is a doubling Borel measure in S. Suppose that
(S, ̺) has the segment property, i.e., suppose that for each pair of points
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x, y ∈ S there exists a continuous curve γ connecting x and y such that
̺(γ(t), γ(s)) = |t − s|. Let µ, ν be locally doubling measures on (S, ̺,m)
with doubling constants Aµ and Aν , respectively. Let U0 = U(x0, r0) be
a ball and let f, g ∈ L1(U0) be given functions. Assume that there exists
P > 0 such that, for all balls U ⊆ U0,

1
ν(U)

∫

U

|f − fU,ν | dν ≤ P
r(U)
µ(U)

∫

U

|g| dµ,

where fU,ν = 1
ν(U)

∫
U
f dν =

∫
U
f dν. If there is a constant ϑ > 0 such that

for all balls U , Ũ with Ũ ⊆ U ⊆ U0,

µ(U)

µ(Ũ)
≥ ϑ

r(U)

r(Ũ)
,

then for (dν)-a.e. x ∈ U0,

|f(x)− fU0,ν | ≤ C

∫

U0

|g(y)| ̺(x, y)
µ(U(x, ̺(x, y)))

dµ(y),

where C is a geometric constant depending on P , Aµ, Aν .

As it is proved in [58], S = Rn, ̺ = d, m = µ = ν = Ln and g = |Xf | sat-
isfy the assumptions of Theorem 2.17, and then the following representation
formula holds:

|f(x)− fU0 | ≤ C

∫

U0

|Xf(y)| d(x, y)
|U(x, d(x, y))| dy for a.e. x ∈ U0. (4)

Once (4) is proved, then Theorem 2.17 can be derived by means of Lp–Lq con-
tinuity theorems for singular integral operators of potential type, as in [43].

A typical example of this kind of (weak type) continuity results is provided
by Theorem 4.1 in [43] that reads as follows.

Theorem 2.18. Let (X, ˜̺, dν) be a space of homogeneous type in the sense
of [22], i.e. a metric space (X, ˜̺) endowed with a doubling Radon measure ν,
and let κ be the quasi-metric constant of ˜̺. Let K̃ be a non-negative kernel
and put

T̃ f(x) =
∫

U0

K̃(x, y)f(y) dν(y),

where f ≥ 0 and U0 = U(x0, r0) is a fixed ball. Assume for simplicity that
ν({x}) = 0 for x ∈ U0 and that ν(U(x, r)) is a continuous function of r for
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x ∈ U0. If 1 ≤ p < q < ∞ and ũ, ṽ are weights (i.e. non-negative locally
summable functions), then

∫

U0∩{Tf>t}
ũ dν ≤ c

(
L̃‖f‖Lp

ṽdν(U0)

t

)q

, t > 0,

with

L̃ =





sup
(∫

c1U(x,r)
ũ dν

) 1
q
(∫

U0\U(x,r)
K̃(x, y)p′ ṽ(y)−

1
p−1 dν(y)

) 1
p′
, if p > 1

sup
(∫

c1U(x,r)
ũ dν

) 1
q
(
ess supy∈U0\U(x,r) K̃(x, y)

1
ṽ(y)

)
, if p = 1,

where the sup is taken over all x, r such that U(x, r) ⊂ c2U0 and x ∈ U0,
and the ess sup is taken with respect to the measure ṽ dν. The constants c1
and c2 can be written explicitly and depend only on the constant κ.

In fact, Theorem 2.18 provides only a weak type continuity estimate, but
here we can pass from the weak type estimate to the strong type one, thanks
to the fact that the right-hand side of the Poincaré inequality contains a first
order differential operator. Indeed, the main property we need to pass from
weak type estimates to strong type estimates is a certain “stability” property
under truncations. This idea was originally introduced in [75] and exploited
in [111], [42], [46] and [8]. We refer to [48] and [49] for a detailed presentation
of this technique.

The proof of the (1, 1)-Poincaré inequality relies on the lifting technique
for vector fields introduced by L. Rotschild and E. M. Stein in [108], but
it becomes particularly simple and elegant in the setting of groups, whenX is
a complete system of left invariant vector fields in a Carnot group identified
with Rn through the exponential map. The notion of the Carnot group,
together with all related definitions and properties, will be the subject of
Section 4. The following proof is due to N. Th. Varopoulos ([115]); the
presented form is taken from [96].Proof of (1, 1)-Poincaré inequality for the Carnot groups. Let a structure
of Carnot group induced by X = (X1, . . . ,Xm) be given on Rn. The group
product of x, y ∈ Rn will be denoted by x · y. We shall see below that
|U(x, r)| = krQ for all x ∈ Rn and r ≥ 0 with k = |U(0, 1)|.

Fix U = U(x0, r) with x0 ∈ Rn and r > 0 and let u ∈ C1
0 (Rn). Notice

that
∫

U

|u(x)− uU | dx =
∫

U

∣∣∣∣
∫

U

(u(x)− u(y)) dy
∣∣∣∣ dx ≤

∫

U

∫

U

|u(x)− u(y)| dxdy.



BV SPACES AND RECTIFIABILITY FOR C-C METRICS 87

In the inner integral, we perform the change of variable z = y−1 · x, which
has Jacobian identically 1, getting

∫

U

|u(x)− uU | dx ≤
∫

U

∫

y−1·U
|u(y · z)− u(y)| dzdy

≤
∫

U

∫

U(0,2r)

|u(y · z)− u(y)| dzdy.

Indeed, if y ∈ U , then y−1 · U ⊂ U(0, 2r).
Let now z ∈ U(0, 2r) be fixed, let δ = d(0, z) and take a geodesic

γ : [0, δ] → Rn such that γ(0) = 0 and γ(δ) = z with δ ≤ 2r. For some
h ∈ L∞(0, δ)m,

γ̇(t) =
m∑

j=1

hj(t)Xj(γ(t)) and |h(t)| ≤ 1 for a.e. t ∈ [0, δ].

Then

u(y · z)− u(y) =
∫ δ

0

d

dt
u(y · γ(t)) dt

=
∫ δ

0

〈
Du(y · γ(t)), d

dt
(y · γ(t))

〉
dt

=
∫ δ

0

〈
Du(y · γ(t)),

m∑

j=1

hj(t)Xj(y · γ(t))
〉
dt

=
∫ δ

0

〈Xu(y · γ(t)), h(t)〉 dt.

We used the left invariance of X1, . . . ,Xm. As h∞ ≤ 1, we obtain

∫

U

|u(x)− uU | dx ≤
∫

U

∫

U(0,2r)

∫ δ

0

|Xu(y · γ(t))| dtdzdy

≤
∫ δ

0

∫

U(0,2r)

∫

U

|Xu(y · γ(t))| dydzdt.

The curve γ depends on z. Since γ(t) ∈ U(0, 2r) for all t ∈ [0, δ], if y ∈ U ,
then y · γ(t) ∈ 3U = U(x0, 3r). Indeed,

d(y · γ(t), x0) ≤ d(y · γ(t), y) + d(y, x0) = d(γ(t), 0) + d(y, x0) ≤ 3r.
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Thus we get
∫

U

|u(x)− uU | dx ≤
1

|U(0, r)|

∫ δ

0

∫

U(0,2r)

∫

3U

|Xu(y)| dydzdt

≤ 2r
|U(0, 2r)|
|U(0, r)|

∫

3U

|Xu(y)| dy

= r2Q+1

∫

3U

|Xu(y)| dy.

Finally, we can get rid of the constant 3 in the last integral
∫
3U
|Xu(y)| dy by

means of an argument that goes back to J. Boman and that was generalized
to the setting of doubling metric spaces in [43]. It relies on the fact that —
as proved in [43] — metric balls are Boman domains, as they will be defined
below. �

From the Poincaré inequality in Theorem 2.14 we can derive the following
Rellich-type theorem.

Theorem 2.19. Suppose that the assumptions of Theorem 2.14 hold and
let Ω ⊂ Rn be a bounded open set. Then the seminorm

|u| ◦
W 1,p

X (Ω)
:=
(∫

Ω

|Xu|p dx
)1/p

is a norm in
◦
W 1,p

X (Ω). Moreover
◦
W 1,p

X (Ω) is compactly embedded in Lq(Ω).

Another interesting consequence of the Poincaré inequality for Hörman-
der’s vector fields is that the associated Sobolev spaces fit in the general
setting of Sobolev spaces on metric spaces, as defined by P. Haj lasz in
[65]. We refer the reader to [44].

2.5. Geometry of domains
This section is largely taken from [96]. We refer also to the exhaustive
bibliography of [96] for a detailed account of the different contributions to
this field.

We consider a metric space (M,d). A domain Ω ⊂M is a connected open
set. The metric space (M,d) will be said with geodesics if every couple of
point x, y ∈ M can be connected by a continuous rectifiable (i.e. of finite
length) curve with a length d(x, y). By Theorem 2.7, Carnot-Carathéodory
distances yield a metric space with geodesics.

We want now to discuss the Poincaré inequality in open sets different from
balls. Clearly, not any open set admits a Poincaré inequality (as already
happens in the Euclidean setting), and the main issue consists of providing
a reasonable class of sets. Let us start with a few general definitions.
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Definition 2.20. Let (M,d) be a metric space. A bounded open set Ω ⊂M
is a John domain if there exist x0 ∈ Ω and C > 0 such that for every x ∈ Ω
there exists a continuous rectifiable curve parametrized by an arclength
γ : [0, T ] → Ω, T ≥ 0, such that γ(0) = x, γ(T ) = x0 and

dist(γ(t); ∂Ω) ≥ Ct. (5)

Definition 2.21. Let (M,d) be a metric space. A bounded open set Ω ⊂M
is a weak John domain if there exist x0 ∈ Ω and 0 < C ≤ 1 such that for
every x ∈ Ω there exists a continuous curve γ : [0, 1] → Ω such that γ(0) = x,
γ(1) = x0 and

dist(γ(t); ∂Ω) ≥ Cd(γ(t), x).

The following result is basically proved in [43] and provides a key tool in
the setting of Poincaré inequalities for Carnot-Carathéodory spaces.Remark 2.22. If (M,d) is a metric space with geodesics, then every ball
U(x0, r), x0 ∈ M and r > 0, is a John domain with the constant C = 1
in (5).

Definition 2.23. Let (M,d) be a metric space. A set E ⊂ M satisfies the
interior (exterior) corkscrew condition if there exist r0 > 0 and k ≥ 1 such
that for every r, 0 < r ≤ r0, and x ∈ ∂E there exists y ∈ E (y ∈ M \ E)
such that

r

k
≤ dist(y; ∂E) and d(x, y) ≤ r.

A set E satisfies the corkscrew condition if it satisfies both the interior and
the exterior corkscrew condition. The constant k will be called the corkscrew
constant of E.

Clearly, if Ω is a John domain, then it satisfies the interior corkscrew
condition.

Proposition 2.24. Let (M,d, µ) be a doubling metric space with arcwise
connected balls. If E ⊂ M satisfies the interior corkscrew condition, then
there exist r0 > 0 and C > 0 such that, for all x ∈ ∂E and 0 ≤ r ≤ r0,

µ(E ∩ U(x, r)) ≥ Cµ(U(x, r)).

Theorem 2.25. Let (M,d, µ) be a doubling metric space with geodesics.
Then Ω ⊂M is a weak John domain if and only if it is a John domain.
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Corollary 2.26. Suppose that X is a system of bounded Lipschitz contin-
uous vector fields in Rn satisfying (H1) and (H2). Then Ω ⊂ Rn is a weak
John domain for the Carnot-Carathéodory distance d if and only if it is
a John domain for d.

The proof of Theorem 2.25 can be found in [67, Proposition 9.6] and for
the Euclidean case in [89, Lemma 2.7].

Definition 2.27. An open set Ω ⊂M is a Boman domain if there exists a
covering F of Ω with balls and there exist N ≥ 1, λ > 1 and ν ≥ 1 such that

(i) λU ⊂ Ω for all U ∈ F ,
(ii)

∑
U∈F 1λU (x) ≤ N for all x ∈ Ω,

(iii) there exists U0 ∈ F such that for any U ∈ F there exist U1, . . . , Uk

such that Uk = U , µ(Ui ∩ Ui+1) ≥ N−1 max{µ(Ui), µ(Ui+1)} and
U ⊂ νUi for all i = 0, 1, . . . , k.

Under additional hypotheses on the metric space the definition of John
domain is equivalent to that of Boman domain (see [15] and [60, Section 6]).

Theorem 2.28. Let (M,d, µ) be a doubling metric space. If Ω ⊂M , Ω 6= M
is a weak John domain, then it is a Boman domain.

Theorem 2.29. Let (M,d, µ) be a doubling metric space with geodesics. If
Ω ⊂M is a Boman domain, then it is a John domain.

Corollary 2.30. Suppose that X is a system of bounded Lipschitz contin-
uous vector fields in Rn satisfying (H1) and (H2). Then Ω ⊂ Rn, Ω 6= Rn,
is a John domain for the Carnot-Carathéodory distance d if and only if it is
a Boman domain for d. In particular, metric balls are Boman domains.

We can now state a Poincaré inequality for Boman (= John) domains
(see [46]).

Theorem 2.31. Let X be a family of vector fields satisfying Hörmander’s
rank condition and let Ω be a Boman (=John) domain. Suppose that the
balance condition of Theorem 2.14 holds for fixed p and q and for any ball U
centered in a neighbourhood of Ω̄ with r(U) ≤ r0, r0 <∞ fixed. Then

(∫

Ω

|f − fΩ|q dx
)1/q

≤ CΩ

(∫

Ω

|Xf |p dx
)1/p

with CΩ independent of f .
If 1 ≤ p < Q, we can always choose q = p∗ := pQ/(Q− p) provided Q is

the homogeneous dimension of a compact neighbourhood of Ω.
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Sharp characterization of John domains with respect to families of vector
fields are given in [97] and [98].

Theorem 2.31 yields the following Rellich type theorem.

Theorem 2.32. Suppose that the assumptions of Theorem 2.31 hold.
(i) If 1 ≤ p < Q and 1 ≤ q < p∗, then the embedding W 1,p(Ω) →֒ Lq(Ω)

is compact.
(ii) If p ≥ Q and q ≥ 1, then the embedding W 1,p(Ω) →֒ Lq(Ω) is com-

pact.

3. BV space

Let us remind now the notion of functions of bounded X-variation and recall
some of their properties (see [50] and [60]). Let Ω ⊂ Rn be an open set. We
set

F (Ω; Rm) := {ϕ ∈ C1
0 (Ω; Rm) : |ϕ(x)| ≤ 1, x ∈ Ω}.

The space BVX(Ω) is the set of functions f ∈ L1(Ω) such that

‖Xf‖(Ω) := sup
ϕ∈F (Ω;Rm)

∫

Ω

f(x) divX(ϕ)(x) dx <∞.

The space BVX,loc(Ω) is the set of functions belonging to BVX(U) for each
open set U ⊂⊂ Ω.

Observe that if f ∈W 1,1
X;loc(Ω), then

∫

Ω

d‖Xf‖ =
∫

Ω

|Xf | dx.

A measurable set E ⊂ Rn is of locally finite X-perimeter in Ω (or is an
X-Caccioppoli set) if the indicatrix function 1E ∈ BVX,loc(Ω), namely, if

|∂E|X(U) := ‖X1E‖(U) <∞ (6)

for every open set U ⊂⊂ Ω.
For each f ∈ BVX(Ω) the functional Xf can be extended to the whole

space C0
0 (Ω; Rm). We keep calling Xu such an extension. By means of the

Riesz representation theorem, one can prove that if f ∈ BVX,loc(Ω), then
‖Xf‖ is a Radon measure on Ω (see [36, 2.2.5]). Moreover, the following
two propositions hold (see [50] and [19], respectively).
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Proposition 3.1 (lower semicontinuity). Let f, fk ∈ L1(Ω), k ∈ N, be
such that fk → f in L1(Ω). Then

lim inf
k→∞

‖Xfk‖(Ω) ≥ ‖Xf‖(Ω).

Proposition 3.2. If E is an X-Caccioppoli set with C1 boundary, then the
X-perimeter has the following representation:

|∂E|X(Ω) =
∫

∂E∩Ω

(∑

j

〈Xj , n〉2
)1/2

dHn−1.

Here n(x) is the Euclidean unit outward normal to E and Hs is the Euclidean
s-dimensional Hausdorff measure.

Theorem 3.3 (structure of BVX functions). Let f ∈ BVX(Ω) and write
µ = ‖Xf‖. There exists a µ-measurable function σf : Ω → Rm such that
|σf | = 1 µ-almost everywhere and

∫

Ω

f(x) divX(ϕ)(x) dx =
∫

Ω

〈ϕ(x), σf (x)〉 dµ

for all ϕ ∈ F (Ω; Rm).

When f = 1E in Theorem 3.3, then we call X-generalized inner normal
of E in Ω the vector

νE(x) := −σ1E
(x).

As for the Sobolev spaces W 1,p
X , 1 < p < ∞, the space BVX can be

defined as the domain of a relaxed functional. In particular, this shows that
our space BVX fits into the setting of BV spaces in metric spaces introduced
by M. Miranda jr. in [91] and L. Ambrosio in [1].

To this end, let us state preliminarily an approximation theorem in BVX

that is the exact counterpart of the corresponding result for usual BV func-
tions proved by G. Anzellotti and M. Giaquinta in [6]. The following
result is proved in [50, Theorem 2.2.2].

Theorem 3.4. Let u ∈ BVX(Ω). Then there exists a sequence (uh)h ⊂
C∞

0 (Ω) such that

lim
h→+∞

‖uh − u‖L1(Ω) = 0,

lim
h→+∞

∫

Ω

d‖Xuh‖ =
∫

Ω

d‖Xu‖.
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Moreover, we have (cf. [50, Corollary 2.2.3]):

Corollary 3.5. For u ∈ L1(Ω) we define
∫

Ω

√
1 + |Xu|2 = sup

{∫

Ω

(ϕ+ u divX ψ) dx :

(ϕ,ψ) ∈ C∞
0 (Ω,R× Rm), |ϕ(x)|2 + |ψ(x)|2 ≤ 1

}
.

Then the following facts hold:
(i)
∫
Ω
d|Xu| ≤

∫
Ω

√
1 + |Xu|2 ≤ |Ω|+

∫
Ω
d|Xu| for every u ∈ L1(Ω),

∫
Ω

√
1 + |Xu|2 =

∫
Ω

√
1 + |Xu(x)|2 dx for every u ∈W 1,1

X;loc(Ω).

(ii) Let (uh)h, u ∈ L1(Ω) be such that uh → u in L1(Ω). Then
∫

Ω

√
1 + |Xu|2 ≤ lim inf

h→∞

∫

Ω

√
1 + |Xuh|2.

(iii) Let u ∈ BV (Ω). Then there exists a sequence (uh)h in C1(Ω) ∩
BVX(Ω) such that

uh → u in L1(Ω) and
∫

Ω

√
1 + |Xuh|2 dx→

∫

Ω

√
1 + |Xu|2.

Thanks to the above approximation theorem (Theorem 3.4), we can pass
to the limit in the Poincaré inequality of Theorem 2.14 and we obtain an in-
trinsic isoperimetric inequality. This result is proved in [60] but appears also
in a slightly less general form in [46] (see also [42]). However, in the setting
of the Heisenberg group (see below), a (different but a posteriori equivalent,
by Theorem 5.7) isoperimetric inequality was proved by P. Pansu in [104]
(see also [102]).

Theorem 3.6 (isoperimetric inequality). Let X be a system of smooth
vector fields satisfying Hörmander’s rank condition. Let 1 ≤ q <∞ be such
that the following balance condition holds:

r(Ũ)
r(U)

( |Ũ |
|U |

)1/q

≤ C
|Ũ |
|U |

for all balls Ũ , U such that Ũ ⊂ U . Then

min{|E ∩ Ω|, |(Rn \ E) ∩ Ω|}(q−1)/q ≤ C
r(U)
|U |1/q

|∂E|X(Ω)

with C independent of E.
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A similar result with balls replaced by John (= Boman) domains can be
analogously derived from Theorem 2.31.

A coarea formula for vector fields has been proved in [61], [50], [83], [87],
[84] and [99]. A similar coarea formula in the setting of metric spaces has
been proved also in [3] and [91]. In the coarea formula a solid integral is
expressed as a superposition of surface integrals and the integration measure
is the perimeter of the boundary of the level sets of a Lipschitz function. The
following statement follows that of [96].

Theorem 3.7. Let X1, . . . ,Xm ∈ Liploc(Rn; Rn) and let Ω ⊂ Rn be an open
set. If f ∈ BVX(Ω), then

‖Xf‖(Ω) =
∫ +∞

−∞
|∂Et|X(Ω) dt,

where Et = {x ∈ Ω : f(x) > t}.
Moreover, if (H1) holds, f ∈ Lip(Ω, d) and u ∈ L1(Ω), then

∫

Ω

u |Xf | dx =
∫ +∞

−∞

(∫

{x∈Ω:f(x)=t}
u d|∂Et|X

)
dt.

Finally, we recall that from the approximation result and the coarea for-
mula we get the following approximation result for bounded subsets of Rn

of finite X-perimeter.

Corollary 3.8. Let E be a bounded subset of Rn of finite X-perimeter.
Then E can be approximated by a sequence of C∞ sets Eh such that

∫

Rn

|1Eh
− 1E | dx→ 0,

∫

Rn

d‖X1Eh
‖ →

∫

Rn

d‖X1E‖.

Let now f : Ω × Rm → [0,∞) be a Borel function satisfying (1). We
denote by f∞ the recession function of f , i.e. f∞ : Ω× Rm → [0,∞) and

f∞(x, η) := lim
t→0+

f(x, η/t)t for every x ∈ Ω, η ∈ Rm,

and by f̄ the function f̄ : Ω× Rm × [0,∞) → [0,∞) defined by

f̄(x, η, t) :=
{
f(x, η/t)t, t > 0
f∞(x, η), t = 0.

(7)
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Moreover, if µ is a m-vector-valued Radon measure, let us set
∫

Ω

f(x, µ) :=
∫

Ω

f(x, [µ]a(x)) dx+
∫

Ω

f∞
(
x,

d[µ]s
d|[µ]s|

(x)
)
d|[µ]s|, (8)

where µ = [µ]a dx+[µ]s is the Lebesgue decomposition of µ in its absolutely
continuous and singular parts with respect to the Lebesgue measure. As

usual,
d[µ]s
d|[µ]s|

(x) and [µ]a(x) are respectively the density of [µ]s with respect

to |[µ]s| and the density of [µ]a dx with the respect to the Lebesgue measure.
The following semicontinuity and continuity properties of the functional

(8) on the set of m-vector-valued Radon measures are extensions of the well-
known results proved by Yu. G. Reschetnyak in [107] (for a proof of these
versions see the appendix of [82] or Theorems 4.4 and 4.6 in [32]).

Theorem 3.9. Let f : Ω× Rm → [0,∞) be a Borel function satisfying (1)
and assume that the function f̄ defined in (7) is lower semicontinuous. Then,
for every µ ∈ M(Ω,Rm) and (µh)h ⊂ M(Ω; Rm) with µh → µ weakly in
M(Ω; Rm), ∫

Ω

f(x, µ) ≤ lim inf
h→∞

∫

Ω

f(x, µh).

Theorem 3.10. Let Ω be a bounded open subset of Rn and let f : Ω ×
Rm → [0,∞) be a Borel function verifying (1) and (2) with p = 1. Let us
suppose that the function f̄ defined in (7) is continuous. Then, for every
µ ∈M(Ω; Rm) and (µh)h ⊂M(Ω; Rm) with

µh → µ weakly in M(Ω; Rm) and
∫

Ω

√
1 + |µh|2 →

∫

Ω

√
1 + |µ|2,

it follows

lim
h→∞

∫

Ω

f(x, µh) =
∫

Ω

f(x, µ).

We are now in position to state the characterization result for the re-
laxed functional F̄1, which extends the well-known results for the classical
Euclidean case, i.e. when X =

(
∂

∂x1
, . . . , ∂

∂xn

)
.

Theorem 3.11. Let Ω be a bounded open subset of Rn and let f : Ω×Rm →
[0,∞) be a Borel function verifying (1) and (2) with p = 1. Let us suppose
that the function f̄ defined in (7) is continuous. Then

(i) dom F̄1 := {u ∈ L1(Ω) : F̄1(u) <∞} = BVX(Ω),
(ii) F̄1(u) =

∫
Ω
f(x,Xu) for every u ∈ BVX(Ω).
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tinuous if and only if for every x, x0 ∈ Ω and for every ε > 0 there exists
δ = δ(x0, ε) > 0 such that

|x− x0| < δ ⇒ |f(x, η)− f(x0, η)| ≤ ε (1 + |η|) for every η ∈ Rm.

By Theorem 3.11 and Remark 3.12, we get the following characterization
of the relaxed area functional.

Corollary 3.13. Let Ω be a bounded open subset of Rn. Then, for every
u ∈ BVX(Ω),

∫

Ω

√
1 + |Xu|2 =

∫

Ω

√
1 + |[Xu]a(x)|2 dx+

∫

Ω

d|[Xu]s|.

The original definition of the perimeter given by E. De Giorgi in [30],
[31] involves an approximation by means of polyhedral hypersurfaces. It may
be surprising to see that the same result holds for the X-perimeter, even if
there are no intrinsic polyhedral hypersurfaces. This result has been proved
by F. Montefalcone in [94].

Definition 3.14. Let A(n, n − 1) denote the set of (n − 1)-dimensional
affine manifolds (i.e. the hyperplanes) in Rn. We say that Σ is a Euclidean
polyhedral domain if there exist κ ∈ N and J := {Ji}κ

i=1 ⊆ A(n, n−1) such
that

Fr(Σ) ⊆
κ⋃

i=1

Ji.

By Pn we denote the set of all Euclidean polyhedral domains in Rn .

The following approximation result holds.

Theorem 3.15. Let X be a family of Lipschitz continuous vector fields. Let
E ⊆ Rn with |E| <∞. Then there exists a family Σ of polyhedral domains,
Σ := {Σi}i∈N ⊆ Pn, such that

lim
i
‖1Σi

− 1E‖L1(Ω) = 0, lim
i
‖∂Σi‖X(Ω) = ‖∂E‖X(Ω)

for any open set Ω ⊂ Rn.

When a family of Lipschitz continuous vector fields X = (X1, . . . ,Xm) is
given, we can define the j-th partial perimeter ‖∂E‖Xj

of a set E ⊆ Rn as
the perimeter associated with the family (Xj) given by the vector field Xj

alone. The following characterization of X-Caccioppoli sets is proved in [94].
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Theorem 3.16. Let X, E and Ω be as in Theorem 3.15. If for each
j = 1, . . . ,m there exist {Σj

i}i∈N ⊆ Pn and Aj <∞ such that

lim
i
‖1Σj

i
− 1E‖L1(Ω) = 0,

sup
i∈N

‖∂Σj
i‖Xj

(Ω) ≤ Aj ,

then E has finite X-perimeter in Ω and there exists {Σi}i∈N ⊆ Pn such that

lim
i
‖1Σi

− 1E‖L1(Ω) = 0,

lim
i
‖∂Σi‖X(Ω) = ‖∂E‖X(Ω).

The perimeter appears in the Euclidean setting also in connection with
the notion of the Minkowski content, i.e., roughly speaking, the derivative
with respect to ε of the volume of an ε-neighbourhood of the boundary.
It is well known that in the Euclidean setting the two notions coincide for
sufficiently regular sets. A similar result for theX-perimeter has been proved
by R. Monti and F. Serra Cassano in [99].

Let E ⊂ Rn be a bounded open set and let X = (X1, . . . ,Xm) be a family
of smooth vector fields. Suppose that (H1) and (H2) hold and let d be the
Carnot-Carathéodory distance associated with X1, . . . ,Xm. Set d∂E(x) =
infy∈∂E d(x, y), and for r > 0 define the tubular neighbourhood Ir,X(∂E) =
{x ∈ Rn : d∂E(x) < r}. The upper and lower Minkowski content of ∂E in
an open set Ω ⊂ Rn are respectively defined by

M+
X(∂E)(Ω) := lim sup

r→0+

|Ir,X(∂E) ∩ Ω|
2r

,

M−
X (∂E)(Ω) := lim inf

r→0+

|Ir,X(∂E) ∩ Ω|
2r

.

The following theorem states that if E is regular and Ω has regular bound-
ary, then

M+
X(∂E)(Ω) = M−

X (∂E)(Ω),

and this common value, which we shall call the X-Minkowski content of ∂E
in Ω and denote by MX(∂E)(Ω), coincides with the X-perimeter of E in Ω
as defined in (6). The proof is based on a Riemannian approximation of the
C-C space (Rn, d). Here Hn−1 stands for the (n− 1)-dimensional Euclidean
Hausdorff measure.
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Theorem 3.17. Let Ω ⊂ Rn be an open set with C∞ boundary or Ω = Rn.
Let E ⊂ Rn be a bounded open set with C∞ boundary and suppose that
Hn−1(∂E ∩ ∂Ω) = 0. Then M+

X (∂E)(Ω) = M−
X (∂E)(Ω) and, in addition,

MX(∂E)(Ω) = ‖∂E‖X(Ω).

There is another important characterization of the X-perimeter of a set
E ⊂ Rn in terms of variational convergence (De Giorgi’s Γ-convergence)
of “solid” integrals. In the Euclidean setting, this result is known in the
literature as Modica-Mortola’s convergence result.

This variational characterization has been extended to the X-perimeter
by R. Monti and F. Serra Cassano in [99].

We recall first the definition of the Γ-convergence (for a comprehensive
introduction see [27]).

Definition 3.18. Let (M,d) be a metric space and let F, Fh : M →
[−∞,+∞], h ∈ N. We say that F is the Γ-limit of the sequence (Fh)h∈N
and we write F = Γ(M)- lim

h→∞
Fh, if the following conditions hold:

(i) If x ∈M and xh → x, then F (x) ≤ lim inf
h→∞

Fh(xh).

(ii) For every x ∈ M there exists (xh)h∈N such that xh → x and
F (x) ≥ lim sup

h→∞
Fh(xh).

First, in [99] the authors prove that the X-perimeter is the Γ-limit of
a family of Riemannian perimeters, as the Carnot-Carathéodory distance is
the limit of Riemannian distances.

For ε > 0 define the new family Xε = (X1, . . . ,Xm, ε∂1, . . . , ε∂n). Let
Ω ⊂ Rn be an open set and define the functionals P, Pε : L1(Ω) → [0,+∞]
by

P (u) =
{ ‖∂E‖X(Ω), if u = χE ∈ BVX(Ω)

+∞, otherwise,
and

Pε(u) =
{ ‖∂E‖Xε

(Ω), if u = χE ∈ BVXε
(Ω)

+∞, otherwise.
Let εh → 0 and write Ph = Pεh

. In the following theorem we prove that
the “elliptic-Riemannian” regularization of the perimeter Γ-converges to the
perimeter.

Theorem 3.19. If Ω ⊂ Rn is a bounded open set with C∞ boundary, then

P = Γ(L1(Ω))- lim
h→∞

Ph.
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Finally, fix a bounded open set Ω ⊂ Rn. For ε > 0 define the functionals
F, Fε : L1(Ω) → [0,+∞] by

Fε(u) =
{ ∫

Ω
(ε|Xu|2 + 1

εW (u)) dx, if u ∈W 1,2
X (Ω)

+∞, otherwise,

where W (u) = u2(1− u)2, and

F (u) =
{

2α‖∂E‖X(Ω), if u = χE ∈ BVX(Ω)
+∞, otherwise,

where α =
∫ 1

0

√
W (s) ds. Let εh → 0 and write Fh := Fεh

.

Theorem 3.20. Suppose that X1, . . . ,Xm ∈ C∞(Rn; Rn) satisfy the hy-
potheses (H1) and (H2). If Ω ⊂ Rn is a bounded open set with a C∞

boundary, then
F = Γ(L1(Ω))- lim

h→∞
Fh.

4. Carnot groups

4.1. Definition and first properties
The present subsection is largely taken from [56] and [53] (see also [55]).
A Carnot group G of step k (see [38], [70], [99], [68], [103], [115] and [116]) is
a connected, simply connected Lie group whose Lie algebra g admits a step k
stratification, i.e., there exist linear subspaces V1, . . . , Vk such that

g = V1 ⊕ · · · ⊕ Vk, [V1, Vi] = Vi+1, Vk 6= {0}, Vi = {0} if i > k, (9)

where [V1, Vi] is the subspace of g generated by the commutators [X,Y ]
with X ∈ V1 and Y ∈ Vi. Let mi = dim(Vi), i = 1, . . . , k, and let hi =
m1 + · · · + mi for i = 1, . . . , k with h0 = 0 and, clearly, hk = n. Choose
a basis e1, . . . , en of g adapted to the stratification, i.e. such that

ehj−1+1, . . . , ehj
is a base of Vj for each j = 1, . . . , k.

Let X = X1, . . . ,Xn be the family of left invariant vector fields such that
Xi(0) = ei. Given (9), the subfamily X1, . . . ,Xm1 generates all the other
vector fields by commutations; we shall refer to X1, . . . ,Xm1 as gener-
ating vector fields of the group. The exponential map is a one to one
map from g onto G, i.e., any p ∈ G can be written in a unique way as
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p = exp(p1X1 + · · ·+ pnXn). Using these exponential coordinates, we iden-
tify p with the n-tuple (p1, . . . , pn) ∈ Rn and we identify G with (Rn, ·),
where the explicit expression of the group operation · is determined by
the Campbell-Hausdorff formula (see [38]) and some of its features are de-
scribed in the following Proposition 4.2. If p ∈ G and i = 1, . . . , k, we
put pi = (phi−1+1, . . . , phi

) ∈ Rmi , so that we can also identify p with
[p1, . . . , pk] ∈ Rm1 × · · · × Rmk = Rn.

The subbundle of the tangent bundle TG that is spanned by the vector
fields X1, . . . ,Xm1 plays a particularly important role in the theory, it is
called the horizontal bundle HG; the fibers of HG are

HGx = span{X1(x), . . . ,Xm1(x)}, x ∈ G.

A subriemannian structure is defined on G, endowing each fiber of HG
with a scalar product 〈·, ·〉x and with a norm | · |x that make the basis
X1(x), . . . ,Xm1(x) an orthonormal basis. That is, if v =

∑m1
i=1 viXi(x) =

(v1, . . . , vm1) and w =
∑m1

i=1 wiXi(x) = (w1, . . . , wm1) are in HGx, then
〈v, w〉x :=

∑m1
j=1 vjwj and |v|2x := 〈v, v〉x.

The sections of HG are called horizontal sections, a vector of HGx is
a horizontal vector, while any vector in TGx that is not horizontal is a verti-
cal vector. Each horizontal section is identified by its canonical coordinates
with respect to this moving frame X1(x), . . . ,Xm1(x). This way, a horizon-
tal section ϕ is identified with a function ϕ = (ϕ1, . . . , ϕm1) : Rn → Rm1 .
When dealing with two such sections ϕ and ψ whose argument is not ex-
plicitly written, we drop the index x in the scalar product writing 〈ψ,ϕ〉 for
〈ψ(x), ϕ(x)〉x. The same convention is adopted for the norm.

Two important families of automorphism of G are the so-called intrinsic
translations and the intrinsic dilations of G. For any x ∈ G, the (left)
translation τx : G → G is defined as

z 7→ τxz := x · z.

For any λ > 0, the dilation δλ : G → G, is defined as

δλ(x1, . . . , xn) = (λα1x1, . . . , λ
αnxn), (10)

where αi ∈ N is called the homogeneity of the variable xi in G (see [39,
Chapter 1]) and is defined as

αj = i whenever hi−1 + 1 ≤ j ≤ hi,

so that 1 = α1 = · · · = αm1 < αm1+1 = 2 ≤ · · · ≤ αn = k.
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The simplest example of a Carnot group is provided by the Heisenberg
group Hn = Cn × R. We denote the points of Hn by P = [z, t] = [x+ iy, t],
z ∈ Cn, x, y ∈ Rn, t ∈ R. If P = [z, t], Q = [ζ, τ ] ∈ Hn and r > 0, following
the notations of [114], where the reader can find an exhaustive introduction
to the Heisenberg group, we define the group operation

P ·Q := [z + ζ, t+ τ + 2ℑm(zζ̄)]

and the family of non-isotropic dilations

δr(P ) := [rz, r2t].

The Lie algebra of left invariant vector fields in Hn is given by

Xj =
∂

∂xj
+ 2yj

∂

∂t
, j = 1, . . . , n,

Yj =
∂

∂yj
− 2xj

∂

∂t
, j = 1, . . . , n,

T =
∂

∂t
,

the only non-trivial commutator relations being

[Xj , Yj ] = −4T, j = 1, . . . , n.

Thus the vector fields X1, . . . ,Xn, Y1, . . . , Yn satisfy Hörmander’s rank
condition and Hn is a step 2 Carnot group, the stratification of the Lie
algebra of left invariant vector fields being given by

V1 = span{X1, . . . ,Xn, Y1, . . . , Yn} and V1 = span{T}.

An alternative approach to Carnot groups is given by A. Bonfiglioli
and F. Uguzzoni in [14] and by A. Bonfiglioli in [13]. Let us sketch it.
Basically, it is an alternative presentation that corresponds to the standard
definition when the last one is seen in a particular coordinate system (the
exponential coordinates).

Theorem 4.1. If x, y ∈ Rn, let (x, y) → x ◦ y be a multiplication in Rn.
Assume that the origin is the identity element and G = (Rn, ◦) is a Lie group,
i.e., the multiplication and the inverse x → x−1 : Rn → Rn operations are
smooth maps.
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Assume also that G is a homogenous group (see [114, (13.5)]) in the fol-
lowing sense: we write n = m1 +m2 + · · ·+mk and, given x ∈ Rn, we put
x = [x1, x2, . . . , xk] with xj ∈ Rmj for j = 1, . . . , k. Then assume that the
family of dilations

δλx = [λx1, λ2x2, . . . , λkxk], λ > 0,

forms a group of automorphisms of G, i.e., δλ(x ◦ y) = δλx ◦ δλy.
Let g denote the Lie algebra of G, i.e. the class of left invariant vector

fields on G, and take a basis X1, . . . ,XN of g such that Xj(0) = Dj, j =
1, . . . , n (left invariant vector fields are fully determined by their value at the
origin).

Assume that the Lie algebra generated by X1, . . . ,Xm1 coincides with g.
Then G = (Rn, ◦) is a Carnot group of step k with m1 generators.

In the following proposition, we collect some more or less elementary
properties of the group operation and of the canonical vector fields.

Proposition 4.2. The group product has the form

x · y = x+ y +Q(x, y), x, y ∈ Rn,

where Q = (Q1, . . . ,Qn) : Rn × Rn → Rn and each Qi is a homogeneous
polynomial of degree αi with respect to the intrinsic dilations of G defined
in (10), i.e.,

Qi(δλx, δλy) = λαiQi(x, y), x, y ∈ G.

Moreover, again for all x, y ∈ G,

Q1(x, y) = · · · = Qm1(x, y) = 0,

Qj(x, 0) = Qj(0, y) = 0, Qj(x, x) = Qj(x,−x) = 0, m1 < j ≤ n,

Qj(x, y) = Qj(x1, . . . , xhi−1 , y1, . . . , yhi−1), 1 < i ≤ k, j ≤ hi.Proof. For the first part see [114], Chapter 12, Section 5. The last
statement follows the homogeneity of Qj . �

Note that it follows from Proposition 4.2 that

δλx · δλy = δλ(x · y)

and that the inverse x−1 of an element x = (x1, . . . , xn) ∈ (Rn, ·) has the
form

x−1 = (−x1, . . . ,−xn)

(see [39, Proposition 2.1] and also [70]).
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Proposition 4.3. The vector fields Xj have polynomial coefficients and if
hℓ−1 < j ≤ hℓ, 1 ≤ ℓ ≤ k, then

Xj(x) = ∂j +
n∑

i>hl

qi,j(x)∂i,

where qi,j(x) =
∂Qi

∂yj
(x, y)

∣∣∣
y=0

so that if hℓ−1 < j ≤ hℓ, then qi,j(x) =

qi,j(x1, . . . , xhl−1) and qi,j(0) = 0.

By (9), the rank of the Lie algebra generated by X1, . . . ,Xm1 is n; hence
X = (X1, . . . ,Xm1) is a system of smooth vector fields satisfying Hörman-
der’s condition.

Several distances equivalent to d have been used in the literature. Later
on, we shall use the following one, that can also be computed explicitly,

d∞(x, y) = d∞(y−1 · x, 0),

where, if p = [p1, . . . , pk] ∈ Rm1 × · · · × Rmk = Rn, then

d∞(p, 0) = max
j=1,...,k

εj‖pj‖1/j

Rmj . (11)

Here ε1 = 1 and ε2, . . . , εk ∈ (0, 1) are suitable positive constants depending
on the group structure. As above, we shall denote by U∞(p, r) and B∞(p, r)
respectively the open and closed balls associated with d∞.

Both the Carnot-Carathéodory metric d and the metric d∞ are well-
behaved with respect to left translations and dilations, i.e.,

d(z · x, z · y) = d(x, y), d(δλ(x), δλ(y)) = λd(x, y)

d∞(z · x, z · y) = d∞(x, y), d∞(δλ(x), δλ(y)) = λd∞(x, y)

for x, y, z ∈ G and λ > 0.
Related with these distances, different Hausdorff measures, obtained by

Carathéodory construction as in [36, Section 2.10.2], are used in this paper:
we denote by Hm the m-dimensional Hausdorff measure obtained from the
Euclidean distance in Rn ≃ G, by Hm

c the m-dimensional Hausdorff measure
obtained from the distance d in G, and by Hm

∞ the m-dimensional Hausdorff
measure obtained from the distance d∞ in G. Analogously, Sm, Sm

c and Sm
∞

denote the corresponding spherical Hausdorff measures.
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The integer

Q =
n∑

j=1

αj =
k∑

i=1

idimVi (12)

is the homogeneous dimension of G. It is also the Hausdorff dimension
of Rn with respect to the Carnot-Carathéodory distance d. For this state-
ment see [92]. However, in the setting of Carnot groups, this property follows
easily from (13) below. Indeed, (13) implies that the Lebesgue measure is
Q-Ahlfors-David regular, and hence that it is equivalent to HQ

c (for instance
by [36, 2.10–2.17 and 2.10–2.18]).

The n-dimensional Lebesgue measure Ln is the Haar measure of the
group G. Hence, if E ⊂ Rn is measurable, then Ln(x · E) = Ln(E) for
all x ∈ G. Moreover, if λ > 0, then Ln(δλ(E)) = λQLn(E). We explicitly
observe that

Ln(U(p, r)) = rQLn(U(p, 1)) = rQLn(U(0, 1)). (13)

4.2. Calculus in Carnot groups

This section is entirely taken from [56]. The following definitions and re-
sults about intrinsic differentiability in Carnot groups are basically due to
P. Pansu ([103]) or are inspired by his ideas.

A map L : G → R is G-linear if it is a homomorphism from G ≡ (Rn, ·)
to (R,+) and if it is positively homogeneous of degree 1 with respect to the
dilations of G, i.e., L(δλx) = λLx for λ > 0 and x ∈ G. The R-linear set of
G-linear functionals G → R is indicated as LG and it is endowed with the
norm

‖L‖LG := sup{|L(p)| : dc(p, 0) ≤ 1}.

Given a basis X1, . . . ,Xn, all G-linear maps are represented as follows.

Proposition 4.4. A map L : G → R is G-linear if and only if there is
a = (a1, . . . , am1) ∈ Rm1 such that, if x = (x1, . . . , xn) ∈ G, then L(x) =∑m1

i=1 aixi.

Definition 4.5. Let Ω be an open set in G. The function f : Ω → R is
Pansu-differentiable (differentiable in the sense of Pansu: see [103] and [72])
at x0 if there is a G-linear map L such that

lim
x→x0

f(x)− f(x0)− L(x−1
0 · x)

d(x, x0)
= 0.
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exists a homomorphism L from G to (R,+) such that

lim
λ→0+

f(τx0(δλv))− f(x0)
λ

= L(v)

uniformly with respect to v belonging to compact sets in G. In particular,
L is unique and we shall write L = dGf(x0). Notice that this definition of
the differential depends only on G and not on the particular choice of the
canonical generating vector fields. Indeed, any two Carnot-Carathéodory
distances induced by different choices of (equivalent) scalar products in HG
are equivalent as distances.

Definition 4.7. If Ω is an open set in G, we denote by C1
G(Ω) the set of

continuous real functions in Ω such that dGf : Ω → LG is continuous in Ω.
Moreover, we shall denote by C1

G(Ω,HG) the set of all sections ϕ of HG
whose canonical coordinates ϕj ∈ C1

G(Ω) for j = 1, . . . ,m1.Remark 4.8. We recall that C1(Ω) ⊂ C1
G(Ω) and that the inclusion may

be strict, for an example see Remark 6 in [53].
We say that f is differentiable along Xj , j = 1, . . . ,m1, at x0 if the map

λ 7→ f(τx0(δλej)) is differentiable at λ = 0, where ej is the j-th vector of the
canonical basis of Rn.

Once a generating family of vector fields X1, . . . ,Xm1 is fixed, we define,
for any function f : G → R for which the partial derivatives Xjf exist, the
horizontal gradient of f , denoted by ∇Gf , as the horizontal section

∇Gf :=
m1∑

i=1

(Xif)Xi,

whose coordinates are (X1f, . . . ,Xm1f). Moreover, if ϕ = (ϕ1, . . . , ϕm1) is
a horizontal section such that Xjϕj ∈ L1

loc(G) for j = 1, . . . ,m1, we define
divG ϕ as the real valued function

divG(ϕ) := −
m1∑

j=1

X∗
j ϕj =

m1∑

j=1

Xjϕj

(see also Section 2.1).Remark 4.9. The notation we have used for the gradient in a group is
partially imprecise; indeed, ∇Gf really depends on the choice of the basis
X1, . . . ,Xm1 . If we choose a different base, say Y1, . . . , Ym1 , then, in general,
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∑
i(Xif)Xi 6=

∑
i(Yif)Yi. Only if each of the two bases is orthonormal with

respect to the scalar product induced by the other one, we have that
∑

i

(Xif)Xi =
∑

i

(Yif)Yi.

On the contrary, the notation divG used for the divergence is correct. Indeed,
divG is an intrinsic notion and it can be computed using the previous formula
for any fixed generating family.

Finally, if x = (x1, . . . , xn) ∈ Rn ≡ G and x0 ∈ G are given, we set

πx0(x) =
m1∑

j=1

xjXj(x0).

The map x0 → πx0(x) is a smooth section of HG.

Proposition 4.10. If f is Pansu-differentiable at x0, then it is differen-
tiable along Xj at x0 for j = 1, . . . ,m1 and

dGf(x0)(v) = 〈∇Gf, πx0(v)〉x0 .

For a proof see [99, Remark 3.3].
The following proposition can be proved via an approximation argument

as in [53, Proposition 5.8].

Proposition 4.11. A continuous function belongs to C1
G(Ω) if and only if

its distributional derivatives Xjf are continuous in Ω for j = 1, . . . ,m1.Remark 4.12. As we observed, both ∇G and the Carnot-Carathéodory
distance d depend on the choice of the canonical generating family {Xj}.
But the eikonal equation connecting the two notions

|∇Gd(0, x)| = 1

holds for Ln-a.e. x ∈ G and for the whole generating family (see Theorem
3.1 in [99]).

An extension theorem of Whitney type holds:

Theorem 4.13 (Whitney extension theorem). Let F ⊂ G be a closed
set, let f : F → R be a continuous real function and let k : F → HG be
continuous horizontal section. We set

R(x, y) :=
f(x)− f(y)− 〈k(y), πy(y−1 · x)〉y

d(y, x)
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and, if K ⊂ F is a compact set,

̺K(δ) := sup{|R(x, y)| : x, y ∈ K, 0 < d(x, y) < δ}.
Assume that ̺K(δ) → 0 as δ → 0 for every compact set K ⊂ F .

Then there exists f̃ : G → R, f̃ ∈ C1
G(G), such that

f̃ |F = f, ∇Gf̃ |F = k.

4.3. BV functions and finite perimeter sets
Since with any Carnot group we can associate a Hörmander’s family of
smooth vector fields, all our previous definitions and results still hold in
this setting. In particular, within a Carnot group, we can define BV spaces
in a form equivalent to that of the previous section as follows.

If Ω ⊆ Rn is open, the space of compactly supported smooth sections of
HG is denoted by C∞

0 (Ω,HG). If k ∈ N, Ck
0 (Ω,HG) is defined analogously.

The space BVG(Ω) is the set of functions f ∈ L1(Ω) such that

‖∇Gf‖(Ω) := sup
{∫

Ω

f(x) divG ϕ(x) dx :

ϕ ∈ C1
0 (Ω,HG), |ϕ(x)|x ≤ 1

}
<∞.

(14)

The space BVG,loc(Ω) is the set of functions belonging to BVG(U) for each
open set U ⊂⊂ Ω. Notice the use of the intrinsic fiber norm inside the
previous definition.

It is easy to see that f ∈ BVG(Ω) if and only if f ∈ BVX(Ω), where X is
a family of vector fields that generate the horizontal layer.

In the setting of Carnot groups, the structure theorem for BV functions
reads as follows.

Theorem 4.14 (structure of BVG functions). If f ∈ BVG,loc(Ω), then
‖∇Gf‖ is a Radon measure on Ω. Moreover, there exists a ‖∇Gf‖-measur-
able horizontal section σf : Ω → HG such that |σf (x)|x = 1 for ‖∇Gf‖-a.e.
x ∈ Ω and ∫

Ω

f(x) divG ϕ(x) dx =
∫

Ω

〈ϕ, σf 〉 d‖∇Gf‖

for all ϕ ∈ C1
0 (Ω,HG). Finally, the notion of gradient ∇G can be extended

from regular functions to functions f ∈ BVG defining ∇Gf as the vector
valued measure

∇Gf := −σf ‖∇Gf‖ =
(
−(σf )1 ‖∇Gf‖, . . . ,−(σf )m1 ‖∇Gf‖

)
,

where (σf )j are the components of σf with respect to the moving base Xj.
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It is well known that the usefulness of these definitions for the Calculus
of Variations relies mainly in the validity of the two following theorems. In
the context of subriemannian geometries they are proved respectively in [60]
and [50].

Theorem 4.15 (compactness). The space BVG,loc(G) is compactly em-
bedded in Lp

loc(G) for 1 ≤ p < Q
Q−1 , where Q, defined in (12), is the homo-

geneous dimension of G.

Theorem 4.16 (lower semicontinuity). Let f, fk ∈ L1(Ω), k ∈ N, be
such that fk → f in L1(Ω). Then

lim inf
k→∞

‖∇Gfk‖(Ω) ≥ ‖∇Gf‖(Ω).

Definition 4.17. A measurable set E ⊂ Rn is of locally finite G-perimeter
in Ω (or is a G-Caccioppoli set) if the characteristic function 1E ∈BVG,loc(Ω).
In this case we call the perimeter of E the measure

|∂E|G := ‖∇G1E‖
and we call the (generalized inward) G-normal to ∂E in Ω the vector

νE(x) := −σ1E
(x). (15)Remark 4.18. This remark is analogous to Remark 4.9. The symbol |∂E|G

is somehow incorrect; indeed, the value of the G-perimeter depends on the
choice of the generating vector fields X1, . . . ,Xm1 , precisely through the
bound |ϕ| ≤ 1 in (14). The values of the perimeters induced by two different
families of generating vector fields coincide only if the two families

are mutually orthonormal; nevertheless, the perimeters induced by differ-
ent families are equivalent as measures and, as a consequence, the notion of
being a G-Caccioppoli set is an intrinsic one depending only on the group G.Remark 4.19. The G-perimeter is invariant under group translations, i.e.,

|∂E|G(A) = |∂(τpE)|G(τpA) for all p ∈ G and for any Borel set A ⊂ G.

Indeed, divG is invariant under group translations and the Jacobian deter-
minant of τp : G → G equals 1. Moreover, the G-perimeter is homogeneous
of degree Q− 1 with respect to the dilations of the group, i.e.,

|∂(δλE)|G(A) = λ1−Q|∂E|G(δλA) for any Borel set A ⊂ G;

also this fact is elementary and can be proved by change of variables in
formula (14).



BV SPACES AND RECTIFIABILITY FOR C-C METRICS 109

By (13), the isoperimetric inequality in a Carnot group takes the following
form ([60]).

Proposition 4.20 (isoperimetric inequality). There is a positive con-
stant cI > 0 such that for any G-Caccioppoli set E, for all x ∈ G and r > 0,

(
min{Ln(E ∩ U(x, r)),Ln(Ec ∩ U(x, r))}

)(Q−1)/Q ≤ cI |∂E|G(U(x, r))

and (
min{Ln(E),Ln(Ec)}

)(Q−1)/Q ≤ cI |∂E|G(Rn).

Isoperimetric sets have been recently studied in [74].

5. Regular hypersurfaces in Carnot groups and rectifiability

5.1. Regular hypersurfaces

This section relies totally on [54]. We define G-regular hypersurfaces in
a Carnot group G, mimicking Definition 6.1 in [53], as non critical level sets
of functions in C1

G(Rn,R).

Definition 5.1 (G-regular hypersurfaces). Let G be a Carnot group.
We shall say that S ⊂ G is a G-regular hypersurface if for every x ∈ S there
exist a neighbourhood U of x and a function f ∈ C1

G(U) such that
(i) S ∩ U = {y ∈ U : f(y) = 0},
(ii) ∇Gf(y) 6= 0 for y ∈ U .

G-regular surfaces have a unique tangent plane at each point. This follows
from a Taylor formula for functions in C1

G that is basically proved in [103].

Proposition 5.2. If f ∈ C1
G(U(p, r)), then

f(x) = f(p) +
m∑

j=1

(Xjf)(p)(xj − pj) + o(d(x, p)) as x→ p.

If S = {x : f(x) = 0} ⊂ G is a G-regular hypersurface, then the tangent
group T g

GS(x) to S at x is

T g
GS(x) :=

{
v = (v1, . . . , vn) ∈ G :

m∑

j=1

Xjf(x)vj = 0
}
.
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By Proposition 4.2, T g
GS(x) is a proper subgroup of G. We can define the

tangent plane to S at x as

TGS(x) := x · T g
GS(x).

We stress that this is a good definition. Indeed, the tangent plane does not
depend on the particular function f defining the surface S because of point
(iii) of the Implicit Function Theorem (Theorem 5.5 below) that yields

T g
GS(x) = {v ∈ G : 〈νE(x), πxv〉x = 0},

where νE is the generalized inward unit normal defined in (15) and πx(v) =∑m
j=1 vjXj(x). Notice that the map v 7→ πx(v) for x ∈ G fixed,

πx(v) =
m∑

j=1

vjXj(x),

is a smooth section of HG.
Notice also that it follows again from (iii) of Theorem 5.5, that νE is

a continuous function.
If v0 =

∑m
i=1 viXi(0) ∈ HG0, we define the halfspaces S±G (0, v0) as

S+
G (0, v0) :=

{
x ∈ G :

m∑

i=1

xivi > 0
}

and

S−G (0, v0) :=
{
x ∈ G :

m∑

i=1

xivi < 0
}
.

Their common boundary is the vertical plane

Π(0, v0) :=
{
x :

m∑

i=1

xivi = 0
}
.

If v =
∑m

i=1 viXi(y) ∈ HGy, S±G (y, v) and Π(y, v) are the translated sets,

S±G (y, v) := y · S±G (0, v0) and Π(y, v) = y ·Π(0, v0),

where v and v0 have the same components vi with respect to the left invariant
basis Xi. Hence

S±G (y, v) =
{
x ∈ G :

m∑

i=1

(xi − yi)vi > 0 (< 0)
}
.

Clearly, TGS(x) = Π(x, νE(x)).
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Note also that the class of G-regular hypersurfaces is different from the
class of Euclidean C1 embedded surfaces in Rn. From one side, G-regular
surfaces can have “ridges” because continuity of the derivatives of the defin-
ing functions f is required only in the horizontal directions; on the other side,
a Euclidean C1 surface can have so-called characteristic points, i.e. points
p ∈ S where the Euclidean tangent plane TpS contains the horizontal fiber
HGp.

Definition 5.3. If S is an Euclidean C1 hypersurface in G, we define the
characteristic set of S as

C(S) := {x ∈ S : HGx ⊆ TxS}.

The points of C(S) are, under many aspects, irregular points of S. Note
that the tangent group does not exist at these points. It is also well known
that these points are “few” on smooth hypersurfaces but only recently
V. Magnani ([86]) has obtained precise estimates of the HQ−1

c measure
of the characteristic sets of C1 surfaces in general Carnot groups Hn, ex-
tending previous results of Z. Balogh ([9]) in the Heisenberg group, of
V. Magnani ([86]) and of B. Franchi, R. Serapioni and F. Serra Cas-
sano ([56]) in step 2 Carnot groups. Notice that the study of the size of
the characteristic set has a long history. We refer to the contributions of
M. Derridj ([33]), B. Franchi and R. L. Wheeden ([57]), D. Danielli,
N. Garofalo and D. M. Nhieu ([28]). Magnani’s result reads as follows.

Theorem 5.4. If S is a Euclidean C1-smooth hypersurface in a Carnot
group G with homogeneous dimension Q, then

HQ−1
G (C(S)) = 0.

Now we can state our Implicit Function Theorem, saying that a G-regular
hypersurface S = {f(y) = 0}, the boundary of the set E = {f(y) < 0}, can
be locally parametrized through a function ϕ : Rn−1 → Rn so that the
G-perimeter of E can be written explicitly in terms of ∇Gf and ϕ.

Theorem 5.5 (Implicit Function Theorem). Let Ω be an open set in Rn

identified with a Carnot group G, 0 ∈ Ω, and let f ∈ C1
G(Ω) be such that

f(0) = 0 and X1f(0) > 0. Define

E = {x ∈ Ω : f(x) < 0}, S = {x ∈ Ω : f(x) = 0}
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and, for δ > 0, h > 0,

Iδ = {ξ = (ξ2, . . . , ξn) ∈ Rn−1 : |ξj | ≤ δ}, Jh = [−h, h].
If ξ = (ξ2, . . . , ξn) ∈ Rn−1 and t ∈ Jh, denote by γ(t, ξ) the integral curve of
the vector field X1 at the time t issued from (0, ξ) = (0, ξ2, . . . , ξn) ∈ Rn, i.e.

γ(t, ξ) = exp(tX1)(0, ξ).

Then there exist δ, h > 0 such that the map (t, ξ) → γ(t, ξ) is a diffeomor-
phism of a neighbourhood of Jh × Iδ onto an open subset of Rn and, if we
denote by U ⊂⊂ Ω the image of Int(Jh × Iδ) through this map, we have

(i) E has a finite G-perimeter in U ,
(ii) ∂E ∩ U = S ∩ U ,

(iii) νE(x) = − ∇Gf(x)
|∇Gf(x)|x

for all x ∈ S ∩ U ,

where νE is the generalized inner unit normal defined by (15), that can be
identified with a section of HG with |ν(x)|x = 1 for |∂E|G-a.e. x ∈ U .
In particular, νE can be identified with a continuous function and |ν| ≡ 1.
Moreover, there exists a unique function

ϕ = ϕ(ξ) : Iδ → Jh

such that the following parametrization holds:
Set ϕ(ξ) = γ(ϕ(ξ), ξ) for ξ ∈ Iδ. Then

(iv) S ∩ Ũ = {x ∈ Ũ : x = ϕ(ξ), ξ ∈ Iδ},
(v) ϕ is continuous,
(vi) the G-perimeter has the integral representation

|∂E|G(Ũ) =
∫

Iδ

√∑m
j=1 |Xjf(ϕ(ξ))|2

X1f(ϕ(ξ))
dLn−1

ξ .

Our next Theorem is a mild regularity result. Roughly speaking, it states
that G-regular hypersurfaces do not have cusps or spikes if they are studied
with respect to the intrinsic Carnot-Carathéodory distance, while they can
be very irregular as Euclidean submanifolds. To make precise the former
statement we recall the notion of the essential boundary (or of the measure
theoretic boundary) ∂∗F of a set F ⊂ G,

∂∗F :=
{
x ∈ G : lim sup

r→0+
min

{Ln(F ∩ U(x, r))
Ln(U(x, r))

,
Ln(F c ∩ U(x, r))
Ln(U(x, r))

}
> 0
}
.

Notice that this definition makes sense in any metric measure space and
that the essential boundary does not change if the distance d is replaced by
an equivalent distance d′.
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Theorem 5.6. Let Ω ⊂ G be a fixed open set and let E be such that ∂E∩Ω =
S ∩ Ω, where S is a G-regular hypersurface. Then

∂E ∩ Ω = ∂∗E ∩ Ω.

Now we want to compare the perimeter measure on a G-regular hyper-
surface S and the intrinsic (Q − 1)-Hausdorff measure of S. Observe that
it makes sense to speak about the perimeter measure of S provided S is
locally the boundary of a finite G-perimeter set (as proved in Theorem 5.5).
The next theorem gives an explicit form of the density of the perimeter with
respect to the intrinsic Hausdorff measure concentrated on S. As a conse-
quence — as it is stated in the following corollary — G-regular hypersurfaces
have coherently intrinsic Hausdorff dimension Q− 1.

Theorem 5.7. Let ̺ be a distance on G such that, for all x, y, z ∈ G and
λ > 0,

̺(x · y, x · z) = ̺(y, z) and ̺(δλy, δλz) = λ̺(y, z),

and there exists c̺ > 1 such that

c−1̺(y, z) ≤ d(y, z) ≤ c̺(y, z) for all y, z ∈ G.

If s̺ : HG0 \ {0} → R is the 1-homogeneous function defined as

s̺(v) := Ln−1
(
U̺(0, 1) ∩Π(0, v)

)
,

then
|∂E|G Ω = s̺ ◦ νE SQ−1

G (S ∩ Ω)

= Ln−1
(
U̺(0, 1) ∩ T g

GS(x)
)
SQ−1

G (S ∩ Ω).
(16)

Moreover, there is a constant α̺ > 1, depending only on the distance ̺, such
that

0 < α−1
̺ ≤ s̺(v) ≤ α̺ <∞.Remark 5.8. If the distance ̺ under consideration is invariant with respect

to rotations of HG0 ≃ Rm, then the function s̺ is constant and, with an
appropriate choice of the normalization constant in the definition of the
Hausdorff measure, (16) takes the particularly neat form

|∂E|G = SQ−1
̺ S. (17)



114 BRUNO FRANCHI

We do not know how large is the class of groups whose Carnot-Carathéodory
distance enjoys this property. It certainly comprises the Heisenberg groups.
For the groups in this class we have

|∂E|G = SQ−1
c S.

Nevertheless, even if ̺ were not rotationally invariant, there always exists
another true metric invariant, homogeneous and comparable with ̺ that is
also invariant by rotations ofHG0 (for an example see (11)). If one computes
the Hausdorff measure with respect to it, then (17) holds.

Corollary 5.9. If S is a G-regular hypersurface, then the Hausdorff dimen-
sion of S, with respect to the Carnot-Carathéodory metric d or any other
metric d′ comparable with it, is Q− 1.

Corollary 5.9 combined with Theorem 5.4 yields the following comparison
result between Euclidean C1-smooth hypersurfaces and G-regular hypersur-
faces.

Theorem 5.10. If S is a Euclidean C1-smooth hypersurface in a Carnot
group G with homogeneous dimension Q, then the Hausdorff dimension of S,
with respect to the Carnot-Carathéodory metric d or any other metric d′

comparable with it, is Q− 1.

The reverse assertion is false: there exist G-regular hypersurfaces in
G ≡ Rn that have the Euclidean Hausdorff dimension greater than n − 1.
Indeed, recently B. Kirchheim and F. Serra Cassano ([71]) have shown
that there exist G-regular hypersurfaces in the Heisenberg group H1 (Q = 4,
n = 3) with the Euclidean Hausdorff dimension 2.5.

5.2. Rectifiability in Carnot groups
The following results are the core of [56] (see also [55]). We remind that
De Giorgi’s celebrated structure theorem in Euclidean spaces ([30], [31])
states that if E ⊂ Rn is a set of locally finite perimeter, then the associ-
ated perimeter measure |∂E| is concentrated on a portion of the topological
boundary ∂E, the so-called reduced boundary ∂∗E ⊂ ∂E. In addition, ∂∗E
is Hd−1-rectifiable, i.e. ∂∗E, up to a set of (d−1)-Hausdorff measure zero, is
a countable union of compact subsets of C1 submanifolds and the perimeter
measure is the (n−1)-Hausdorff measure of the reduced boundary. Roughly
speaking, this says that the perimeter measure is supported on a portion
of the topological boundary ∂E, that can be expressed — after removing
a negligible set of “bad points” — as a countable union of compact subsets
of “good hypersurfaces”.
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If, in the spirit of De Giorgi’s theorem, we want to describe the structure
of sets of finite intrinsic perimeter in a Carnot group G, we need a natural
notion of rectifiable subsets. In this perspective, the correct definition of
“good hypersurfaces”, i.e. of intrinsic C1-regular submanifold of G, given in
the previous Section provides a key tool. Keeping in mind this notion, the
following definition is a natural counterpart of the corresponding Euclidean
definition.

Definition 5.11. We say that Γ ⊂ G is a ((Q−1)-dimensional) G-rectifiable
set if there exists a sequence of G-regular hypersurfaces (Sj)j∈N such that

HQ−1
c

(
Γ \ ⋃

j∈N
Sj

)
= 0.

Before we enter the study of the rectifiability of the reduced boundary
(whatever this means, as we shall see below), let us point out the relation-
ships between our definition in Carnot groups and the standard Euclidean
notion. The following result proved in [56] yields that “negligible” subsets of
codimension 1 in a Carnot group with respect to the Euclidean distance are
“negligible” subsets of codimension 1 with respect to Carnot-Carathédory
distance.

Proposition 5.12. Let G be a Carnot group. For any α ≥ 0 and R > 0
there is a constant c(α,R) > 0 such that, for any set E ⊂ G ∩ U(0, R),

Hα+Q−n
c (E) ≤ c(α,R)Hα(E), α ≥ 0.

In particular, for all E ⊂ G,

Hα(E) = 0 =⇒ Hα+Q−n
c (E) = 0, α ≥ 0.

Proposition 5.12 combined with Theorem 5.4 yields:

Theorem 5.13. Let G = Rn be a Carnot group. If S is an (n− 1)-dimen-
sional Euclidean rectifiable subset of Rn, then S is also (Q−1)-dimensional
G-rectifiable.

On the other hand, there are (Q − 1)-dimensional G-rectifiable sets in
a Carnot group G identified with Rn that are not (n − 1)-dimensional Eu-
clidean rectifiable. Indeed, in [10] a set N ⊂ R3 is constructed, such that for
an appropriate ε > 0,

H3
c(N) = 0 and H2+ε(N) > 0.



116 BRUNO FRANCHI

Hence N is trivially (Q − 1)-dimensional H1-rectifiable (Q − 1 = 3), but it
is not 2-dimensional Euclidean rectifiable because its Euclidean Hausdorff
dimension is strictly larger than 2. As we mentioned above, a sharper re-
sult in this direction is contained in [71]: there exist G-regular hypersurfaces
in the Heisenberg group H1 (Q = 4, n = 3) with the Euclidean Hausdorff
dimension 2.5. We recall that relationships between Euclidean and intrin-
sic Hausdorff measure in Heisenberg groups have been deeply investigated
in [10], where also sharp results were obtained.

Thus, we are left with the notion of a reduced boundary for subsets of
a Carnot group. The definition we give here is a simple translation of the
Euclidean case, as follows.

Definition 5.14 (reduced boundary). Let E be a G-Caccioppoli set. We
say that x ∈ ∂∗GE if

(i) |∂E|G(U(x, r)) > 0 for any r > 0,

(ii) there exists limr→0

∫
U(x,r)

νE d|∂E|G,

(iii)
∥∥limr→0

∫
U(x,r)

νE d|∂E|G
∥∥

Rm1
= 1.

The limits in Definition 5.14 should be understood as a convergence of
the averages of the coordinates of νE with respect to the chosen moving base
of the fibers.

Definition 5.14 is a straightforward extension of its Euclidean counterpart
but its utility is not obvious. Indeed, in the Euclidean setting, it is immediate
to show that the perimeter measure is concentrated on the reduced boundary
since, by the Lebesgue-Besicovitch Differentiation Lemma, given a Radon
measure µ, for any f ∈ L1

loc(dµ) and for µ-a.e. x

lim
r→0

∫

|y−x|<r

f(y) dµE → f(x)

as r → 0. This implies that |∂E| = |∂E| ∂∗G.
Unfortunately, the Besicovitch covering lemma, i.e. the main tool of the

proof of the Lebesgue-Besicovitch Differentiation Lemma, fails to hold in
Carnot groups, see [72] and [111].

We do not know whether the Lebesgue-Besicovitch Differentiation Lemma
still holds in Carnot groups. It holds at least when µ is the perimeter mea-
sure, thanks to a deep asymptotic estimate proved by L. Ambrosio in [1].
The corresponding differentiation lemma reads as follows.
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Lemma 5.15 (differentiation lemma). Assume that E is a G-Caccioppoli
set. Then

lim
r→0

∫

U(x,r)

νE d|∂E|G = νE(x) for |∂E|G-a.e. x,

i.e., |∂E|G-a.a. x ∈ G belong to the reduced boundary ∂∗GE.

The keystep for the main result of this paper, i.e. the so-called Blow-up
Theorem stated below, fails to hold for general groups of step greater than 2
as we can see from Example 1 below. Therefore, from now on the group G
will be a step 2 Carnot group.

Specializing our notations, in step 2 Carnot groups, we have

g = V1 ⊕ V2, [V1, V1] = V2, [V1, V2] = {0},

and
Q = m1 + 2(n−m1).

Now we can prove the following results.
(i) At each point of the reduced boundary of a G-Caccioppoli set there

is a (generalized) tangent group.
(ii) Both the reduced boundary and the measure theoretic boundary are

(Q− 1)-dimensional G-rectifiable sets.
(iii) |∂E|G = cSQ−1

∞ ∂∗E, i.e., the perimeter measure equals a constant
times the spherical (Q−1)-dimensional Hausdorff measure restricted
to the reduced boundary.

(iv) An intrinsic divergence theorem holds for G-Caccioppoli sets.
The precise meaning of statement (i) is the content of the Blow-up The-

orem 5.16 below. It is precisely the point (i) that can be false in a general
Carnot group. Indeed, we provide an example of a G-regular hypersurface
S = ∂E in a step 3 group (the so-called Engel group, see e.g. [63], [95]) such
that 0 ∈ ∂∗GE but E has not generalized tangent group at that point.

Statement (iii) fits in the general problem of comparing different geometric
measures in Carnot groups. A good reference for this problem, in Euclidean
spaces, is Matilla’s book [90]. In the setting of the Heisenberg group,
it is proved in [28] that the perimeter of a Euclidean C1,1-hypersurface is
equivalent to its (Q − 1)-dimensional intrinsic Hausdorff measure, whereas
in [53] it is proved that on the boundary of a set of finite intrinsic perimeter
the (Q − 1)-dimensional intrinsic spherical Hausdorff measure coincide —
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after a suitable normalization — with the perimeter measure. In the setting
of general Carnot groups the problem is essentially open. The equivalence
of the intrinsic perimeter and of the (Q− 1)-dimensional intrinsic Hausdorff
measure for C1

G-hypersurfaces in general Carnot groups has been proved in
the previous subsection. In addition, the perimeter measure of a smooth set
in general subriemannian spaces equals the intrinsic Minkowski content, as
it is proved in Theorem 3.17. For Ahlfors-regular metric spaces, a general
representation theorem on the perimeter measure of sets of finite perimeter
in terms of the Hausdorff measure is proved in [1] (see also the refined result
for subriemannian manifolds in [2]), showing that the intrinsic perimeter
admits a density ϑ with respect to the Hausdorff measure that is locally
summable and bounded away from zero. Statement (iii) says precisely that,
thanks to (i) and (ii), the function ϑ is constant in step 2 Carnot groups.

To state our result, let us fix a few notations. For any set E ⊂ G, x0 ∈ G
and r > 0, we consider the translated and dilated sets Er,x0 defined as

Er,x0 = {x : x0 · δr(x) ∈ E} = δ1/rτx−1
0
E.

If x0 is fixed and there is no ambiguity, we shall write simply Er. In addition,
we set Ex0 = E1,x0 . Moreover, if v ∈ HGx0 we define the halfspaces S+

G (v)
and S−G (v) as

S+
G (v) := {x : 〈πx0x, v〉x0 ≥ 0}, S−G (v) := {x : 〈πx0x, v〉x0 ≤ 0}.

The common topological boundary T g
G(v) of S+

G (v) and of S−G (v) is the sub-
group of G,

T g
G(v) := {x : 〈πx0x, v〉x0 = 0}.

Theorem 5.16 (blow-up theorem). If E is a G-Caccioppoli set, x0 ∈
∂∗GE and νE(x0) ∈ HGx0 is the inward normal defined in (15), then

lim
r→0

1Er,x0
= 1S+

G (νE(x0))
in L1

loc(G) (18)

and, for all R > 0,

lim
r→0

|∂Er,x0 |G(U(0, R)) = |∂S+
G (νE(x0))|G(U(0, R)).

Notice that, by Proposition 3.2,

|∂S+
G (νE(x0))|G(U(0, R)) = Hn−1(T g

G(νE(0)) ∩ U(0, R)).
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As we have already pointed out, Theorem 5.16 fails to hold in general
Carnot groups of step k > 2. In fact, the core of the following example
consists in showing that in Carnot groups of step greater than 2 there can
exist cones (i.e. dilation-invariant sets) that are not flat (they are not of the
form S±G (v) for some horizontal vector v) but, nevertheless, with a vertex
belonging to the reduced boundary.

The following counterexample was inspired by Martin Reimann and
then Roberto Monti found a preliminary form of the counterexample
itself.Example 1. Let us recall the definition of the Engel algebra and group.
Let E = (R4, ·) be the Carnot group whose Lie algebra is g = V1 ⊕ V2 ⊕ V3

with V1 = span{X1,X2}, V2 = span{X3} and V3 = span{X4}, the only non
zero commutation relations being

[X1,X2] = −X3, [X1,X3] = −X4.

In exponential coordinates, the group law takes the form

x · y = H

( 4∑

i=1

xiXi,
4∑

i=1

yiXi

)
,

where H is given by the Campbell-Hausdorff formula

H(X,Y ) = X + Y +
1
2
[X,Y ] +

1
12

(
[X, [X,Y ]]− [Y, [X,Y ]]

)
.

In exponential coordinates, an explicit representation of the vector fields is

X1 = ∂1 +
x2

2
∂3 +

(x3

2
− x1x2

12

)
∂4, X2 = ∂2 −

x1

2
∂3 +

x2
1

12
∂4,

X3 = ∂3 −
x1

2
∂4, X4 = ∂4.

Let E = {x ∈ R4 : f(x) ≥ 0}, where

f(x) =
1
6
x2

(
x2

1 + x2
2

)
− 1

2
x1x3 + x4.

Since ∂E = {x ∈ R4 : f(x) = 0} is a smooth Euclidean manifold, E is
a G-Caccioppoli set (see Proposition 3.2). Moreover,

∇Ef(x) =
(
0,

1
2
(x2

1 + x2
2)
)
,
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and, by the Implicit Function Theorem (Theorem 5.5),

νE(x) = − ∇Ef(x)
|∇Ef(x)| = (0,−1)

for all x ∈ ∂E \N , where N = {x ∈ E : x1 = x2 = 0}. Since |∂E|E(N) = 0,
the origin belongs to the reduced boundary of E. On the other hand, since
f(δλx) = λ3f(x) for λ > 0, it follows that Eλ,0 = δλE = E so that (18) fails
to hold because E is not a vertical halfspace.

Even if we do not enter into the details of the proof of Theorem 5.16,
we want to stress the technical point where the assumption on the step
of G is used. In the Euclidean setting an elementary statement says that
∂f
∂x2

= · · · = ∂f
∂xn

= 0 implies f = f(x1). In Carnot groups the corresponding
statement should be that the vanishing of X2f to Xm1f yields that f is
a function of just one variable. But this is false as simple examples in the
Heisenberg group H1 show. What is possible to prove in step 2 groups is that
if Y1, . . . , Ym1 are left invariant smooth orthonormal (horizontal) sections, if
Y2f = · · · = Ym1f = 0 and if Y1f is positive, then f is an increasing function
of one variable. Example 1 shows that in groups of step 3 or larger, even
this last weaker statement is false.

Lemma 5.17. Let G be a step 2 group and let Y1, . . . , Ym1 be left invariant
smooth orthonormal sections of HG. Assume that g : G → R satisfies

Y1g ≥ 0 and Yj(g) = 0 if j = 2, . . . ,m1.

Then the level lines of g are “vertical hyperplanes orthogonal to Y1”, i.e.,
sets that are group translations of

S(Y1) := {p : 〈π0p, Y1(0)〉 = 0}.

We can now state our main structure theorem for G-Caccioppoli sets.

Theorem 5.18 (structure of G-Caccioppoli sets). Let E ⊆ G be
a G-Caccioppoli set. Then

(i) ∂∗GE is (Q− 1)-dimensional G-rectifiable, i.e., ∂∗GE = N ∪⋃∞
h=1Kh,

where HQ−1
c (N) = 0 and Kh is a compact subset of a G-regular

hypersurface Sh,
(ii) νE(p) is the G-normal to Sh at p, for all p ∈ Kh,
(iii) |∂E|G = ϑcSQ−1

c ∂∗GE, where

ϑc(x) =
1

ωQ−1
Hn−1

(
∂S+

G (νE(x)) ∩ U(0, 1)
)
.
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As usual, ωk is the k-dimensional measure of the k-dimensional unit
ball in Rk. If we replace the Sc-measure by the S∞-measure, the
corresponding density ϑ∞ turns out to be a constant. More precisely,

(iv) |∂E|G = ϑ∞SQ−1
∞ ∂∗GE, where

ϑ∞ =
ωm1−1ωm2ε

m2
2

ωQ−1
=

1
ωQ−1

Hn−1
(
∂S+

G (νE(0)) ∩ U∞(0, 1)
)
.

Here ε2 is the constant appearing in (11) and ωk is the k-dimensional
Lebesgue measure of the unit ball in Rk.

Finally, the following divergence theorem is an easy consequence of Theo-
rem 5.18 but we stress the fact that the measure theoretic boundary appears
in the identity (ii). As in the Euclidean space, the corresponding statement
for the reduced boundary holds straightforwardly. However, the interest of
the statement for the measure theoretic boundary comes not only from the
fact that — as in the Euclidean setting — the last one is sometimes easier to
deal with, but mainly from the fact that the measure theoretic boundary —
unlike the reduced boundary — is independent of the choice of the metric.

Theorem 5.19 (divergence theorem). Let E be a G-Caccioppoli set.
Then

(i) |∂E|G = ϑ∞SQ−1
∞ ∂∗,GE

and the following version of the divergence theorem holds:

(ii) −
∫

E

divG ϕdLn = ϑ∞

∫

∂∗,GE

〈νE , ϕ〉 dSQ−1
∞ , ϕ ∈ C1

0 (G,HG).

6. The Grushin plane

In this Section we discuss some problems related to the Poincaré inequality
associated with nonsmooth vector fields. As we have already mentioned,
fairly general results in this direction can be found in [45], [41], [73] and
[93]. Here we restrict ourselves to the case of n = 2, where the results take
a simpler form which is, however, full of interesting features. In [58] it is
proved that, after a change of variables, we can assume that the vector fields
X1, X2 have the form

X1 = ∂1, X2 = λ(x1, x2)∂2,

where λ is Lipschitz continuous and non-negative. For the sake of simplicity
we assume that λ is independent of x2, i.e. λ(x1, x2) ≡ λ(x1). Moreover,
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we write x1 = x, x2 = y. The plane R2
(x,y) endowed with the Carnot-

Carathéodory metric associated with X1 = ∂x and X2 = λ(x)∂y is called
sometimes the Grushin plane.

In [41, Theorem 2.3] we proved the following characterization of the metric
balls of the Grushin plane.

Proposition 6.1. For z0 = (x0, y0) and t > 0 set

Λ(z0, t) = sup
|x−x0|<t

λ(x),

F (z0, t) = tΛ(z0, t),

Q(z0, t) = (x0 − t, x0 + t)× (y0 − F (z0, t), y0 + F (z0, t)).

If Λ(z, t) > 0 for every t > 0 and z ∈ R2, then there exists b > 1 such that

Q(z, t/b) ⊂ B(z, t) ⊂ Q(z, bt), t > 0, z ∈ R2.

Corollary 6.2. If Λ(z, t) > 0 for t > 0 and for any z ∈ R2, then the
Carnot-Carathéodory metric in the Grushin plane is locally doubling with
respect to the Lebesgue measure if and only if the map t→ Λ(z, t) is locally
uniformly doubling with respect to z, i.e., if and only if for any compact set
K there exist CK > 0, tK > 0 such that

Λ(z, 2t) ≤ CKΛ(z, t) for z ∈ K and 0 < t < tK . (19)

In particular, if (19) holds, then

|B(z0, t)| ≈ t2Λ(z0, t),

̺(z1, z2) ≈ |x1 − x2|+ F−1(z1, |y1 − y2|),
where F−1(z1, t) = (F (z1, ·))−1(t) (notice that the map F (z1, ·) is strictly
increasing).Proof. Suppose that (19) holds. If z ∈ K and 0 < t < tK/(2b), we have

|B(z, 2t)| ≤ |Q(z, 2bt)| = (4bt)2Λ(z, 2bt) ≤ Cb,K(2t/b)2Λ(z, t/b)

= Cb,K |Q(z, t/b)| ≤ Cb,K |B(z, t)|.
Suppose, on the other hand, that d is doubling. Then

Λ(z, 2t) =
|Q(z, 2t)|

16t2
≤ |B(z, 2bt)|

16t2
≤ Cb,K

|B(z, t/b)|
4t2

≤ Cb,K
|Q(z, t)|

4t2
= Cb,KΛ(z, t).

�
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Now let us remind the RH∞ condition introduced in [43]. Let X be
a metric space endowed with a metric ϑ and a doubling measure µ. Let
ω ≥ 0 belong to L1

loc(X). We say that ω ∈ RH∞ if
∫

B

ω dµ ≈ ess sup
B

ω

for all ϑ-balls B.
Proposition 2.3 in [43] reads as follows.

Proposition 6.3. Let (X,ϑ, µ) be a homogeneous space and let ω ∈ L1
loc

and ω > 0 µ-a.e. Then
(i) ω ∈ RH∞ if and only if ωβ ∈ RH∞ for β > 0,
(ii) if ω ∈ RH∞, then ω ∈ A∞ and hence ωµ is a doubling measure,
(iii) if ω ∈ RH∞ and u ∈ A∞, then ωu ∈ A∞.

We are ready to state a necessary and sufficient condition for the Carnot-
Carathéodory distance be locally doubling and a (1, 1)-Poincaré inequality
hold in the Grushin plane. In turn, this implies a (p, q)-Poincaré inequality,
as pointed out in Remark 2.16.

Theorem 6.4. Let λ ≥ 0 be a Lipschitz continuous function. If λ ∈ RH∞,
then the Carnot-Carathéodory distance d is doubling and a (1, 1)-Poincaré
inequality holds, i.e., for any Lipschitz function f and for any Carnot-Cara-
théodory ball B,

∫

B

|f − fB | dL2 ≤ C r(B)
∫

B

|Xf | dL2, (20)

where r(B) is the radius of B and C is independent of B and f .
Conversely, if the Carnot-Carathéodory distance d is doubling and (20)

holds, then λ ∈ RH∞.Proof. Suppose that λ ∈ RH∞. Then, by Proposition 6.3 (ii), λL2 is
a doubling measure and hence, by the very definition of RH∞, Λ(z, .) is
uniformly doubling, too. On the other hand, (20) follows by Example 2 in
[41, Section 6].

Now suppose that the Carnot-Carathéodory distance d is doubling and
that (20) holds. Arguing as in Theorem 3.6, we can conclude that, if E ⊂ R2

is an open set with C1-boundary, then for any Carnot-Carathéodory ball B
we have

min{|E ∩B|, |B \ E|} ≤ Cr(B)
∫

B∩∂E

(
n2

x + λ(x)2n2
y

)1/2
dH1, (21)
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where n = (nx, ny) is the outward unit normal to ∂E and H1 is the
1-dimensional Hausdorff measure supported by ∂E. For the sake of sim-
plicity take B = B(0, br) and choose

E = {(x, y) ∈ R2 : y < Λ0(x)}, where Λ0(x) =
∫ x

0

λ(t)dt.

Since Q := Q(0, r) ⊂ B, we can replace min{|E ∩ B|, |B \ E|} in (21) by
min{|E∩Q|, |Q\E|}. Analogously, the integral over B∩∂E at the right-hand
side of (21) can be replaced by the integral over Q̃∩∂E, where Q̃ = Q(0, b2r),
i.e., we get

min{|E ∩Q|, |Q \ E|} ≤ Cr

∫ eQ∩∂E

(
n2

x + λ(x)2n2
y

)1/2
dH1. (22)

In addition, when |x| ≤ b2r we have |Λ0(x)| ≤ b2rΛ(0, b2r) = F (0, b2r) and
analogously |Λ0(x)| ≤ F (0, r) when |x| ≤ r, so that

Q ∩ E = {(x, y) ∈ R2 : |x| < r, −F (0, r) < y < Λ0(x)}, (23)

and
Q̃ ∩ ∂E = {(x, y) ∈ R2 : |x| < b2r, y = Λ0(x)}. (24)

Since Λ0(x) ≥ 0 for x ≥ 0, and Λ0(x) ≤ 0 for x ≤ 0, by (23) we have
(0, r)× (−F (0, r), 0) ⊂ Q ∩ E and (−r, 0)× (0, F (0, r)) ⊂ Q \ E. Thus

min{|E ∩Q|, |Q \ E|} ≥ rF (0, r).

Finally, by (24), a parametrization of Q̃ ∩ ∂E is given by γ(t) = (t,Λ0(t))
with |t| < b2r. Using this in (22), we get

rF (0, r) ≤ Cr

∫ b2r

−b2r

λ(t) dt. (25)

Dividing both sides in (25) by r2 and keeping in mind that Λ(0, r) ≈ Λ(0, b2r)
by the doubling property (Λ(0, ·) is doubling by Corollary 6.2), we get even-
tually that λ ∈ RH∞. �

If λ = |ϕ|, ϕ being a smooth function, then it is possible to prove that
Poincaré inequality (20) holds if the associated Carnot-Carathéodory dis-
tance is doubling (with respect to the Lebesgue measure). This follows from
Theorem 6.4 by the final Remark in [41, Section 6] that reads as follows.

Proposition 6.5. If λ = |ϕ|, where ϕ ∈ C∞(R2), then Λ(z, ·) is doubling
if and only if λ ∈ RH∞.
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elliptique. Math. Ann. 303 (1995), 713–740. Zbl 0836.35106, MR 96m:35049.

[89] O. Martio and J. Sarvas: Injectivity theorems in plane and space. Ann. Acad.
Sci. Fenn., Ser. A I Math. 4 (1979), 383–401. Zbl 0406.30013, MR 81i:30039.

[90] P. Mattila: Geometry of sets and measures in Euclidean spaces. Fractals and rec-
tifiability. Cambridge Studies in Advanced Mathematics 44. Cambridge University
Press, Cambridge, 1995. Zbl 0819.28004, MR 96h:28006.

[91] M. Miranda Jr.: Functions of bounded variation on “good” metric spaces. J. Math.

Pures Appl. (to appear).
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