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BV SPACES AND RECTIFIABILITY FOR
CARNOT-CARATHEODORY METRICS:
AN INTRODUCTION

BRuUNO FRANCHI

ABSTRACT. This paper is meant as a (short and partial) introduction to
the study of the geometry of Carnot groups and, more generally, of Carnot-
Carathéodory spaces associated with a family of Lipschitz continuous vector
fields. My personal interest in this field goes back to a series of joint papers
with E. LANCONELLI, where this notion was exploited for the study of point-
wise regularity of weak solutions to degenerate elliptic partial differential
equations.

As stated in the title, here we are mainly concerned with topics of Geo-
metric Measure Theory in Carnot groups and in particular with rectifiability
theory in this setting. Thus, the core of the paper consists of Section 3 (ded-
icated to the study of BV functions with respect to Carnot-Carathéodory
metrics), of Section 4 (dedicated more specifically to the theory of Carnot
groups and, in particular, to the calculus associated with their differential
structure as differential bundles) and of Section 5 (dedicated to the theory of
intrinsic hypersurfaces and to rectifiability theory in Carnot groups). These
sections rely basically on a group of results obtained in several papers in
collaboration with R. SERAPIONI and F. SERRA CASSANO, starting from
1996. On the other hand, Section 2 and 6 are dedicated to the notion of
Carnot-Carathéodory metric, to the properties of related Sobolev spaces and
to Poincaré inequality associated with a family of Lipschitz continuous vector
fields. In particular, relying on a group of joint papers with R. L. WHEE-
DEN, S. GarrLot, C. GUTIERREZ, P. HAJtLASsz, P. KOSKELA, G. LU and
C. PEREZ, deep relationships between Poincaré inequality and the geometry
of Carnot-Carathéodory spaces are studied.
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1. INTRODUCTION

The aim of these lectures is to illustrate some recent results concerning rec-
tifiable sets in Carnot groups and to provide a short introduction to the
subject and, more generally, to some aspects of Geometric Measure Theory
in Carnot-Carathéodory spaces.

I must thank the organizers of the Spring School NAFSA 7 and Professors
BoHUMIR OPIC and LUBOS PIcCK in particular, for this opportunity, for their
warm hospitality and for the friendly atmosphere of the School.

It is also a great pleasure to acknowledge the help and the support of sev-
eral friends that made possible this work: first of all, all the results concern-
ing BV functions and Geometric Measure Theory in Carnot-Carathéodory
spaces presented here have been obtained jointly with RAUL SERAPIONI and
FRANCESCO SERRA CASSANO. Our long collaboration has been always an
invaluable source of scientific and human enrichment. Without their col-
laboration and their friendship, I would never have been able to attack this
hard subject. I have to thank them also for permitting the large quotation
of our joint papers.

Special thanks go also to my friends ERMANNO LANCONELLI and RICHARD
L. WHEEDEN. With them not only I shared mathematical interests and
a fruitful scientific collaboration that goes far behind the number of joint
papers we have written, but also the great pleasure of a long friendship.
It is a pleasure to acknowledge that I owe to ERMANNO LANCONELLI the
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idea of approaching degenerate elliptic equations by means of the control
metric associated with a family of vector fields (that is currently called
Carnot-Carathéodory metric). This approach in the early 80’s was the begin-
ning of my interest towards the study of Carnot-Carathéodory spaces, and
the origins of the present paper can be tracked to those pioneering works.
I learned from Dick WHEEDEN plenty of mathematics and of new ideas. He
introduced me to the magic of integral inequalities, and the section concern-
ing the Poincaré inequality relies on several of our joint papers with SYLVAIN
GALLOT, CRISTIAN GUTIERREZ, GUOZHEN LU and CARLOS PEREZ.

I am very grateful to VALENTINO MAGNANI and ROBERTO MONTI, who
made their beautiful PhD theses [87] and [96] available to me. In fact,
I followed [96] at several points.

I have to thank also several friends with whom I shared hours of fruitful
discussions and whose work appears here, more or less explicitly: LuiGgr Am-
BROSIO, ZOLTAN BALOGH, GIOVANNA CITTI, THIERRY COULHON, PIOTR
Hajtasz, MARTIN H. REIMANN, FuLvio Riccr.

These notes are not meant to be a complete — and not even a partial
— survey of the field of Carnot-Carathéodory metrics, since they are based
on the content of a few lectures given in Prague during the NAFSA 7. The
reader interested to an exhaustive overview of the subject, with a full biblio-
graphy, sharp statements and detailed proofs, may refer to P. HAJLASZ
([66]), P. Haseasz and P. KOSKELA ([67]), and to the PhD theses of
V. MAGNANI [87] and R. MONTI [96], whereas, for more specific facets
we restrict ourselves to recommend the reader to the general monographs
[29], [67], [69], [64], [63], [114], [116], [95], to the papers [3], [4], [5], [11], [19],
[26], [28], [50], [52], [53], [60], [62], [72], [102], [103], [104], [105], [106], [117]
and to the references therein.

Since these lectures are focused on Geometric Measure Theory and rec-
tifiability theorems in particular, there are two wide fields of research that
are not mentioned at all here, the fields of degenerate elliptic equations as-
sociated with a family of vector fields, or subelliptic equations, as they are
currently called by several authors, and control theory. A not utterly unsat-
isfactory picture of these fields goes indeed behind the aim (and the size) of
these lectures.

2. SOBOLEV SPACES AND POINCARE INEQUALITY

2.1. Vector fields

Consider a family X of vector fields X = (Xq,...,X,,) € Lip(R™;R")™.
Since we are dealing with local properties, for the sake of simplicity, we
assume that X1, ..., X,, are bounded in R™. This assumption gives a simpler
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form to some statements below. Later on, when the vector fields will be
associated with a Carnot group structure, we shall drop the boundedness
assumption. This will not yield contradiction or lack of coherence since the
local estimates we are dealing with are easily extended in groups to the whole
space by translations and dilations.

As usual we shall identify vector fields and differential operators. If

J($>:Zcz(x)al j:17"'7m7

We shall denote by X7 the operator formally adjoint to X; in L?(R"), i.e.,
the operator which for all , ¢ € C§°(R™) satisfies

/n p(@)X;¢(x)de = /Rn V(@)X () da.

Moreover, if f € L] _ is a scalar function and ¢ € (L{ )™ is an m-vector
valued function, we define the X-gradient and X-divergence as the following

distributions:
Xfo=(X0f, o Xuf), dive(p) =D Xip;
j=1

Let Q be an open subset of R”. One can define the Sobolev space Wy (Q),
1 < p < o0, associated with the family X as the space of all the functions
with finite norm ||uHW)1(p = ||lullp, + | Xul|p, where | Xu|? = > | X;u|? and the
derivatives X;u are understood in the sense of distributions. The LP-norms
should be considered with respect to the Lebesgue measure.

Throughout this paper, if E C R", both |E| and £"(E) denote its
Lebesgue measure. Analogously, if p is a measure in a set X, we write
w(E) or |E|, for the p-measure of the set £ C X.
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2.2. Sobolev spaces associated with vector fields

Proposition 2.1. Endowed with its natural norm, W1P(Q), 1 < p < oo,
is a Banach space, which is reflezive if 1 < p < oo. Moreover, W12(Q) is
a Hilbert space.

Another way to define the space for 1 < p < oo is to take the closure
of C*° functions in the above norm. As in the Euclidean case, the two
approaches are equivalent. This was obtained independently in [51] and [60].
The method goes, however, back to K. O. FRIEDRICHS ([59]). The result
can be stated as follows (the statement for smooth manifolds is due to [34]
and [35]).

Theorem 2.2. Let X be a family of Lipschitz continuous vector fields.
Then, if 1 < p < oo, we have

C=(Q) NWP(Q) is dense in WP (Q).
If, in addition, 0) is a smooth manifold, then

C>®(Q) is dense in WP ().

In view of Theorem 2.2, the following definition is natural.

Definition 2.3. Let X be a family of Lipschitz continuous vector fields.
Then, if 1 <p < o0, we put

o _ wlr
wir@) =y @,

When 1 < p < oo, Theorem 2.2 provides also a further characterization
of the spaces W)l(’p () through a relaxation argument. To this end, let p > 1
and let f:Q x R™ — [0,00) be a Carathéodory function such that

f(z,) is a convex function on R™ for every = € Q2 (1)
and there exist two positive constants Ay and Ay for which
Nolnl? < f(a.m) < Ao(1+[nf?) for every (z,m) € Qx R™.  (2)
Let us define the functional F), : L?(2) — [0, o0],

Fo(u) = Jo (2, Xu(z))de, if ue C5(Q)
Pt 400, otherwise,
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and its relazed functional (see [113] and [17])
Fy(u) := inf{lihminf Fp(up) @ (up)n C LP(Q), up — u}.

It is well known (see, for instance, [17]) that F, is the greatest LP(Q2)-lower
semicontinuous functional smaller or equal to F), and that it coincides with
F, on C3(Q) N LP(Q). Then the following characterization of the spaces
WP (Q) holds when 1 < p < oo (see [50]).

Theorem 2.4. Let p > 1 and let Q be an open subset of R™. Let
f i QxR™ — [0,00) be a Carathéodory function for which (1) and (2)
hold. Then

(i) domF = {u € LP(Q) : Fy(u) < oo} = WX’p(Q),
(ii) = Jo f(x, Xu(z)) dx for every u € WP (Q).
Remark 2.5. We have discussed here spaces of order 1. Fractional order

spaces are discussed by D. MORBIDELLI in [100]. For higher order spaces,
see for instance [39], [78], [7], [24], [25], [23], [79], [77], [21], [81].

2.3. Carnot-Carathéodory distance

Let us recall now the following standard definition of the Carnot-Carathéo-
dory metric associated with X (see, e.g., [37], [45], [101]).

Definition 2.6. We say that an absolutely continuous curve v : [0, 7] — R"”
is a sub-unit curve with respect to X if

<y (X
j=1
for any £ € R™ and for a.e. t € [0,T). If 21,29 € R™, we define
d(x1,x2) = inf{T > 0 : there exists a sub-unit curve -,
v [07T] - Rna ’7(0) =1, ’Y(T) = m?}’

If the above set of curves is empty, we put d(z1,z2) = co.

Throughout this paper we shall assume that the following hypothesis (H1)
holds:

(H1) d(z,y) < oo for any z,y € R™, so that d is a distance in R™. Moreover,
the distance d is continuous with respect to the usual topology of R™.
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If © € R™ and r > 0, we shall denote by Ug(z,7) = {y € R" : d(z,y) < r}
the metric balls with respect to d. The boundedness of X1,...,X,, yields
the existence of C' > 0 such that

d(z,y) > Clz —y| forall x,y € R™.

In particular, metric balls are bounded with respect to the Euclidean dis-
tance.

We stress explicitly that, in general, Carnot-Carathéodory distances are
not Euclidean at any scale, and hence not Riemannian. A beautiful proof
can be found in [112] (for a more general statement see also [85]).

If X satisfies (H1), then the total variation of a curve 7 : [0,1] — R™ is
by definition

k—1

Var = su d(y(tix1),v(t:))-
far(7) OSM“EM; (Y(tis1),v(t:))

The supremum is taken over all finite partitions of [0, 1]. If Varx (y) < 400,
the curve +y is called rectifiable.

A continuous rectifiable curve v : [0,1] — R™ is said to be a geodesic, or
a segment, if Varx(v) = d(v(0),v(1)). By an arclength reparametrization,
a geodesic vy can always be reparametrized on the interval [0, Varx ()] in
such a way that d(y(t),v(s)) = |t — s| for all s,t € [0, Varx ()] (see [16]).

Theorem 2.7. Let X be a family of bounded Lipschitz continuous vector
fields satisfying (H1). Then for all z,y € R™ there exists a geodesic connect-
ing them.

Carnot-Carathéodory metrics can be viewed as “limits” of Riemannian
metrics (see [40], [64] and [96]).

Indeed, for the sake of simplicity, assume that X = (X1,...,X,,) is a sys-
tem of smooth vector fields. For any k € N let d*) be the C-C metric induced
on R"™ by the vector fields

x®) — (Xl,...,Xm,%al,...,%an).

The distance d*) is in fact a Riemannian distance (see again [96]), basically
since X(¥) contains n linearly independent vector fields. Every X *)-subunit
curve is X (M _subunit for all 4 > k and also X-subunit. Then

d® (z,y) < d*V(z,y) < d(x,y) for all k € N and z,y € R".
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In addition, since C-C balls in the metric d(!) are bounded in the Eu-
clidean metric, then, by an Ascoli-Arzela argument, we can obtain that

lim d*)(z,y) = d(z,y)

k—o0

for all 2,y € R™ and finally, by (H1), the convergence is uniform on compact
sets.

The following property is known as the doubling property of d. It is not
always satisfied by Carnot-Carathéodory distances associated with vector
fields satisfying (H1) but it holds in several important cases and most of the
subsequent results rely on it.

(H2) For any compact K C R™ there exists a positive constant Ck such
that
Ua(z,2r)| < Ck |Ua(z,7)]

for any x € K and r < rg.

From now on we shall call geometric constant any constant depending
only on the dimension n, on the Lipschitz norm of the coefficients and on
the constants appearing in (H2).

Moreover, for the sake of simplicity, we shall omit the index d in Uy when
there is no way of misunderstanding and we shall denote different geometric
constants by the same letter C.

Remark 2.8. Assumptions (H1) and (H2) are satisfied by several impor-
tant families of vector fields. For instance:

(i) If the vector fields X, ..., X,, are smooth and the rank of the Lie
algebra generated by them equals n at any point of R™ (Hérmander
condition), then (H1) and (H2) hold (see [101]).

(i) If the vector fields are as in [45] and [41], then (H1) and (H2) hold.
These assumptions still hold if the vector fields are as in [43].

On the other hand, taking into account Proposition 2.9 (i) and Corollary 6.2
below, it is easy to see that the Carnot-Carathéodory distance associated
with X = (0,,exp(—1/2%)9,,) in R? satisfies (H1) but not (H2).

The following properties of the metric balls follow straightforwardly from
(H2).
Proposition 2.9. Let (H1) and (H2) hold. If K CC R", then there exist
geometric constants Q@ >n, rg >0, ¢y >0, co >0, c3 >0, ¢g > 0 such that

() |U(z,s)| > c1(s/r)Q|U(z,7)| forz e K, 0< s <r <rg,
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(i) |U(x,s)| <cas™ forx e K,0< s <rg.
(i) el d(z, )| < 1U(y,d(z, )| < ealU(e,d(z,9)| for 2,y € K,
d(z,y) < rk.
We refer to Q as to the (local) homogeneous dimension of (R™,d,L™) (with
some ambiguity, since Q is clearly not uniquely defined).

Lipschitz functions in general C-C spaces always have weak derivatives
along the vector fields that are essentially bounded functions. For the case
when the function is the distance function, this result was first proved in
[51], and then in [61] for a generic Lipschitz function. A more precise result
is the following one taken from [44] (see also [18]).

Theorem 2.10. Let (R™,d) be a C-C space associated with a family of
locally Lipschitz vector fields X = (X1,...,X,,). Assume that (H1) holds.
If f:R™ — R is a function such that, for some L >0,

[f(x) = f(y)| < Ld(z,y)  for all z,y € R",

then the derivatives X;f, j = 1,...,m, exist in distributional sense, are
measurable functions, and |X f(x)| < L for a.e. x € R™.

Another relevant property of the Carnot-Carathéodory distance is that it
satisfies (at least in several important cases) an eikonal equation, like the
Fuclidean distance. This beautiful result has been proved by R. MONTI and
F. SERRA CASSANO in [99].

Theorem 2.11. Let X be a family of Lipschitz continuous vector fields
in R™ and assume that the associated Carnot-Carathéodory distance d sat-
isfies (H1) and (H2). Suppose that the vector fields satisfy one of the cases
A, B or C below:

Case A. X;,...,X,, € C®[R™R"), m < n, satisfy Hormander’s rank
condition and they are of the form

X;=0;+ > ay@d, j=1,....m,
i=m-+1

where a;; € C*(R™).
Case B. Xi,...,X,, € C®(R"™;R"™) are of the form

X1 = 517 Xo =p2($1)32, cey Xy an(ﬂflwu,xnfl)an,

where p; € C®°(RI7Y), j =2,...,n, are functions vanishing on a set of null
(j — 1)-dimensional Lebesque measure.
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Case C. X1,..., X, € C°(R™;R") and span{X;(x),..., Xn(z)} =R" for
every x € R™.

Let K C R"™ be a closed set and let di be the distance from K. Then
[Xdg(x)] =1

for a.e. z e R"\ K.

Remark 2.12. Vector fields in Case A may be called “of Carnot type”.
This expression is motivated by the analogy with the canonical generating
vector fields of a Carnot group (see below). Analogously, vector fields in
Case B may be called “of Grushin type”, since the model is provided by
the so-called Grushin type vector fields studied in [45], [41], [43] (see below).
Finally, vector fields in Case C may be called “of Riemann type”, since in this
case the distance d is the Riemannian distance associated with the matrix

ccr.

2.4. Poincaré inequality

Definition 2.13. Let 1 < p < ¢ < co. We say that the system X satisfies
a (p, q)-Poincaré inequality (in a compact set K) if for any x € K, for
any 7 € (0,7x) and for any Lipschitz continuous function f the following
Poincaré inequality holds: Let U = U(z,r(U)) be a Carnot-Carathéodory
ball and denote by fi; the average of f in U. Then

(o /. If(fv)—fu|qdm)1/q§CT(U) (o /. |Xf<x>|pdx)l/p. 3)

Examples of systems of vector fields satisfying a (p, ¢)-Poincaré inequality
are provided by systems of smooth vector fields of Hormander type, as we see
below. Further classes of nonsmooth vector fields yielding a (p, ¢)-Poincaré
inequality are introduced in [45], [41] (see also Appendix 6), [73] and [93].

Sometimes in the literature, when p < g we refer to (3) as to a Sobolev-
Poincaré inequality, the term “Poincaré inequality” being reserved to the
case ¢ = p. On the other hand, the expression “(p,q)-Sobolev inequality”
indicates the weaker property

<|U1|/U|f(x)qu>l/q<cr(U) <|U1|/UXf(CE)|pdx)1/p

for all Lipschitz continuous functions f supported in U.
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For systems of smooth vector fields of Héormander’s type, a (p, p)-Poincaré
inequality was proved first by D. JERISON in [70]. This result was improved
in the case p > 1 in [76] by showing that the estimate holds for 1 < p < @
and ¢ = pQ/(Q — p). In fact, (3) holds for 1 < p < ¢ < oo if p and ¢
are related by a natural balance condition which involves the local doubling
order of the Lebesgue measure (for metric balls). The limit case p = 1 is very
important, since it is equivalent, as we see later, to an intrinsic isoperimetric
inequality. This inequality was proved independently in [20], [46], [67] and
[88] (see also [12]). Here we give a simple formulation.

Theorem 2.14. Let X be a system of smooth vector fields satisfying Hor-
mander’s rank condition. Let 1 < p < q < oo be such that the following
balance condition holds:

r(0) <|ﬁl>”" < c<ﬁl)”"
r(U)\|U] - \Ul
for all balls (7, U such that U C U. Then, denoting by fuy the average of f

on U,
1 1/‘1 1 1/17
(7 [15-sovrae) " < e [ 1xsras)

with C' independent of f.

The proof of Theorem 2.14 can be carried out directly. However, the
(p, q)-Poincaré inequality can be derived from the (1, 1)-Poincaré inequality
in [70]. This is a more elegant (and deeper) proof relying on the so-called self-
improving property of Poincaré inequality. In fact, starting with the work
of L. SALOFF-COSTE (see [109]), it is known that — thanks to the doubling
property of the Carnot-Carathéodory metric with respect to the Lebesgue
measure — Poincaré inequalities have a self-improving nature in the sense
that it is possible to derive estimates for general p, ¢ from particular special
cases such as

1 1 1/170
i / If(ﬂf)—fuldeCT(U)(M | s dx>

for some pg, provided p and ¢ satisfy a suitable balance condition involving
the volume of the metric balls.

We refer to [110] for an introduction to this property of the Poincaré
inequalities.
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Saloff-Coste’s result has been successively extended to more general situ-
ations in [48] and [49]. In fact, Theorem 2.14 can be derived from the (1, 1)-
Poincaré inequality in [70] by means of the following result ([49, Corollary
2.16)).

Theorem 2.15. Let u and v be doubling Borel measures in (R™,d), po > 0,
and let T be a differential operator such that

1/po
Po v
|U|“/|f fuldp < CrU <|U|,,/|Tf d)

for all balls U and all Lipschitz functions f. Let pp < p < q¢ < o0 and
assume that w is a doubling measure in (R™, d) and that the following balance

condition holds: N - 1 ~ 1/
r(0) (0N _ (1017
() \|U|. - \UL

for all balls U, U such that U C U. Then

1/q 1 1/p
(o - o) " s e (g [ mavar)

with C independent of f and U.

Remark 2.16. We stress that the self-improving property of Theorem 2.15
does not rely on any smoothness of the vector fields. In fact, the smooth-
ness of the vector fields — together with Hérmander’s rank hypothesis —
is required only in order to obtain the doubling property of the d-balls and
the (1, 1)-Poincaré inequality providing the starting point in order to apply
Theorem 2.15. Thus, Theorem 2.15 applies whenever the doubling property
of the d-balls and the (1, 1)-Poincaré inequality hold.

There is another proof of Theorem 2.14 starting from the (1, 1)-Poincaré
inequality, that relies on a representation formula of a function f with zero
average on a metric ball in terms of the norm of its X-gradient | X f|. In
fact, it is possible to prove that the (1,1)-Poincaré inequality associated
with X is equivalent to such a formula. This result was proved first under
supplementary hypotheses in [47] and then in the present sharp form in [58]
and [80].

Theorem 2.17. Let (S, 0,m) be a complete metric measure space, where o
is a distance in S and m is a doubling Borel measure in S. Suppose that
(S,0) has the segment property, i.e., suppose that for each pair of points
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x,y € S there exists a continuous curve 7y connecting x and y such that
o(y(t),v(s)) = |t — s|. Let u, v be locally doubling measures on (S, 0, m)
with doubling constants A, and A,, respectively. Let Uy = U(xg,r0) be
a ball and let f,g € L*(Uy) be given functions. Assume that there evists
P > 0 such that, for all balls U C Uy,

1 B 5 r(U)
W/UU fuuld SPN(U)/U\QMIM

where fu, = ﬁg) fU fflvu = fU fdv. If there is a constant ¥ > 0 such that
for all balls U, U with U C U C Uy,
p(0)  r(O)

— = = ~

pv) )

then for (dv)-a.e. x € Uy,

o(z,y)
<C o Ig(y)l—u(U(% o)) du(y),

where C' is a geometric constant depending on P, A,,, A, .

Asitis provedin [58], S =R™", p=d,m = pu=v = L" and g = | X f| sat-
isfy the assumptions of Theorem 2.17, and then the following representation
formula holds:

|f($) - on,V

Iﬂ@—ﬁMSO/

Ug

X1l ABY) 4 forae wely (1)

(z,d(z,y))|

Once (4) is proved, then Theorem 2.17 can be derived by means of LP—L? con-
tinuity theorems for singular integral operators of potential type, as in [43].

A typical example of this kind of (weak type) continuity results is provided
by Theorem 4.1 in [43] that reads as follows.

Theorem 2.18. Let (X, g,dv) be a space of homogeneous type in the sense
of [22], i.e. a metric space (X, 9) endowed with a doubling Radon measure v,
and let k be the quasi-metric constant of 9. Let K be a non-negative kernel
and put
Tf@)= | K(z,y)f(y)dv(y),
Uo

where f > 0 and Uy = U(xg,70) is a fixed ball. Assume for simplicity that
v({z}) =0 for x € Uy and that v(U(x,r)) is a continuous function of r for
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z el If1<p<q< oo andd, v are weights (i.e. non-negative locally
summable functions), then

=g q
LIl £l
/ ady <o PMlz,wn ) o
Uon{T >t} t
1

sup (qu(z,r) ﬂdy) ' (on\U(ac,r) k(ajv y)plﬁ(y)iﬁdy(y)> Tifp>1

with

L= .
- q ~ 1 )
sup (fclU(w,T) Ud’/) (ess SupyGUo\U(z,r) K(SL’, y)@)v pr = ]-7

where the sup is taken over all x, r such that U(x,r) C caUy and x € Uy,
and the esssup is taken with respect to the measure vdv. The constants c;
and co can be written explicitly and depend only on the constant k.

In fact, Theorem 2.18 provides only a weak type continuity estimate, but
here we can pass from the weak type estimate to the strong type one, thanks
to the fact that the right-hand side of the Poincaré inequality contains a first
order differential operator. Indeed, the main property we need to pass from
weak type estimates to strong type estimates is a certain “stability” property
under truncations. This idea was originally introduced in [75] and exploited
in [111], [42], [46] and [8]. We refer to [48] and [49] for a detailed presentation
of this technique.

The proof of the (1,1)-Poincaré inequality relies on the lifting technique
for vector fields introduced by L. ROTSCHILD and E. M. STEIN in [108], but
it becomes particularly simple and elegant in the setting of groups, when X is
a complete system of left invariant vector fields in a Carnot group identified
with R™ through the exponential map. The notion of the Carnot group,
together with all related definitions and properties, will be the subject of
Section 4. The following proof is due to N. TH. VAROPOULOS ([115]); the
presented form is taken from [96].

Proof of (1,1)-Poincaré inequality for the Carnot groups. Let a structure
of Carnot group induced by X = (X1,...,X,,) be given on R™. The group
product of x,y € R™ will be denoted by x - y. We shall see below that
|U(z,7)| = kr? for all x € R® and r > 0 with k = |U(0, 1)|.

Fix U = U(xg,r) with zg € R™ and r > 0 and let u € C§(R™). Notice
that

/U|u(x) —uy|dx :/U

]{] (u(x) — uly)) dy| do < ]{] /U [u() — u(y)| dedy.
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In the inner integral, we perform the change of variable z = y~! - z, which

has Jacobian identically 1, getting

e —volda < f [ -2 - )l deay
< f [ a2~ utw)ld=dy

Indeed, if y € U, then y=1-U C U(0,2r).
Let now z € U(0,2r) be fixed, let 6 = d(0,z) and take a geodesic

v :]0,6] — R™ such that v(0) = 0 and v(6) = z with § < 2r. For some
h € L*(0,6)™

:ihj(t)Xj('y(t)) and |h(t) <1 for ace. t € [0,4).

j=1

u(y - /*uy y(t)) dt
- [ (puty-,
- [ (puty-,

Then

(v (1)) dt

Sl

hi(0)X;(y - (1)) dt

NE

1

<.
Il

4
= | xuty- 5. ar

We used the left invariance of X1,..., X,,. As hoo < 1, we obtain

4
[ @) —uldz < f [ [ ixutye (o] duazay
U uJu,2r) Jo
o
S/ / ][|Xu(y"y(t))|dydzdt.
o Ju,2r Ju

The curve v depends on z. Since v(t) € U(0,2r) for all ¢t € [0,6], if y € U,
then y - v(t) € 3U = U(xg,3r). Indeed,

d(y - (), o) < d(y - (1), y) +d(y, o) = d((t),0) + d(y, o) < 3r.



88 BRUNO FRANCHI

Thus we get

|u(z) — uy|de < / / / | Xu(y)| dydzdt
»/U |U (0,7)] U(0,2r) J3U

|U (0, 2r)]
|U(0,r)]

:7'2Q+1/ | Xu(y)| dy.
3U

Finally, we can get rid of the constant 3 in the last integral f3U | Xu(y)| dy by
means of an argument that goes back to J. BOMAN and that was generalized
to the setting of doubling metric spaces in [43]. It relies on the fact that —
as proved in [43] — metric balls are Boman domains, as they will be defined
below. O

From the Poincaré inequality in Theorem 2.14 we can derive the following
Rellich-type theorem.

< 2r |Xu( )| dy

Theorem 2.19. Suppose that the assumptions of Theorem 2.14 hold and
let Q C R™ be a bounded open set. Then the seminorm

1/p
lul o, = (/ | Xu|? dz)
WiP(Q) Q

is a norm in WP (). Moreover WyP(Q) is compactly embedded in L9(5).

Another interesting consequence of the Poincaré inequality for Hérman-
der’s vector fields is that the associated Sobolev spaces fit in the general
setting of Sobolev spaces on metric spaces, as defined by P. HAJLASZ in
[65]. We refer the reader to [44].

2.5. Geometry of domains

This section is largely taken from [96]. We refer also to the exhaustive
bibliography of [96] for a detailed account of the different contributions to
this field.

We consider a metric space (M, d). A domain Q C M is a connected open
set. The metric space (M,d) will be said with geodesics if every couple of
point z,y € M can be connected by a continuous rectifiable (i.e. of finite
length) curve with a length d(z,y). By Theorem 2.7, Carnot-Carathéodory
distances yield a metric space with geodesics.

We want now to discuss the Poincaré inequality in open sets different from
balls. Clearly, not any open set admits a Poincaré inequality (as already
happens in the Euclidean setting), and the main issue consists of providing
a reasonable class of sets. Let us start with a few general definitions.
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Definition 2.20. Let (M, d) be a metric space. A bounded open set Q C M
is a John domain if there exist zy € 2 and C > 0 such that for every x € Q
there exists a continuous rectifiable curve parametrized by an arclength
~v:[0,T] — 2, T > 0, such that v(0) = z, v(T) = zo and

dist(y(¢); 092) > Ct. (5)

Definition 2.21. Let (M, d) be a metric space. A bounded open set Q C M
is a weak John domain if there exist zg € € and 0 < C < 1 such that for
every x € () there exists a continuous curve 7 : [0, 1] — € such that v(0) = z,
(1) = z¢ and

dist(y(t); 9Q) > Cd(y(t), z).

The following result is basically proved in [43] and provides a key tool in
the setting of Poincaré inequalities for Carnot-Carathéodory spaces.

Remark 2.22. If (M,d) is a metric space with geodesics, then every ball
U(zg,r), ©g € M and r > 0, is a John domain with the constant C' = 1
in (5).

Definition 2.23. Let (M, d) be a metric space. A set E C M satisfies the
interior (exterior) corkscrew condition if there exist ro > 0 and k > 1 such
that for every r, 0 < r < rg, and € OF there exists y € E (y € M \ E)
such that

% < dist(y;0F) and d(z,y) <r.

A set E satisfies the corkscrew condition if it satisfies both the interior and
the exterior corkscrew condition. The constant k will be called the corkscrew
constant of E.

Clearly, if 2 is a John domain, then it satisfies the interior corkscrew
condition.

Proposition 2.24. Let (M,d,u) be a doubling metric space with arcwise
connected balls. If E C M satisfies the interior corkscrew condition, then
there exist rg > 0 and C > 0 such that, for all x € OF and 0 < r < rg,

wENU(,r)) = CpU(z,T)).

Theorem 2.25. Let (M,d, ) be a doubling metric space with geodesics.
Then Q@ C M is a weak John domain if and only if it is a John domain.
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Corollary 2.26. Suppose that X is a system of bounded Lipschitz contin-
uous vector fields in R™ satisfying (H1) and (H2). Then Q C R™ is a weak
John domain for the Carnot-Carathéodory distance d if and only if it is
a John domain for d.

The proof of Theorem 2.25 can be found in [67, Proposition 9.6] and for
the Euclidean case in [89, Lemma 2.7].

Definition 2.27. An open set 2 C M is a Boman domain if there exists a
covering F of Q with balls and there exist N > 1, A > 1 and v > 1 such that

(i) AU CQforallU € F,
(i) D perlav(z) < N forall z € Q,
(iii) there exists Uy € F such that for any U € F there exist Uy, ..., Uy
such that Uy = U, u(U; N U;y1) > N~ tmax{p(U;), u(U;y1)} and
UcvU,; foralli=0,1,... k.

Under additional hypotheses on the metric space the definition of John
domain is equivalent to that of Boman domain (see [15] and [60, Section 6]).

Theorem 2.28. Let (M, d, 1) be a doubling metric space. If Q C M, Q # M
is a weak John domain, then it is a Boman domain.

Theorem 2.29. Let (M,d, 1) be a doubling metric space with geodesics. If
Q) C M is a Boman domain, then it is a John domain.

Corollary 2.30. Suppose that X is a system of bounded Lipschitz contin-
uous vector fields in R™ satisfying (H1) and (H2). Then Q C R, Q # R",
is a John domain for the Carnot-Carathéodory distance d if and only if it is
a Boman domain for d. In particular, metric balls are Boman domains.

We can now state a Poincaré inequality for Boman (= John) domains
(see [46]).
Theorem 2.31. Let X be a family of vector fields satisfying Hormander’s
rank condition and let ) be a Boman (=John) domain. Suppose that the

balance condition of Theorem 2.14 holds for fized p and q and for any ball U
centered in a neighbourhood of Q with r(U) < rg, 1o < oo fized. Then

1/q 1/p
</ ffglqu> §09</ |Xf|pda:)
Q Q

with Cq independent of f.
If 1 <p < Q, we can always choose ¢ = p* := pQ/(Q — p) provided Q is
the homogeneous dimension of a compact neighbourhood of ).
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Sharp characterization of John domains with respect to families of vector
fields are given in [97] and [98].
Theorem 2.31 yields the following Rellich type theorem.

Theorem 2.32. Suppose that the assumptions of Theorem 2.31 hold.

(i) If 1<p<Q and1 < q< p*, then the embedding W1P(Q) — L(Q)
18 compact.

(i) If p > Q and q > 1, then the embedding W1P(Q) — L%(Q) is com-
pact.

3. BV SPACE

Let us remind now the notion of functions of bounded X-variation and recall
some of their properties (see [50] and [60]). Let  C R™ be an open set. We
set

F(Q;R™) :={p € CLR™) : p(x)| < 1, z € Q.

The space BVx (1) is the set of functions f € L'(€) such that

IXFI@ = s [ fla)div (o)) do < oc.
pEF(QR™) JQ

The space BVx 10c(€2) is the set of functions belonging to BVx (U) for each
open set U CC Q.
Observe that if f € W)lﬁ,1 (), then

loc

| axsi= [ ixsda.

A measurable set E C R" is of locally finite X-perimeter in Q (or is an
X-Caccioppoli set) if the indicatrix function 1 € BVx 10c(€2), namely, if

|0E|x (U) := [ X1p[|(U) < o0 (6)

for every open set U CC Q.

For each f € BVx(f2) the functional X f can be extended to the whole
space C§(£;R™). We keep calling Xu such an extension. By means of the
Riesz representation theorem, one can prove that if f € BVx joc(£2), then
IXf|l is a Radon measure on Q (see [36, 2.2.5]). Moreover, the following
two propositions hold (see [50] and [19], respectively).
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Proposition 3.1 (lower semicontinuity). Let f, fr € L'(Q), k € N, be
such that fy — f in LY(2). Then

timinf | X £i(2) > |1X£1/(2).

Proposition 3.2. If E is an X -Caccioppoli set with C' boundary, then the
X -perimeter has the following representation:

0Ex (2) = /amz (Z(Xj7n>2)1/2d7{"—1.

J
Here n(z) is the Euclidean unit outward normal to E and H* is the Fuclidean
s-dimensional Hausdorff measure.

Theorem 3.3 (structure of BVy functions). Let f € BVx(Q2) and write
w=||Xf|. There exists a p-measurable function oy : @ — R™ such that
lof| =1 p-almost everywhere and

/ﬂmMAme=/wwnmww
Q Q

for all p € F(Q;R™).

When f = 1g in Theorem 3.3, then we call X-generalized inner normal
of F in € the vector

vp(z) = —o1,(x).

As for the Sobolev spaces W)l(’p, 1 < p < o0, the space BVx can be
defined as the domain of a relaxed functional. In particular, this shows that
our space BV fits into the setting of BV spaces in metric spaces introduced
by M. MIRANDA JR. in [91] and L. AMBROSIO in [1].

To this end, let us state preliminarily an approximation theorem in BVx
that is the exact counterpart of the corresponding result for usual BV func-
tions proved by G. ANZELLOTTI and M. GIAQUINTA in [6]. The following
result is proved in [50, Theorem 2.2.2].

Theorem 3.4. Let u € BVx(Q). Then there exists a sequence (up), C
C§°(Q) such that

Jim =l =0

lim /dHthII:/ d|| Xul|.
h—+oco Q Q
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Moreover, we have (cf. [50, Corollary 2.2.3]):
Corollary 3.5. For u € LY(Q) we define

/\/1+|Xu|2:sup{/(cp—&—udivxw) dx :
Q Q

(,0) € CR(QLR X R™), Jp()? + (@) < 1},

Then the following facts hold:
(i) JodlXu| < [o 1+ [Xu]? <|Q+ [, d|Xu| for every u e L'(9),
JoV1+|Xul?2 = [ /14 |Xu(z)|>dx for every u € W)l(’;lloc(Q).

(ii) Let (up)n, u € LY(Q) be such that up, — u in LY(Q). Then
/ V1+][Xu)2 < li}%ninf/ V14 | Xup|?
Q —o Jo

(iii) Let w € BV()). Then there exists a sequence (up)n in CH(2) N
BVx () such that

up — u in LYQ) and /\/1+|th|2d;v—>/\/1+|Xu|2.
Q Q

Thanks to the above approximation theorem (Theorem 3.4), we can pass
to the limit in the Poincaré inequality of Theorem 2.14 and we obtain an in-
trinsic isoperimetric inequality. This result is proved in [60] but appears also
in a slightly less general form in [46] (see also [42]). However, in the setting
of the Heisenberg group (see below), a (different but a posteriori equivalent,
by Theorem 5.7) isoperimetric inequality was proved by P. PANSU in [104]
(see also [102]).

Theorem 3.6 (isoperimetric inequality). Let X be a system of smooth
vector fields satisfying Hormander’s rank condition. Let 1 < q < oo be such
that the following balance condition holds:

=1y ~
(0 (10" o 17
r(U)\|U] U
for all balls 17, U such that U C U. Then

r(U)

min{|E N0, [(R"\ B) n QYD < g

|0E|x ()

with C independent of E.
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A similar result with balls replaced by John (=Boman) domains can be
analogously derived from Theorem 2.31.

A coarea formula for vector fields has been proved in [61], [50], [83], [87],
[84] and [99]. A similar coarea formula in the setting of metric spaces has
been proved also in [3] and [91]. In the coarea formula a solid integral is
expressed as a superposition of surface integrals and the integration measure
is the perimeter of the boundary of the level sets of a Lipschitz function. The
following statement follows that of [96].

Theorem 3.7. Let Xi,..., X, € Lip;,.(R™;R™) and let @ C R™ be an open
set. If f € BVx(Q), then

+oo
IX A = / OB x(9) dr,

where By, = {z € Q: f(z) > t}.
Moreover, if (H1) holds, f € Lip(Q,d) and u € L*(2), then

—+oo
/u|Xf\dx:/ (/ ud\aEt|X) dt.
Q —00 {zeQ: f(x)=t}

Finally, we recall that from the approximation result and the coarea for-
mula we get the following approximation result for bounded subsets of R™
of finite X-perimeter.

Corollary 3.8. Let E be a bounded subset of R™ of finite X-perimeter.
Then E can be approximated by a sequence of C™° sets Ey, such that

[ —telde o, [ apxig |~ [ djxig).
Rn R™ R™

Let now f : 2 x R™ — [0,00) be a Borel function satisfying (1). We
denote by f°° the recession function of f,i.e. f*° : Q x R™ — [0, 00) and

f(x,n) = li%l+ fz,n/t)t for every x € Q, n € R™,
t—

and by f the function f: Q x R™ x [0,00) — [0, 00) defined by

_ [ flxn/t)t, t>0
f(x’n7t) ._{ foc(x’n)7 t:O'
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Moreover, if p is a m-vector-valued Radon measure, let us set

i@ = [ s ooy dot [ (ol @)l ®)

where pu =[] dz + [u]s is the Lebesgue decomposition of u in its absolutely
continuous and singular parts with respect to the Lebesgue measure. As
dlp]s
df[p]s|
to |[p]s| and the density of [u], dx with the respect to the Lebesgue measure.

The following semicontinuity and continuity properties of the functional
(8) on the set of m-vector-valued Radon measures are extensions of the well-
known results proved by YU. G. RESCHETNYAK in [107] (for a proof of these
versions see the appendix of [82] or Theorems 4.4 and 4.6 in [32]).

Theorem 3.9. Let f: Q x R™ — [0,00) be a Borel function satisfying (1)
and assume that the function f defined in (7) is lower semicontinuous. Then,
for every p € M(Q,R™) and (pup)n C M(Q;R™) with pp, — p weakly in

M(Q;R™),
[ 16 < tgint [ o),

Theorem 3.10. Let © be a bounded open subset of R™ and let f : X
R™ — [0,00) be a Borel function verifying (1) and (2) with p = 1. Let us
suppose that the function f defined in (7) is continuous. Then, for every
we MEQR™) and (un)n C M(Q;R™) with

wn — p weakly in M(Q;R™)  and /\/1+|uh\2—>/\/1+|u\2,
Q Q

it follows
dmn [ ) = [t

We are now in position to state the characterization result for the re-
laxed functional F}, which extends the well-known results for the classical

Euclidean case, i.e. when X = (8%1’ R 82 )

Theorem 3.11. Let Q) be a bounded open subset of R™ and let f : QxR™ —
[0,00) be a Borel function verifying (1) and (2) with p = 1. Let us suppose
that the function f defined in (7) is continuous. Then

() dOIl’lFl = {u S Ll(Q) Fl( ) < OO} BVX(Q),

(ii) = Jo, f(z, Xu) for every u € BVx ().

usual, (z) and [p],(x) are respectively the density of [u]s with respect
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Remark 3.12. If f satisfies (1), then the function f defined in (7) is con-
tinuous if and only if for every x,z9 € @ and for every € > 0 there exists
d = d(xo,€) > 0 such that

[z —xo| <0 = [f(z,n) = fzo,m)| <& (1+n]) for every n € R™.

By Theorem 3.11 and Remark 3.12, we get the following characterization
of the relaxed area functional.

Corollary 3.13. Let Q be a bounded open subset of R™. Then, for every
u € BVy (Q),

/,/1+|Xu|2:/ \/1+|[Xu]a(x)|2dx+/d|[Xu]5\.
Q Q Q

The original definition of the perimeter given by E. DE GIORGI in [30],
[31] involves an approximation by means of polyhedral hypersurfaces. It may
be surprising to see that the same result holds for the X-perimeter, even if
there are no intrinsic polyhedral hypersurfaces. This result has been proved
by F. MONTEFALCONE in [94].

Definition 3.14. Let A(n,n — 1) denote the set of (n — 1)-dimensional
affine manifolds (i.e. the hyperplanes) in R™. We say that ¥ is a Euclidean
polyhedral domain if there exist x € N and J := {J;}{.; € A(n,n—1) such
that

B C | a

i=1
By P" we denote the set of all Euclidean polyhedral domains in R™ .
The following approximation result holds.

Theorem 3.15. Let X be a family of Lipschitz continuous vector fields. Let
E CR™ with |E| < co. Then there exists a family ¥ of polyhedral domains,
¥ :={%;}ien € P", such that

lim|[1s, =1plei@) =0, lim[[0%|x(Q) = [0E] x ()

for any open set Q C R™.

When a family of Lipschitz continuous vector fields X = (X1,...,X,,) is
given, we can define the j-th partial perimeter ||0F| x, of a set E C R™ as
the perimeter associated with the family (X;) given by the vector field X
alone. The following characterization of X-Caccioppoli sets is proved in [94].
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Theorem 3.16. Let X, E and Q be as in Theorem 3.15. If for each
j=1,...,m there exist {X]}ien € P" and A; < oo such that

lim [[1g; = 1p{1@ =0,

sup [|0%7 | x, (Q) < A;,
ieN
then E has finite X -perimeter in Q and there exists {3;}ien € P™ such that

h{n I1s, — 1gl1@) =0,

lim [9%4] x () = 91| (2).

The perimeter appears in the Euclidean setting also in connection with
the notion of the Minkowski content, i.e., roughly speaking, the derivative
with respect to € of the volume of an e-neighbourhood of the boundary.
It is well known that in the Euclidean setting the two notions coincide for
sufficiently regular sets. A similar result for the X-perimeter has been proved
by R. MONTI and F. SERRA CASSANO in [99].

Let E C R™ be a bounded open set and let X = (X1, ..., X,,) be a family
of smooth vector fields. Suppose that (H1) and (H2) hold and let d be the
Carnot-Carathéodory distance associated with X1,...,X,,. Set dogp(z) =
infycor d(x,y), and for r > 0 define the tubular neighbourhood I, x (OF) =
{x € R" : dgp(x) < r}. The upper and lower Minkowski content of OF in
an open set () C R" are respectively defined by

M3 (0E)(2) := limsup W’
r—Q+ 2r
X .. L x(OE)N Q|
F(OB)(@) = limuf =2

The following theorem states that if F is regular and €2 has regular bound-

ary, then
My (9E)(Q) = My (0E)(%),

and this common value, which we shall call the X -Minkowski content of OF
in  and denote by Mx (0F)(f2), coincides with the X-perimeter of E in
as defined in (6). The proof is based on a Riemannian approximation of the
C-C space (R",d). Here H"~! stands for the (n — 1)-dimensional Euclidean
Hausdorff measure.
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Theorem 3.17. Let Q C R"™ be an open set with C*° boundary or 2 = R™.
Let E C R™ be a bounded open set with C'*° boundary and suppose that
H"YOENON) = 0. Then M (0E)(Q) = My (0E)(Q) and, in addition,

Mx(OE)(Q) = |0 x ().

There is another important characterization of the X-perimeter of a set
E C R™ in terms of variational convergence (De Giorgi’s I'-convergence)
of “solid” integrals. In the Euclidean setting, this result is known in the
literature as Modica-Mortola’s convergence result.

This variational characterization has been extended to the X-perimeter
by R. MONTI and F. SERRA CASSANO in [99].

We recall first the definition of the I'-convergence (for a comprehensive
introduction see [27]).

Definition 3.18. Let (M,d) be a metric space and let F, F, : M —
[-00,+00], h € N. We say that F is the I-limit of the sequence (F})nen
and we write F = T'(M )—hlim F},, if the following conditions hold:

(i) If € M and xp, — =z, then F(z) < lihm inf Fy,(zp).

(ii) For every x € M there exists (zp)peny such that xp — 2 and
F(z) > limsup Fp(xp).
h—o0
First, in [99] the authors prove that the X-perimeter is the I'-limit of
a family of Riemannian perimeters, as the Carnot-Carathéodory distance is
the limit of Riemannian distances.
For ¢ > 0 define the new family X, = (X1,...,X,€01,...,0,). Let
Q) C R™ be an open set and define the functionals P, P. : L*(Q) — [0, +o0]
by
IOE|x (), if u=xg € BVx(Q)
P(u) = .
+00, otherwise,

and .
|0E x. (), ifu=xp € BVx. (Q)
P.(u) =

~+00, otherwise.

Let 5, — 0 and write P, = P.,. In the following theorem we prove that
the “elliptic-Riemannian” regularization of the perimeter I'-converges to the
perimeter.

Theorem 3.19. If Q2 C R” is a bounded open set with C*° boundary, then
P= F(Ll(Q))-hlim P,.
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Finally, fix a bounded open set Q C R™. For ¢ > 0 define the functionals
F,F.: LY(Q) — [0, +00] by

Fo(w { Jo el Xu? + W () dz, if ue Wy?(Q)
e\u) =
400, otherwise,

where W (u) = u?(1 — u)?, and

2CY||(9E’||X(Q)7 if’u:XE EBVX(Q)
F(u) = .
400, otherwise,

where a = fol VW (s)ds. Let e, — 0 and write Fj, := F,,.

Theorem 3.20. Suppose that Xi,...,X,, € C®(R™;R") satisfy the hy-
potheses (H1) and (H2). If Q@ C R™ is a bounded open set with a C*°

boundary, then
F = F(Ll(Q))-hlim F,.

4. CARNOT GROUPS

4.1. Definition and first properties

The present subsection is largely taken from [56] and [53] (see also [55]).
A Carnot group G of step k (see [38], [70], [99], [68], [103], [115] and [116]) is
a connected, simply connected Lie group whose Lie algebra g admits a step k
stratification, i.e., there exist linear subspaces V7, ..., Vy such that

where [V7,V;] is the subspace of g generated by the commutators [X,Y]
with X € V; and Y € V;. Let m; = dim(V;), i« = 1,...,k, and let h; =
mi+---+m; fori =1,...,k with hyp = 0 and, clearly, hy = n. Choose
a basis ey, ..., e, of g adapted to the stratification, i.e. such that

€h;_1+1,---,€n; is a base of V; for each j =1,... k.

Let X = X1,...,X, be the family of left invariant vector fields such that
Xi(0) = e;. Given (9), the subfamily X;,...,X,,, generates all the other
vector fields by commutations; we shall refer to Xi,...,X,,, as gener-
ating vector fields of the group. The exponential map is a one to one
map from g onto G, i.e., any p € G can be written in a unique way as
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p=exp(p1 X1+ -+ ppXy,). Using these exponential coordinates, we iden-
tify p with the n-tuple (p1,...,pn) € R"™ and we identify G with (R",-),
where the explicit expression of the group operation - is determined by
the Campbell-Hausdorff formula (see [38]) and some of its features are de-
scribed in the following Proposition 4.2. If p € G and i = 1,...,k, we
put p = (pn,_,41,---,Pn,) € R™i so that we can also identify p with
[p!,...,p*] € R™ x ... x R™k = R",

The subbundle of the tangent bundle T'G that is spanned by the vector
fields Xi,..., X, plays a particularly important role in the theory, it is
called the horizontal bundle HG; the fibers of HG are

HG, =span{X;i(z),..., Xm,(x)}, z€G.

A subriemannian structure is defined on G, endowing each fiber of HG

with a scalar product (-,-), and with a norm |- |, that make the basis
Xi(x),...,Xm, (z) an orthonormal basis. That is, if v = >."" v; X;(z) =
(U1, ., Umy) and w = > w; X (z) = (wi,...,wy,) are in HG,, then
(0,0} 1= X7 vy and [of? 1= (0,0)..

The sections of HG are called horizontal sections, a vector of HG, is
a horizontal vector, while any vector in T'G,, that is not horizontal is a verti-
cal vector. Each horizontal section is identified by its canonical coordinates
with respect to this moving frame X (x),..., X, (z). This way, a horizon-
tal section ¢ is identified with a function ¢ = (¢1,...,pm,) : R® — R™,
When dealing with two such sections ¢ and ¥ whose argument is not ex-
plicitly written, we drop the index x in the scalar product writing (i, ¢) for
(¥(z), (x))z. The same convention is adopted for the norm.

Two important families of automorphism of G are the so-called intrinsic
translations and the intrinsic dilations of G. For any x € G, the (left)
translation 7, : G — G is defined as

2 TRz =T 2.
For any A\ > 0, the dilation §) : G — G, is defined as
a1, ymn) = (A2, .., Ay, (10)

where a; € N is called the homogeneity of the variable x; in G (see [39,
Chapter 1]) and is defined as

o =1 whenever h;_1 +1 <5 < hy,

SOthatl:alz"':aml<am1+1:2§"‘§an:k~
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The simplest example of a Carnot group is provided by the Heisenberg
group H" = C" x R. We denote the points of H" by P = [2,t] = [z + iy, t],
ze€C" z,yeR" teR. If P=[z1,Q =[¢,7] € H" and r > 0, following
the notations of [114], where the reader can find an exhaustive introduction
to the Heisenberg group, we define the group operation

P-Q:=[z+(t+7+23m(20)]
and the family of non-isotropic dilations
6.(P) := [rz,r?t].

The Lie algebra of left invariant vector fields in H" is given by

0 0
Xi=—+2—, j=1,...
J 6$J+ y_]at’ J ) > T,
0 0
Y= — —22;,— =1,...
7 ayj 'r_]ata J ) » T,
0
T=_—
ot’

the only non-trivial commutator relations being
(X,.Y;]=—4T, j=1,...,n.

Thus the vector fields Xi,...,X,,Y1,...,Y, satisfy Hormander’s rank
condition and H" is a step 2 Carnot group, the stratification of the Lie
algebra of left invariant vector fields being given by

Vi =span{Xy,...,X,,Y1,...,Y,} and Vi =span{T}.

An alternative approach to Carnot groups is given by A. BONFIGLIOLI
and F. UGuzzoNI in [14] and by A. BONFIGLIOLI in [13]. Let us sketch it.
Basically, it is an alternative presentation that corresponds to the standard
definition when the last one is seen in a particular coordinate system (the
exponential coordinates).

Theorem 4.1. If z,y € R", let (z,y) — x oy be a multiplication in R™.
Assume that the origin is the identity element and G = (R™, 0) is a Lie group,
i.e., the multiplication and the inverse x — x~1 : R® — R"™ operations are
smooth maps.
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Assume also that G is a homogenous group (see [114, (13.5)]) in the fol-
lowing sense: we write n = my + mo + --- + my and, given x € R, we put
= [zh,22,... 2] with 27 € R™ for j = 1,...,k. Then assume that the
family of dilations

oz = Azt \222 . \FLR], A >0

forms a group of automorphisms of G, i.e., dx(x oy) = dax 0 Iry.

Let g denote the Lie algebra of G, i.e. the class of left invariant vector
fields on G, and take a basis X1,...,Xn of g such that X;(0) = D;, j =
1,...,n (left invariant vector fields are fully determined by their value at the
origin).

Assume that the Lie algebra generated by X1, ..., X,,, coincides with g.
Then G = (R™,0) is a Carnot group of step k with my generators.

In the following proposition, we collect some more or less elementary
properties of the group operation and of the canonical vector fields.

Proposition 4.2. The group product has the form
z-y=z+y+Qz,y), =zy€eR",

where @ = (Q1,...,Q,) : R* x R" — R" and each Q; is a homogeneous
polynomial of degree c; with respect to the intrinsic dilations of G defined
in (10), i.e.,

Qi(6Ax7 6/\y) =" Qi(xvy)7 T,y € G.

Moreover, again for all z,y € G,

Ql(xay) == le(ﬂ%y) = 07
Qj(xay) = Qj(xla'"7xh71_17y17"'7yh7t_1)7 1< < k; ] < h1

Proof. For the first part see [114], Chapter 12, Section 5. The last
statement follows the homogeneity of Q;. O

Note that it follows from Proposition 4.2 that
oz -6y = 0a(7 - y)

and that the inverse 2! of an element z = (x1,...,7,) € (R",-) has the
form

el = (~zy,.. . —2n)

(see [39, Proposition 2.1] and also [70]).
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Proposition 4.3. The vector fields X; have polynomial coefficients and if
he—1 <j<hg, 1 <l<E, then

Xj(@)=0;+ ) a4ij(2)d;,

i>hy

where g; j(z) = gzgl (x,y)’y_o so that if he—1 < j < hy, then g;;(x) =
] -

¢ij(z1,...,xn,_,) and g; ;(0) = 0.

By (9), the rank of the Lie algebra generated by Xi,..., X, is n; hence
X = (Xq,...,X.,) is a system of smooth vector fields satisfying Hérman-
der’s condition.

Several distances equivalent to d have been used in the literature. Later
on, we shall use the following one, that can also be computed explicitly,

doo (,) = doo(y~ " - 2,0),

where, if p = [p',...,pF] € R™ x ... x R™ = R", then

Ny
doo(p, 0) = 1 &5 0" [, (11)
Here e; = 1 and &3, ...,¢; € (0,1) are suitable positive constants depending

on the group structure. As above, we shall denote by Us(p, ) and Beo(p, )
respectively the open and closed balls associated with d.

Both the Carnot-Carathéodory metric d and the metric do, are well-
behaved with respect to left translations and dilations, i.e.,

dOO(Z R y) = doo(a:,y), doo(é,\(x),(h(y)) = )‘doo(xay)

for z,y,z € G and A > 0.

Related with these distances, different Hausdorff measures, obtained by
Carathéodory construction as in [36, Section 2.10.2], are used in this paper:
we denote by H™ the m-dimensional Hausdorff measure obtained from the
Euclidean distance in R” ~ G, by H?"* the m-dimensional Hausdorff measure
obtained from the distance d in G, and by H7, the m-dimensional Hausdorff
measure obtained from the distance do, in G. Analogously, ™, S7* and 82
denote the corresponding spherical Hausdorff measures.
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The integer
n k
Q=Y a;=) idimV; (12)
j=1 i=1

is the homogeneous dimension of G. It is also the Hausdorff dimension
of R™ with respect to the Carnot-Carathéodory distance d. For this state-
ment see [92]. However, in the setting of Carnot groups, this property follows
easily from (13) below. Indeed, (13) implies that the Lebesgue measure is
Q-Ahlfors-David regular, and hence that it is equivalent to HS (for instance
by [36, 2.10-2.17 and 2.10-2.18]).

The n-dimensional Lebesgue measure L™ is the Haar measure of the
group G. Hence, if E C R"™ is measurable, then £L"(z - E) = L"(E) for
all z € G. Moreover, if A > 0, then £"(6(E)) = A?L"(E). We explicitly
observe that

LU (p,r)) =r°L"(U(p,1)) = rL™(U(0,1)). (13)

4.2. Calculus in Carnot groups

This section is entirely taken from [56]. The following definitions and re-
sults about intrinsic differentiability in Carnot groups are basically due to
P. PaNsu ([103]) or are inspired by his ideas.

A map L: G — R is G-linear if it is a homomorphism from G = (R",-)
to (R, +) and if it is positively homogeneous of degree 1 with respect to the
dilations of G, i.e., L(dxz) = ALz for A > 0 and = € G. The R-linear set of
G-linear functionals G — R is indicated as Lg and it is endowed with the
norm

L] ¢ == sup{|L(p)| : de(p,0) < 1}.

Given a basis X1,...,X,, all G-linear maps are represented as follows.
Proposition 4.4. A map L : G — R is G-linear if and only if there is
a = (a,...,am,) € R™ such that, if x = (x1,...,2,) € G, then L(z) =
S a.

Definition 4.5. Let  be an open set in G. The function f : Q — R is

Pansu-differentiable (differentiable in the sense of Pansu: see [103] and [72])
at x¢ if there is a G-linear map L such that

i @) = (o) = Lz - 2)

T—To d(l‘,xo) =0
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Remark 4.6. The above definition is equivalent to the following one: there
exists a homomorphism L from G to (R, +) such that

ST (0av) — f(wo)
,\11»12[)5r : A = =L(@)

uniformly with respect to v belonging to compact sets in G. In particular,
L is unique and we shall write L = dg f(z¢). Notice that this definition of
the differential depends only on G and not on the particular choice of the
canonical generating vector fields. Indeed, any two Carnot-Carathéodory
distances induced by different choices of (equivalent) scalar products in HG
are equivalent as distances.

Definition 4.7. If Q is an open set in G, we denote by CA(Q) the set of
continuous real functions in ) such that dgf : Q@ — Lg is continuous in 2.
Moreover, we shall denote by CL(£2, HG) the set of all sections ¢ of HG
whose canonical coordinates ¢; € CL(Q) for j =1,...,my.

Remark 4.8. We recall that C*(2) C C4(Q2) and that the inclusion may
be strict, for an example see Remark 6 in [53].

We say that f is differentiable along X;, j =1,...,mq, at xg if the map
X — f(7z,(0xe;)) is differentiable at A = 0, where e; is the j-th vector of the
canonical basis of R™.

Once a generating family of vector fields X1, ..., X,,, is fixed, we define,
for any function f : G — R for which the partial derivatives X f exist, the
horizontal gradient of f, denoted by V¢ f, as the horizontal section

mi

Vel =) (X:f)Xi,

i=1

whose coordinates are (X1 f,..., X, f). Moreover, if ¢ = (¢1,...,0m,) is
a horizontal section such that X;¢; € L{ (G) for j = 1,...,m;, we define
divg ¢ as the real valued function

ma mi
dive(p) == =Y X7o; = > X;p
j=1 j=1

(see also Section 2.1).

Remark 4.9. The notation we have used for the gradient in a group is
partially imprecise; indeed, Vg f really depends on the choice of the basis
Xi,..., X, If we choose a different base, say Yi,...,Y,,,, then, in general,



106 BRUNO FRANCHI

DX f)Xs # (Y f)Y;. Only if each of the two bases is orthonormal with
respect to the scalar product induced by the other one, we have that

Y (X)X =D (Vif)Ya.

K2 2

On the contrary, the notation divg used for the divergence is correct. Indeed,
divg is an intrinsic notion and it can be computed using the previous formula
for any fixed generating family.

Finally, if x = (21,...,2,) € R" =G and zy € G are given, we set
mi
g (@) = Y ;X5 (o).
j=1

The map z¢ — 7, () is a smooth section of HG.

Proposition 4.10. If f is Pansu-differentiable at xq, then it is differen-
tiable along X; at xo for j =1,...,m; and

de(ifo)(U) = <va7 Txo (U)>5L’O .

For a proof see [99, Remark 3.3].

The following proposition can be proved via an approximation argument
as in [53, Proposition 5.8].
Proposition 4.11. A continuous function belongs to CL(SY) if and only if

its distributional derivatives X;f are continuous in Q for j=1,...,m1.

Remark 4.12. As we observed, both Vg and the Carnot-Carathéodory
distance d depend on the choice of the canonical generating family {X;}.
But the eikonal equation connecting the two notions

|V(;,d(0,$c)| =1
holds for L™a.e. x € G and for the whole generating family (see Theorem
3.1 in [99]).
An extension theorem of Whitney type holds:

Theorem 4.13 (Whitney extension theorem). Let F C G be a closed
set, let f : F — R be a continuous real function and let k : F — HG be
continuous horizontal section. We set

f(@) = fly) = (k(y),my(y~" - x)),
d(y, z)

R(z,y) :==
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and, if K C F is a compact set,
ok (6) == sup{|R(z,y)| : x,y € K, 0 < d(x,y) < d}.

Assume that ok (6) — 0 as 6 — 0 for every compact set K C F'.
Then there exists f : G — R, f € CL(G), such that

4.3. BV functions and finite perimeter sets

Since with any Carnot group we can associate a Hormander’s family of
smooth vector fields, all our previous definitions and results still hold in
this setting. In particular, within a Carnot group, we can define BV spaces
in a form equivalent to that of the previous section as follows.
If Q2 C R” is open, the space of compactly supported smooth sections of
HG is denoted by C§°(2, HG). If k € N, CE(Q, HG) is defined analogously.
The space BVg(Q) is the set of functions f € L*(Q) such that

176 £11(©) = supf /Q f(@) dive o(a) do -

(14)
@ € CY(Q,HE), |p@)l: <1} < oo.

The space BVg 10c(€2) is the set of functions belonging to BVg(U) for each
open set U CC 2. Notice the use of the intrinsic fiber norm inside the
previous definition.

It is easy to see that f € BVg(Q) if and only if f € BVx(Q), where X is
a family of vector fields that generate the horizontal layer.

In the setting of Carnot groups, the structure theorem for BV functions
reads as follows.

Theorem 4.14 (structure of BVg functions). If f € BVg 10c(S2), then
IV fll is a Radon measure on 2. Moreover, there exists a ||V f|-measur-
able horizontal section oy : Q — HG such that |o¢(z)|, = 1 for | Vg f]|-a.e.
x € Q and

/ £ () dive p(z) d = / (207 Ve
Q Q

for all ¢ € C3(Q, HG). Finally, the notion of gradient Vg can be extended
from regular functions to functions f € BVg defining Vg f as the vector
valued measure

Vef = —o;L||Vafll = (=) LIVeSl - o —(0f)m LIVef),

where (of); are the components of oy with respect to the moving base X;.
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It is well known that the usefulness of these definitions for the Calculus
of Variations relies mainly in the validity of the two following theorems. In
the context of subriemannian geometries they are proved respectively in [60]
and [50].

Theorem 4.15 (compactness). The space BVg10c(G) is compactly em-
bedded in LY (G) for 1 <p < %, where Q, defined in (12), is the homo-
geneous dimension of G.

Theorem 4.16 (lower semicontinuity). Let f, fr € L'(Q), k € N, be
such that fi — f in L*(Q). Then

liminf [Ve fi[[(2) 2 [[Va FII(2).

Definition 4.17. A measurable set E C R" is of locally finite G-perimeter
in Q (or is a G-Caccioppoli set) if the characteristic function 15 € BVg 10c(£2).
In this case we call the perimeter of E the measure

0E|c = [[Vels]
and we call the (generalized inward) G-normal to OF in Q the vector
vp(r) = —o1,(x). (15)

Remark 4.18. This remark is analogous to Remark 4.9. The symbol |0E|g
is somehow incorrect; indeed, the value of the G-perimeter depends on the
choice of the generating vector fields X;,...,X,,,, precisely through the
bound |p| < 1in (14). The values of the perimeters induced by two different
families of generating vector fields coincide only if the two families

are mutually orthonormal; nevertheless, the perimeters induced by differ-
ent families are equivalent as measures and, as a consequence, the notion of
being a G-Caccioppoli set is an intrinsic one depending only on the group G.

Remark 4.19. The G-perimeter is invariant under group translations, i.e.,
|OE|g(A) = |0(1pE)|g(1pA) for all p € G and for any Borel set A C G.

Indeed, divg is invariant under group translations and the Jacobian deter-
minant of 7, : G — G equals 1. Moreover, the G-perimeter is homogeneous
of degree @@ — 1 with respect to the dilations of the group, i.e.,

10(02E)|c(A) = A\1=C|0F|c(6xA) for any Borel set A C G;

also this fact is elementary and can be proved by change of variables in
formula (14).
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By (13), the isoperimetric inequality in a Carnot group takes the following
form ([60]).

Proposition 4.20 (isoperimetric inequality). There is a positive con-
stant c; > 0 such that for any G-Caccioppoli set E, for all x € G andr > 0,

(min{L"(ENU(z,r)), L(E°NU (=, r))})(Q_l)/Q < ¢1|0E|c(U(z,r))

and
(min{£™(E), £"(E)}) 9V < ¢;|0E|c(R™).

Isoperimetric sets have been recently studied in [74].

5. REGULAR HYPERSURFACES IN CARNOT GROUPS AND RECTIFIABILITY

5.1. Regular hypersurfaces

This section relies totally on [54]. We define G-regular hypersurfaces in
a Carnot group G, mimicking Definition 6.1 in [53], as non critical level sets
of functions in C}(R™,R).

Definition 5.1 (G-regular hypersurfaces). Let G be a Carnot group.
We shall say that S C G is a G-regular hypersurface if for every x € S there
exist a neighbourhood U of z and a function f € C%(U) such that

(i) SNnU={yelU: f(y) =0},
(ii) Ve f(y) #0 for y € Y.

G-regular surfaces have a unique tangent plane at each point. This follows
from a Taylor formula for functions in C} that is basically proved in [103].

Proposition 5.2. If f € CL(U(p,7)), then

m

f@) = f(p)+ > (X, 1) p); —p;) +o(d(x,p)) asz—p.

j=1

If S={z: f(z) =0} C G is a G-regular hypersurface, then the tangent
group TES(x) to S at x is

T2S(z) == {1} = (v1,...,0,) €G: inf(x)vj = O}.
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By Proposition 4.2, T{S(x) is a proper subgroup of G. We can define the
tangent plane to S at x as

TeS(z) = - TES(x).

We stress that this is a good definition. Indeed, the tangent plane does not
depend on the particular function f defining the surface S because of point
(iii) of the Implicit Function Theorem (Theorem 5.5 below) that yields

T¢S(x) ={v € G: (vp(x), mv), = 0},

where v is the generalized inward unit normal defined in (15) and 7, (v) =
> v; X, (z). Notice that the map v — 7, (v) for z € G fixed,

=1
m
:E v; X (@
j=1

is a smooth section of HG.
Notice also that it follows again from (iii) of Theorem 5.5, that vg is
a continuous function.

If 00 = 3" 0;X;(0) € HGy, we define the halfspaces Sz (0,v°) as
Sg(O,vO) = {x cG: Zmivi > 0}
i=1

and .
S@(O,vo) = {x ceG: invi < 0}.
i=1

Their common boundary is the vertical plane

1(0,2%) := {x : ixzvz = 0}.

Ifo=3" vXi(y) € HG,, SZ(y,v) and II(y, v) are the translated sets,
SE(y,v) ==y - SE(0,0°) and Ti(y,v) =y - 11(0,2°),

where v and v° have the same components v; with respect to the left invariant
basis X;. Hence

SZ (y,v) :{IEG Z vl>0(<0)}.

Clearly, TS (x) = I(z, ve(x)).
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Note also that the class of G-regular hypersurfaces is different from the
class of Euclidean C' embedded surfaces in R”. From one side, G-regular
surfaces can have “ridges” because continuity of the derivatives of the defin-
ing functions f is required only in the horizontal directions; on the other side,
a Buclidean C! surface can have so-called characteristic points, i.e. points
p € S where the Euclidean tangent plane T},S contains the horizontal fiber
HG,.

Definition 5.3. If S is an Euclidean C' hypersurface in G, we define the
characteristic set of S as

C(S):={z e S: HG, C T,S}.

The points of C(S) are, under many aspects, irregular points of S. Note
that the tangent group does not exist at these points. It is also well known
that these points are “few” on smooth hypersurfaces but only recently
V. MAGNANT ([86]) has obtained precise estimates of the H?~! measure
of the characteristic sets of C'' surfaces in general Carnot groups H", ex-
tending previous results of Z. BALOGH ([9]) in the Heisenberg group, of
V. MAGNANI ([86]) and of B. FrRANCHI, R. SERAPIONI and F. SERRA CAS-
SANO ([56]) in step 2 Carnot groups. Notice that the study of the size of
the characteristic set has a long history. We refer to the contributions of
M. DERRIDJ ([33]), B. FRANCHI and R. L. WHEEDEN ([57]), D. DANIELLI,
N. GAROFALO and D. M. NHIEU ([28]). MAGNANT’s result reads as follows.

Theorem 5.4. If S is a Euclidean C'-smooth hypersurface in a Carnot
group G with homogeneous dimension @, then

HETH(C(S)) = 0.

Now we can state our Implicit Function Theorem, saying that a G-regular
hypersurface S = {f(y) = 0}, the boundary of the set E = {f(y) < 0}, can
be locally parametrized through a function ¢ : R*~' — R™ so that the
G-perimeter of E can be written explicitly in terms of Vg f and ¢.

Theorem 5.5 (Implicit Function Theorem). Let ) be an open set in R™
identified with a Carnot group G, 0 € Q, and let f € CL() be such that
f(0) =0 and X, f(0) > 0. Define

E={zecQ: f(x) <0}, S={reQ: f(z)=0}
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and, for d >0, h >0,

Its:{g:(f%"'vfﬂ)eRnil:|§j|§5}’ Jh:[_h7h]'

If €= (&,...,&) € R and t € Jy,, denote by y(t,€) the integral curve of
the vector field X1 at the time t issued from (0,€) = (0,&a,...,&,) € R™, i.e.

’Y(t 5) = exp(tXl)(07 5)

Then there exist 6,h > 0 such that the map (t,£) — v(t,€) is a diffeomor-
phism of a neighbourhood of Jy, x Is onto an open subset of R™ and, if we
denote by U CC Q the image of Int(Jy, x Is) through this map, we have

(i) E has a finite G-perimeter in U,

(i) OENU = SNU,

Ve f(2)

(iii) vg(x) Ve f)l
where vg is the generalized inner unit normal defined by (15), that can be
identified with a section of HG with |v(z)|, = 1 for |0E|g-a.e. = € U.
In particular, vy can be identified with a continuous function and |v| = 1.
Moreover, there exists a unique function

p=¢(&): Is = Jn
such that the following parametrization holds:

Set p(§) = v(p(€),§) for § € Is. Then

(iv) SNU={z el :x=¢(),£ € Is},

(v) @ is continuous,

(vi) the G-perimeter has the integral representation

VIR X He@)?
orletl) = | R

Our next Theorem is a mild regularity result. Roughly speaking, it states
that G-regular hypersurfaces do not have cusps or spikes if they are studied
with respect to the intrinsic Carnot-Carathéodory distance, while they can
be very irregular as Euclidean submanifolds. To make precise the former
statement we recall the notion of the essential boundary (or of the measure
theoretic boundary) 0. F of a set F C G,

LYENU(z,r)) LYFNU(x,r)) -0
LrU(x,r)) * LMU(z,7)) '
Notice that this definition makes sense in any metric measure space and
that the essential boundary does not change if the distance d is replaced by
an equivalent distance d’.

forallz e SNU,

0 F = {x € G : lim sup min

r—0t
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Theorem 5.6. Let Q C G be a fized open set and let E be such that 0OENQ =
S NQ, where S is a G-reqular hypersurface. Then

OENQ =0,ENQ.

Now we want to compare the perimeter measure on a G-regular hyper-
surface S and the intrinsic (@) — 1)-Hausdorff measure of S. Observe that
it makes sense to speak about the perimeter measure of S provided S is
locally the boundary of a finite G-perimeter set (as proved in Theorem 5.5).
The next theorem gives an explicit form of the density of the perimeter with
respect to the intrinsic Hausdorff measure concentrated on S. As a conse-
quence — as it is stated in the following corollary — G-regular hypersurfaces
have coherently intrinsic Hausdorff dimension @ — 1.

Theorem 5.7. Let o be a distance on G such that, for all x,y,z € G and
A>0,

o -y, x-2) = ey, 2) and o(dry,0x2) = Aoy, 2),

and there exists c, > 1 such that
Loy, 2) < d(y, 2) < co(y,2) for all y,z € G.
If s, : HGg \ {0} — R is the 1-homogeneous function defined as
5,(v) == L1 (U,(0,1) NTI(0,v)),

then
0E|cLQ =s,0vp 887 L(SNQ)

= L7 (U,(0,1) NTELS(2)) ST L(S N Q).
Moreover, there is a constant o, > 1, depending only on the distance o, such

that
0< ozgl <5,(v) < ap < 0.

Remark 5.8. If the distance p under consideration is invariant with respect
to rotations of HGoy ~ R™, then the function s, is constant and, with an
appropriate choice of the normalization constant in the definition of the
Hausdorff measure, (16) takes the particularly neat form

|0E|g =S¢ 'LS. (17)
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We do not know how large is the class of groups whose Carnot-Carathéodory
distance enjoys this property. It certainly comprises the Heisenberg groups.
For the groups in this class we have

|0E|g = S?7LS.

Nevertheless, even if g were not rotationally invariant, there always exists
another true metric invariant, homogeneous and comparable with g that is
also invariant by rotations of HGq (for an example see (11)). If one computes
the Hausdorff measure with respect to it, then (17) holds.

Corollary 5.9. If S is a G-reqular hypersurface, then the Hausdorff dimen-
sion of S, with respect to the Carnot-Carathéodory metric d or any other
metric d' comparable with it, is Q — 1.

Corollary 5.9 combined with Theorem 5.4 yields the following comparison
result between Euclidean C'-smooth hypersurfaces and G-regular hypersur-
faces.

Theorem 5.10. If S is a Euclidean C'-smooth hypersurface in a Carnot
group G with homogeneous dimension Q, then the Hausdorff dimension of S,
with respect to the Carnot-Carathéodory metric d or any other metric d’
comparable with it, is QQ — 1.

The reverse assertion is false: there exist G-regular hypersurfaces in
G = R"™ that have the Euclidean Hausdorff dimension greater than n — 1.
Indeed, recently B. KIRCHHEIM and F. SERRA CASSANO ([71]) have shown
that there exist G-regular hypersurfaces in the Heisenberg group H! (Q = 4,
n = 3) with the Euclidean Hausdorff dimension 2.5.

5.2. Rectifiability in Carnot groups

The following results are the core of [56] (see also [55]). We remind that
De Giorgi’s celebrated structure theorem in Euclidean spaces ([30], [31])
states that if £ C R™ is a set of locally finite perimeter, then the associ-
ated perimeter measure |OFE| is concentrated on a portion of the topological
boundary OF, the so-called reduced boundary 0*F C OF. In addition, 0*F
is H% -rectifiable, i.e. 9* E, up to a set of (d— 1)-Hausdorff measure zero, is
a countable union of compact subsets of C! submanifolds and the perimeter
measure is the (n — 1)-Hausdorf{f measure of the reduced boundary. Roughly
speaking, this says that the perimeter measure is supported on a portion
of the topological boundary OF, that can be expressed — after removing
a negligible set of “bad points” — as a countable union of compact subsets
of “good hypersurfaces”.
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If, in the spirit of De Giorgi’s theorem, we want to describe the structure
of sets of finite intrinsic perimeter in a Carnot group G, we need a natural
notion of rectifiable subsets. In this perspective, the correct definition of
“good hypersurfaces”, i.e. of intrinsic C'*-regular submanifold of G, given in
the previous Section provides a key tool. Keeping in mind this notion, the
following definition is a natural counterpart of the corresponding Euclidean
definition.

Definition 5.11. We say that I' C G is a ((Q —1)-dimensional) G-rectifiable
set if there exists a sequence of G-regular hypersurfaces (S;);en such that

HCQ*(F\ U Sj) —0.

jEN

Before we enter the study of the rectifiability of the reduced boundary
(whatever this means, as we shall see below), let us point out the relation-
ships between our definition in Carnot groups and the standard Euclidean
notion. The following result proved in [56] yields that “negligible” subsets of
codimension 1 in a Carnot group with respect to the Euclidean distance are
“negligible” subsets of codimension 1 with respect to Carnot-Carathédory
distance.

Proposition 5.12. Let G be a Carnot group. For any o > 0 and R > 0
there is a constant ¢(a, R) > 0 such that, for any set E C GNU(0, R),

HOTC™(E) < c(a, R H*(E), a>0.
In particular, for all E C G,

HYE)=0 = HOTC™(E)=0, a>0.

Proposition 5.12 combined with Theorem 5.4 yields:

Theorem 5.13. Let G = R"™ be a Carnot group. If S is an (n — 1)-dimen-
sional Euclidean rectifiable subset of R™, then S is also (Q — 1)-dimensional
G-rectifiable.

On the other hand, there are (Q — 1)-dimensional G-rectifiable sets in
a Carnot group G identified with R™ that are not (n — 1)-dimensional Eu-
clidean rectifiable. Indeed, in [10] a set N C R3 is constructed, such that for
an appropriate € > 0,

HE(N)=0 and H*T¢(N) > 0.
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Hence N is trivially (Q — 1)-dimensional H!-rectifiable (Q — 1 = 3), but it
is not 2-dimensional Euclidean rectifiable because its Euclidean Hausdorff
dimension is strictly larger than 2. As we mentioned above, a sharper re-
sult in this direction is contained in [71]: there exist G-regular hypersurfaces
in the Heisenberg group H! (Q = 4, n = 3) with the Euclidean Hausdorff
dimension 2.5. We recall that relationships between Euclidean and intrin-
sic Hausdorff measure in Heisenberg groups have been deeply investigated
in [10], where also sharp results were obtained.

Thus, we are left with the notion of a reduced boundary for subsets of
a Carnot group. The definition we give here is a simple translation of the
Euclidean case, as follows.

Definition 5.14 (reduced boundary). Let E be a G-Caccioppoli set. We
say that x € OZE if

(i) |0E|g(U(z,r)) >0 for any r > 0,
(ii) there exists lim,_q fU(%T) vg d|OF|g,
(iii) [[lime—o fy(p ) Ve dOEg)lgm, = 1.

The limits in Definition 5.14 should be understood as a convergence of
the averages of the coordinates of vy with respect to the chosen moving base
of the fibers.

Definition 5.14 is a straightforward extension of its Euclidean counterpart
but its utility is not obvious. Indeed, in the Euclidean setting, it is immediate
to show that the perimeter measure is concentrated on the reduced boundary
since, by the Lebesgue-Besicovitch Differentiation Lemma, given a Radon
measure p, for any f € LL _(du) and for p-a.e. x

loc

lim fly) due — f(z)

r—0 ly—z|<r

as 7 — 0. This implies that |0F| = |[0E|L 0.

Unfortunately, the Besicovitch covering lemma, i.e. the main tool of the
proof of the Lebesgue-Besicovitch Differentiation Lemma, fails to hold in
Carnot groups, see [72] and [111].

We do not know whether the Lebesgue-Besicovitch Differentiation Lemma
still holds in Carnot groups. It holds at least when p is the perimeter mea-
sure, thanks to a deep asymptotic estimate proved by L. AMBROSIO in [1].
The corresponding differentiation lemma reads as follows.
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Lemma 5.15 (differentiation lemma). Assume that E is a G-Caccioppoli
set. Then

lir% vpd|OE|g = vg(z) for |0F|g-a.e. z,
r— U(z,r)

i.e., |0F|g-a.a. x € G belong to the reduced boundary OLE.

The keystep for the main result of this paper, i.e. the so-called Blow-up
Theorem stated below, fails to hold for general groups of step greater than 2
as we can see from Example 1 below. Therefore, from now on the group G
will be a step 2 Carnot group.

Specializing our notations, in step 2 Carnot groups, we have
g:V1@‘/2, [‘/I;Vl]:‘/Q; [Vlv‘/Q]:{o}a

and
Q=m1+2(n—my).

Now we can prove the following results.

(i) At each point of the reduced boundary of a G-Caccioppoli set there
is a (generalized) tangent group.

(ii) Both the reduced boundary and the measure theoretic boundary are
(Q — 1)-dimensional G-rectifiable sets.

(iii) |0FE|g = ¢S 1L 0*FE, i.e., the perimeter measure equals a constant
times the spherical (Q — 1)-dimensional Hausdorff measure restricted
to the reduced boundary.

(iv) An intrinsic divergence theorem holds for G-Caccioppoli sets.

The precise meaning of statement (i) is the content of the Blow-up The-
orem 5.16 below. It is precisely the point (i) that can be false in a general
Carnot group. Indeed, we provide an example of a G-regular hypersurface
S = OF in a step 3 group (the so-called Engel group, see e.g. [63], [95]) such
that 0 € 5 E but E has not generalized tangent group at that point.

Statement (iii) fits in the general problem of comparing different geometric
measures in Carnot groups. A good reference for this problem, in Euclidean
spaces, is MATILLA’s book [90]. In the setting of the Heisenberg group,
it is proved in [28] that the perimeter of a Euclidean C'!-hypersurface is
equivalent to its (Q — 1)-dimensional intrinsic Hausdorff measure, whereas
in [53] it is proved that on the boundary of a set of finite intrinsic perimeter
the (@ — 1)-dimensional intrinsic spherical Hausdorff measure coincide —
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after a suitable normalization — with the perimeter measure. In the setting
of general Carnot groups the problem is essentially open. The equivalence
of the intrinsic perimeter and of the (Q — 1)-dimensional intrinsic Hausdorff
measure for C-hypersurfaces in general Carnot groups has been proved in
the previous subsection. In addition, the perimeter measure of a smooth set
in general subriemannian spaces equals the intrinsic Minkowski content, as
it is proved in Theorem 3.17. For Ahlfors-regular metric spaces, a general
representation theorem on the perimeter measure of sets of finite perimeter
in terms of the Hausdorff measure is proved in [1] (see also the refined result
for subriemannian manifolds in [2]), showing that the intrinsic perimeter
admits a density 9 with respect to the Hausdorff measure that is locally
summable and bounded away from zero. Statement (iii) says precisely that,
thanks to (i) and (ii), the function ¥ is constant in step 2 Carnot groups.

To state our result, let us fix a few notations. For any set £ C G, g € G
and r > 0, we consider the translated and dilated sets E, ,, defined as

Bz, ={z:20-0,(z) € E} = 51/T7'xglE'

If z( is fixed and there is no ambiguity, we shall write simply F,.. In addition,
we set E,, = By ,,. Moreover, if v € HG,, we define the halfspaces SZ (v)
and Sg (v) as

SE) = {x : (Tpoz,0)zy >0}, Sg (v) = {1 (myow,v) 5, <0}
The common topological boundary T2 (v) of S¢ (v) and of Sg (v) is the sub-

group of G,
TE(v) == {x : (Tgyx, )z, = 0}.

Theorem 5.16 (blow-up theorem). If E is a G-Caccioppoli set, xg €
OLE and vg(xg) € HGy, is the inward normal defined in (15), then

}LH}] 1Em0 = 1sg(uE(;co)) in Llloc(G) (18)
and, for all R > 0,
lim [0E,. 2| (U(0, R)) = |0S¢ (v(x0))|e(U (0, R)).

Notice that, by Proposition 3.2,

0S¢ (ve(20))|e(U(0, R) = K"~ (T¢(vp(0)) NU(0, R)).
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As we have already pointed out, Theorem 5.16 fails to hold in general
Carnot groups of step k& > 2. In fact, the core of the following example
consists in showing that in Carnot groups of step greater than 2 there can
exist cones (i.e. dilation-invariant sets) that are not flat (they are not of the
form Sé (v) for some horizontal vector v) but, nevertheless, with a vertex
belonging to the reduced boundary.

The following counterexample was inspired by MARTIN REIMANN and
then ROBERTO MONTI found a preliminary form of the counterexample
itself.

Example 1. Let us recall the definition of the Engel algebra and group.
Let E = (R%,-) be the Carnot group whose Lie algebra is g = V; @ Vo @ V3
with V] = span{ Xy, Xo}, Vo = span{ X3} and V5 = span{X,}, the only non

zero commutation relations being
[X1, Xo] = —X3,  [X1, X5] = —X4.

In exponential coordinates, the group law takes the form

4 4
Ty = H(inXiaZini>v
i=1 i=1

where H is given by the Campbell-Hausdorff formula

H(X,Y) = X +Y 4 1%, Y] 4 5 (1%, [%, Y]] - [V [X,V])).

In exponential coordinates, an explicit representation of the vector fields is

2
T2 X3 1T X1 7
X, = 225, <7_ ) L Xo =0y — Loy 4 My,
1=01+ B Js + 5 D Oy o = 0o 5 03 + 1234
ngag—%a% X, = 0.

Let E = {z € R*: f(z) > 0}, where

1 1
f(z) = g2 (x% + x%) — 5013 + z4.
Since E = {z € R* : f(z) = 0} is a smooth Euclidean manifold, E is
a G-Caccioppoli set (see Proposition 3.2). Moreover,

1
(a3 +23)),

Vef(z) = (07 3
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and, by the Implicit Function Theorem (Theorem 5.5),

Vif(z)
| Vaf(@)|

for all x € OE'\ N, where N = {z € E : 21 = 25 = 0}. Since |0E|g(N) =0,
the origin belongs to the reduced boundary of E. On the other hand, since
f(6az) = X3 f(z) for A > 0, it follows that E o = 6, E = F so that (18) fails
to hold because E is not a vertical halfspace.

vp(x) = = (0,-1)

Even if we do not enter into the details of the proof of Theorem 5.16,
we want to stress the technical point where the assumption on the step
of G is used. In the Euclidean setting an elementary statement says that
af =...= ;;f = 0 implies f = f(z1). In Carnot groups the corresponding
statement should be that the vanishing of Xsf to X,,, f yields that f is
a function of just one variable. But this is false as simple examples in the
Heisenberg group H' show. What is possible to prove in step 2 groups is that
if Y7,...,Y,,, are left invariant smooth orthonormal (horizontal) sections, if
Yof =--- =Y, f=0andif Y] f is positive, then f is an increasing function
of one variable. Example 1 shows that in groups of step 3 or larger, even
this last weaker statement is false.

Lemma 5.17. Let G be a step 2 group and let Y1, ...,Yy, be left invariant
smooth orthonormal sections of HG. Assume that g : G — R satisfies

Yig>0 and Y;(g)=0 if j=2,...,m.

Then the level lines of g are “vertical hyperplanes orthogonal to Y17, i.e.,
sets that are group translations of

S(Y1) :={p: (mop, Y1(0)) = 0}.

We can now state our main structure theorem for G-Caccioppoli sets.

Theorem 5.18 (structure of G-Caccioppoli sets). Let E C G be
a G-Caccioppoli set. Then
(1) OLE is (Q — 1)-dimensional G-rectifiable, i.e., O E = NUJr—, Kp,
where HE™1(N) = 0 and K}, is a compact subset of a G-regular
hypersurface S,
(ii) ve(p) is the G-normal to Sy, at p, for all p € K,
(iil) |0E|¢ = V.S L OLE, where

Ye(z) = H" (95 (ve(z) NU(0,1)) .

we-1
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As usual, wy is the k-dimensional measure of the k-dimensional unit
ball in R*. If we replace the S.-measure by the Sso-measure, the

corresponding density Vo turns out to be a constant. More precisely,
(iv) |0E|c = VoS L OLE, where

wm1—1wm2€;n2 1 n—1 +
9o = - H* 1 (9SF (vp(0)) N Ua (0,1)) .
tonafl Lt (05 (06(0) N U0.1)

Here g9 is the constant appearing in (11) and wy, is the k-dimensional
Lebesque measure of the unit ball in RF.

Finally, the following divergence theorem is an easy consequence of Theo-
rem 5.18 but we stress the fact that the measure theoretic boundary appears
in the identity (ii). As in the Euclidean space, the corresponding statement
for the reduced boundary holds straightforwardly. However, the interest of
the statement for the measure theoretic boundary comes not only from the
fact that — as in the Euclidean setting — the last one is sometimes easier to
deal with, but mainly from the fact that the measure theoretic boundary —
unlike the reduced boundary — is independent of the choice of the metric.

Theorem 5.19 (divergence theorem). Let E be a G-Caccioppoli set.
Then
(i) |0E|c = 9SOk cE

and the following version of the divergence theorem holds:

(ii) f/ divwd,cnzﬁoo/ (ve,@)dSS™t, e CLG, HG).

6. THE GRUSHIN PLANE

In this Section we discuss some problems related to the Poincaré inequality
associated with nonsmooth vector fields. As we have already mentioned,
fairly general results in this direction can be found in [45], [41], [73] and
[93]. Here we restrict ourselves to the case of n = 2, where the results take
a simpler form which is, however, full of interesting features. In [58] it is
proved that, after a change of variables, we can assume that the vector fields
X1, X5 have the form

X1 =01, Xo=Ax1,22)0,

where A is Lipschitz continuous and non-negative. For the sake of simplicity
we assume that A is independent of xs, i.e. A(x1,z2) = A(x1). Moreover,
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we write x1 = x, x2 = y. The plane R%x v) endowed with the Carnot-

Carathéodory metric associated with X; = 0, and Xy = A(x)0, is called
sometimes the Grushin plane.

In [41, Theorem 2.3] we proved the following characterization of the metric
balls of the Grushin plane.

Proposition 6.1. For zy = (xg,y0) and t > 0 set
A(zp,t) = sup A(z),

|z—z0|<t

F‘(Z()7 t) = tA(Zo, t),

Q(20,t) = (w0 — t,x0 + 1) X (yo — F(20,1), 50 + F(20,1)).
If A(z,t) > 0 for every t > 0 and z € R?, then there exists b > 1 such that

Q(z,t/b) C B(z,t) C Q(z,bt), t>0, z€R2

Corollary 6.2. If A(z,t) > 0 fort > 0 and for any z € R?, then the
Carnot-Carathéodory metric in the Grushin plane is locally doubling with
respect to the Lebesgue measure if and only if the map t — A(z,t) is locally

uniformly doubling with respect to z, i.e., if and only if for any compact set
K there exist Cx > 0, tg > 0 such that

A(z,2t) < CgA(z,t) forze K and 0 <t < tg. (19)
In particular, if (19) holds, then
|B(z0,t)| ~ t*A(z0, 1),
o(z1,22) = w1 — 23| + F~ 1 (21, [y1 — 12)),

where F~1(21,t) = (F(21,))"(t) (notice that the map F(z1,-) is strictly
increasing).

Proof. Suppose that (19) holds. If z € K and 0 < t < tx/(2b), we have
|B(2,2t)| < |Q(z,2bt)| = (4bt)2A(z,2bt) < Cy i (2t/b)*A(z,1/b)
= Cp,x|Q(2,1/b)| < Cy k| B(2,1)].
Suppose, on the other hand, that d is doubling. Then

Q(z,2t B(z,2bt B(z,t/b
A2y = 122201 IBG201_ ¢ 1B 1/0)
ce Qe

a2
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Now let us remind the RH,, condition introduced in [43]. Let X be
a metric space endowed with a metric ¥ and a doubling measure p. Let
w > 0 belong to L (X). We say that w € RH, if

loc
]l wdp &2 esssup w
B B

for all ¥-balls B.
Proposition 2.3 in [43] reads as follows.

1
loc

Proposition 6.3. Let (X,9,u) be a homogeneous space and let w € L
and w > 0 p-a.e. Then
(i) w € RHy, if and only if w® € RHy, for 3 >0,
(ii) if w € RHy, then w € Ay, and hence wp is a doubling measure,
(iii) ifw € RHy and u € Ay, then wu € An.

We are ready to state a necessary and sufficient condition for the Carnot-
Carathéodory distance be locally doubling and a (1,1)-Poincaré inequality
hold in the Grushin plane. In turn, this implies a (p, ¢)-Poincaré inequality,
as pointed out in Remark 2.16.

Theorem 6.4. Let A > 0 be a Lipschitz continuous function. If A € RH,
then the Carnot-Carathéodory distance d is doubling and a (1,1)-Poincaré
inequality holds, i.e., for any Lipschitz function f and for any Carnot-Cara-
théodory ball B,

/ f — ol dL? < Cr(B) / X /| dc?, (20)
B B

where r(B) is the radius of B and C' is independent of B and f.
Conversely, if the Carnot-Carathéodory distance d is doubling and (20)
holds, then A € RH .

Proof. Suppose that A € RH,,. Then, by Proposition 6.3 (i), \L? is
a doubling measure and hence, by the very definition of RH.,, A(z,.) is
uniformly doubling, too. On the other hand, (20) follows by Example 2 in
[41, Section 6.

Now suppose that the Carnot-Carathéodory distance d is doubling and
that (20) holds. Arguing as in Theorem 3.6, we can conclude that, if £ C R?
is an open set with C''-boundary, then for any Carnot-Carathéodory ball B
we have

min{|E N B|,|B\ E|} < Cr(B) / (n2 + /\(x)2n§)1/2 dH',  (21)
BNOE
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where n = (ng,n,) is the outward unit normal to OE and H' is the
1-dimensional Hausdorff measure supported by OF. For the sake of sim-
plicity take B = B(0, br) and choose

E = {(z,y) €R?:y < Ag(z)}, where Ag(x / At

Since @ := Q(0,r) C B, we can replace min{|E N B|,|B \ E|} in (21) by
min{|ENQ|,|Q\E|}. Analogously, the integral over BNIFE at the right-hand
side of (21) can be replaced by the integral over @ﬁ@E, where é = Q(0,v%r),
i.e., we get

min{|EﬂQ|,|Q\E|}<C’r/@ (n2 + A(z)’n 2)1/2dH1 (22)

NoE

In addition, when |z| < b?r we have |Ag(x)| < b?rA(0,b%r) = F(0,br) and
analogously |Ag(z)| < F(0,r) when |z| < r, so that

QNE={(z,y) eR?: |z| <r, —F(0,r) <y < Ao(x)}, (23)

and B
QNOIE = {(z,y) € R?: |z| < b?r, y = Ao(x)}. (24)

Since Ag(z) > 0 for x > 0, and Ag(xz) < 0 for < 0, by (23) we have
(0,7) x (=F(0,7),0) c QN E and (—r,0) x (0, F(0,r)) C @\ E. Thus

min{|ENQ[,[Q\ E[} = rF(0,r).

Finally, by (24), a parametrization of Q N JE is given by ~(t) = (t, Ao(t))
with [t| < b?r. Using this in (22), we get

b2r
rF(0,r) < Cr/ A(t) dt. (25)

_b2T
Dividing both sides in (25) by 7? and keeping in mind that A(0,r) ~ A(0, br)
by the doubling property (A(0, -) is doubling by Corollary 6.2), we get even-
tually that A € RH.. O

If A = |p|, ¢ being a smooth function, then it is possible to prove that
Poincaré inequality (20) holds if the associated Carnot-Carathéodory dis-
tance is doubling (with respect to the Lebesgue measure). This follows from
Theorem 6.4 by the final Remark in [41, Section 6] that reads as follows.

Proposition 6.5. If A = |p|, where ¢ € C*™(R?), then A(z,-) is doubling
if and only if A € RH,
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