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MONOTONICITY IN BANACH FUNCTION SPACES

Gord Sinnamon

Abstract. This paper is an informal presentation of material from [28]–

[34]. The monotone envelopes of a function, including the level function,
are introduced and their properties are studied. Applications to norm in-
equalities are given. The down space of a Banach function space is defined
and connections are made between monotone envelopes and the norms of the
down space and its dual. The connection is shown to be particularly close in
the case of universally rearrangement invariant spaces. Next, two equivalent
norms are given for the down spaces and these are applied to advance a fac-

torization theory for Hardy inequalities and to characterize embeddings of
the classes of generalized quasiconcave functions between Lebesgue spaces.
This embedding theory is, in turn, applied to find an expression for the dual

space of Lorentz Γ-space and to find necessary and sufficient conditions for
the boundedness of the Fourier transform, acting as a map between Lorentz
spaces. A new Lorentz space, the Θ-space, is introduced and shown to be
the key to extending the characterization of Fourier inequalities to a greater

range of Lorentz spaces. Finally, the scale of down spaces of universally
rearrangement invariant spaces is completely characterized by means of in-
terpolation theory, when it is shown that the down spaces of L1 and L∞

(with general measures) form a Calderón couple.

1. Introduction

Monotone functions seem almost too simple to study seriously. What hidden
structure could there be in such straightforward, concrete objects that would
warrant an abstract treatment, a theory of monotone functions? In these
lectures I hope to convince you that a theory of increasing or decreasing
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206 GORD SINNAMON

functions need not be trivial, that it is worth developing because it does re-
veal a rich structure, and that it can shed light on many seemingly unrelated
problems, both old and new, solved and unsolved.

The first observation that we make on our way toward an abstract treat-
ment of monotone functions (to fix ideas we focus on decreasing functions)
is that considerable insight can be gained by investigating the functionals
represented by such functions. In particular this point of view will be crucial
when we introduce partial orders and their associated monotone envelopes.

Next we take a tried and true step in the process of abstraction by pass-
ing from individual objects to collections of these objects. We define a class
of Banach Function Spaces, called Down Spaces, whose structure is deter-
mined by the decreasing elements in the base spaces. As we will see, the
functional approach makes it simple to exhibit the close connection between
down spaces and monotone envelopes. Using down spaces we can apply the
whole theory of function spaces to the collection of decreasing functions in
a given space.

Another way to increase the level of abstraction is to work with generalized
quasiconcave functions, functions satisfying two monotonicity conditions, in-
stead of simple decreasing functions. Our abstract approach simplifies many
of the technical problems that have arisen in work on quasiconcave functions
in the past. As is often the case, simpler methods enable us to push results
farther and we benefit in that way here when we look at embeddings of qua-
siconcave functions from one Lebesgue space to another. Other applications
of this approach to quasiconcave functions include a formula for the dual of
the Lorentz Γ-space and a characterization of Fourier inequalities involving
Lorentz space norms.

In the last lecture we raise the level of abstraction to the next level when
we investigate the scale of down spaces associated to universally rearrange-
ment invariant spaces and also the scale of their dual spaces. These are com-
pletely described using powerful results from interpolation theory in a series
of results that connect monotone envelopes and K-functionals, construct
a large class of operators on down spaces, and establish a simple correspon-
dence between a universally rearrangement invariant space and its down
space.

2. Monotone envelopes

2.1. Three partial orders. Fix a measure λ on R satisfying λ(−∞, x] <
∞ for all x ∈ R. A λ-measurable function f is determined by its values
f(x) for λ-almost every point x. It is equally well determined by the val-
ues,

∫
fh dλ for a λ-measurable function h, of the functional it determines.
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(Integrals written without limits are understood to be taken over R.)
It will be useful to consider the partial orders defined below both in terms

of the pointwise description of the functions f and g and in terms of their
functional description. With

If(x) =
∫

(−∞,x]

f dλ and I∗f(x) =
∫

[x,∞)

f dλ

we have three partial orders defined on non-negative functions:

f ≤ g : f(x) ≤ g(x) for λ-almost every x ∈ R, (1)

If ≤ Ig : If(x) ≤ Ig(x) for x ∈ R, (2)

I∗f ≤ I∗g : I∗f(x) ≤ I∗g(x) for x ∈ R. (3)

The same three notions of partial order are expressed in terms of the
functionals associated with f and g as follows. It is an exercise in measure
theory to prove that the two definitions are equivalent for each partial order.

f ≤ g :
∫

fh dλ ≤
∫

gh dλ for all h ≥ 0, (1)

If ≤ Ig :
∫

fh dλ ≤
∫

gh dλ for all decreasing h ≥ 0, (2)

I∗f ≤ I∗g :
∫

fh dλ ≤
∫

gh dλ for all increasing h ≥ 0. (3)

2.2. Decreasing envelopes. Among all decreasing functions that lie above
a given non-negative function f , there is a unique least one. This is our first
example of a monotone envelope, the least decreasing majorant of f . Note
that we need a notion of the order of functions in order to interpret the
words “least” and “majorant”. Here we are using the first partial order
defined above: For f ≥ 0, let f↓ be the least(1) decreasing majorant(1) of f .
That is, let f↓ be the unique non-negative function satisfying f ≤ f↓, f↓

decreasing, and whenever f ≤ g with g decreasing then f↓ ≤ g.
The second kind of monotone envelope is the greatest decreasing mino-

rant, where again, “greatest” and “minorant” are understood to refer to the
usual partial order on functions: For f ≥ 0, let f↓ be the greatest(1) decreas-
ing minorant(1) of f . That is, let f↓ be the unique non-negative function
satisfying f ≥ f↓, f↓ decreasing, and whenever f ≥ g with g decreasing then
f↓ ≥ g.
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By changing the partial order, we change the meanings of the words
“least” and “majorant” and arrive at a new least decreasing majorant,
called the level function of f . For f ≥ 0, let fo be the least(2) decreas-
ing majorant(2) of f . That is, let fo be the unique non-negative function
satisfying If ≤ Ifo, fo decreasing, and whenever If ≤ Ig with g decreasing
then Ifo ≤ Ig.

These envelopes arise naturally in connection with norm inequalities for
various positive operators. Applications of monotone envelopes to rearrange-
ment invariant spaces and to Lorentz spaces in particular are important.
They are also a feature of work involving concave and quasiconcave func-
tions and therefore of the theory of interpolation spaces and interpolation
of operators. Pointwise formulas are available for each envelope and have
been the main approach to working with them in the past. However, as we
will see, formulas given in terms of functionals provide a useful alternative
approach and are well worth the extra effort required to prove them.

2.3. Pointwise versus functional formulas. Establishing the existence
and the following pointwise formulas for f↓ and f↓ is another exercise in
measure theory. We have,

f↓(x) = ess sup
y≥x

f(y) and f↓(x) = ess inf
y≤x

f(y).

A bit more work is required to construct a pointwise formula for the level
function. If the measure λ is Lebesgue measure on the half line then fo is the
derivative of the least concave majorant of If . For a general measure λ, one
introduces the notion of a λ-concave majorant and appeals to the Radon-
Nikodym derivative to get the pointwise description of fo. Specifically,

fo =
(

dµ

dλ

)
,

where µ(−∞, x] is the least λ-concave majorant of If(x). See [27] for details.
Functional formulas for the first two decreasing envelopes are simple in

form and, interestingly, involve the second partial order. For g ≥ 0,
∫

f↓g dλ = sup
Ih≤Ig

∫
fh dλ

and ∫
f↓g dλ = inf

Ih≥Ig

∫
fh dλ.
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Although the pointwise description of the level function can be rather
complicated to work with, the functional formula is simple. It also demon-
strates the similarity between the monotone envelopes with respect to the
different partial orders. For decreasing g ≥ 0,

∫
fog dλ = sup

Ih≤Ig
h decr.

∫
fh dλ.

Proofs of these three functional formulas may be found in [31] but the
idea behind the proofs may be simply illustrated by looking at the case of
a well-behaved function f . For fixed g ≥ 0, and any h ≥ 0 satisfying Ih ≤ Ig,
properties of the envelope f↓ and of the second partial order yield

∫
fh dλ ≤

∫
f↓h dλ ≤

∫
f↓g dλ.

Taking the supremum over all such functions h yields
∫

f↓g dλ ≥ sup
Ih≤Ig

∫
fh dλ.

A technique called pushing mass enables us to reverse this inequality by
constructing a non-negative function h from the fixed function g such that
Ih ≤ Ig and such that both inequalities above reduce to equality. The idea of
this construction is to take h to be equal to g off the intervals where f 6= f↓

and construct h from g on each of these intervals by “pushing” the mass
of g onto the right endpoint of the interval. (Notice that this construction
makes h a measure rather than function. Some approximation is necessary
to ensure that h remains a function.)

Figure 1: An example of a “well-
behaved” function f and its least
decreasing majorant f↓.

Figure 2: f differs from f↓ only on
a collection of intervals and f↓ is
constant on these intervals.
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Figure 3: f↓ and an “arbitrary”
function g. Here g is shown as
a shaded mass distribution.

Figure 4: f↓ and h. The function h
is formed by pushing the mass of g
to the right on each interval.

The total mass of g has not changed in forming h and, moreover, the mass
of g has been pushed only to the right to form h. It follows that Ih ≤ Ig.
Since f↓ is constant on the intervals where f and f↓ differ, and g and h have
the same mass on each such interval, we see that

∫
f↓h dλ =

∫
f↓g dλ.

The final requirement is that

∫
fh dλ =

∫
f↓h dλ.

But h has been constructed to be zero on each interval where f and f↓ differ
so this is also satisfied. We conclude that for this h,

∫
fh dλ =

∫
f↓h dλ =

∫
f↓g dλ,

which completes our sketch proof of the functional formula for f↓,

∫
f↓g dλ = sup

Ih≤Ig

∫
fh dλ.

A similar argument illustrates the corresponding formula for f↓, where
this time, mass is pushed to the left in order to construct h from g.
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Some different techniques are employed to prove the functional formula
for fo. One inequality follow readily from the functional definition of the
second partial order. If g and h are decreasing and Ih ≤ Ig then

∫
fh dλ ≤

∫
foh dλ ≤

∫
fog dλ.

Taking the supremum over all such functions h yields

∫
fog dλ ≥ sup

Ih≤Ig
h decr.

∫
fh dλ.

Pushing mass fails to prove the reverse inequality in this case because the
construction of h from g as above does not preserve monotonicity and so does
not produce a decreasing h even though g is decreasing. Instead, a family of
averaging operators is employed to complete the argument.

If Ik are disjoint bounded intervals define the operator A by

Af(x) =

{
1

λ(Ik)

∫
Ik

f dλ, x ∈ Ik,

f(x), x /∈ ∪kIk.

Note that each different collection {Ik} of disjoint bounded intervals de-
fines a new averaging operator A. The collection of all such operators is
denoted A. It is easy to check that each A ∈ A is formally self-adjoint, that
is, ∫

(Af)g dλ =
∫

f(Ag) dλ.

The averaging operator A = Af that we use to prove the functional
formula for fo comes from the function f by defining the intervals Ik to be
the bounded components of the open set

{x ∈ R : If(x) < Ifo(x) and If(x−) < Ifo(x−)}

with one or both endpoints as appropriate. (Special care has to be taken if
the set has an unbounded component.) These intervals are called the level
intervals of f . The level function, fo, is constant on each level interval and
Af = fo. The effect of averaging f on these particular intervals is that If
is increased to its least concave majorant, Ifo.
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Figure 5: A function f . Figure 6: The integral
If of f .

Figure 7: If and Ifo,
its least concave majo-
rant.

Figure 8: Ifo, If and
the level intervals of f .

Figure 9: fo and f . fo

is the result of averag-
ing f on each level in-
terval.

Figure 10: The decreas-
ing function fo.

Now define h = Ag. Since g is decreasing, h is decreasing and Ig ≥ IAg =
Ih. With this h the formal self-adjointness of A provides∫

fog dλ =
∫

(Af)g dλ =
∫

f(Ag) dλ =
∫

fh dλ

and completes the proof of∫
fog dλ = sup

Ih≤Ig
h decr.

∫
fh dλ.
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We actually get a little more. For decreasing g ≥ 0,∫
fog dλ = sup

A∈A

∫
f(Ag) dλ = sup

Ih≤Ig
h decr.

∫
fh dλ.

2.4. The missing envelopes. Once these technical arguments have been
made we are free to use the functional descriptions of the three monotone
envelopes we have defined. Before we continue with applications of monotone
envelopes let us pause to consider the missing envelopes. Since we look at
both the least decreasing majorant and greatest decreasing minorant and
we began with three partial orders, we expect six decreasing envelopes but
so far have only considered three. (The increasing envelopes are completely
analogous and need not be considered separately.)

The greatest(2) decreasing minorant(2) of f may not exist. This is a conse-
quence of the observation that the lattice of decreasing functions with partial
order If ≤ Ig is closed under meets but not joins. An example in [31] ex-
hibits two decreasing minorants(2) of a function f such that no decreasing
minorant(2) of f is greater(2) than both.

The least(3) decreasing majorant(3) of f may not exist. The lattice of
decreasing functions with partial order I∗f ≤ I∗g has joins but not meets.

The last decreasing envelope of f is the greatest(3) decreasing minorant(3)

of f . Suprisingly, this is just fo, the level function again! The same function
fo that we defined to be the least decreasing majorant of f with respect
to the partial order If ≤ Ig is also the greatest decreasing minorant of f
with respect to the partial order I∗f ≤ I∗g. Specifically, I∗fo ≤ I∗f , fo is
decreasing, and if I∗g ≤ I∗f and g is decreasing then I∗g ≤ I∗fo.
Remarks (see [24], [27], [31]).
• For general f (possibly taking negative values) we define f↓ = |f |↓ and

fo = |f |o.
• The map f 7→ f↓ is not linear, but it is sublinear: (f + g)↓ ≤ f↓ + g↓.
• Clearly f ≤ g implies f↓ ≤ g↓ and fn ↑ f implies f↓n ↑ f↓.
• The map f 7→ fo is not linear, it is not even sublinear.
• It’s obvious that if If ≤ Ig then Ifo ≤ Igo.
• It’s true, but far from obvious, that if f ≤ g then fo ≤ go.
• It follows that if fn ↑ f then fo

n ↑ fo.
• The level function can be extended from well-behaved functions to gen-

eral measurable functions using order instead of continuity.

2.5. Application: Transferring monotonicity. Let k(x, t) ≥ 0 be de-
creasing in t for each x and let K be the integral operator

Kf(x) =
∫

k(x, t)f(t) dλ(t).
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The functional definition of the second partial order shows that Ih ≤ If
implies Kh ≤ Kf . Suppose we have a norm (or more generally a functional)
that satisfies ‖f‖ ≤ ‖g‖ whenever f ≤ g. Then we can transfer monotonicity
from the kernel k to the weight u in certain weighted norm inequalities. The
functional descriptions of u↓, u↓ and uo make the proofs of the following
three equivalences very simple and quite similar to each other. We prove
only the first. See [31] for details.

The two inequalities
∫

fu dλ ≤ C‖Kf‖ and
∫

fu↓ dλ ≤ C‖Kf‖

are equivalent in the sense that if one holds for all f ≥ 0 then so does the
other. Since u ≤ u↓ it is clear that the second inequality implies the first.
Suppose now that the first inequality holds. We have

∫
fu↓ dλ = sup

Ih≤If

∫
hu dλ ≤ C sup

Ih≤If
‖Kh‖ = C‖Kf‖.

A similar argument shows that the two inequalities

‖Kf‖ ≤ C

∫
fu dλ and ‖Kf‖ ≤ C

∫
fu↓ dλ

are equivalent in the same sense. For the third pair of inequalities we restrict
our attention to the non-negative, decreasing functions. The two inequalities

∫
fu dλ ≤ C‖Kf‖ and

∫
fuo dλ ≤ C‖Kf‖

are equivalent in the sense that if one holds for all decreasing f ≥ 0 then so
does the other.

As an example to illustrate the above technique we offer a result involving
the weighted Hardy inequality with p = 1. Suppose 0 < q < 1. Let u and w
be non-negative functions. The inequality

(∫ ∞

0

(∫ x

0

f

)q

w(x) dx

)1/q

≤ C

∫ ∞

0

fu

holds for all f ≥ 0 if and only if

(∫ ∞

0

(∫ x

0

f

)q

w(x) dx

)1/q

≤ C

∫ ∞

0

fu↓
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does. The monotonicity of u↓ is the key to showing that the latter inequality
holds if and only if

(∫ ∞

0

u↓(x)q/(q−1)

(∫ ∞

x

w

)q/(1−q)

w(x) dx

)(1−q)/q

<∞.

It is important to observe that u↓ arises naturally in this problem and re-
mains essential in the solution. Finiteness of the above integral with u↓

replaced by u is no longer equivalent to the above Hardy inequality. For
a proof of this result and an example to show that u↓ is essential see [34].

2.6. Banach function spaces. For a proper introduction to the theory of
Banach function spaces see [5], [35]. We make some definitions here for easy
reference.

A Banach function space X is a Banach space of λ-measurable functions
satisfying

g ∈ X and |f | ≤ |g| =⇒ f ∈ X and ‖f‖X ≤ ‖g‖X .

The (Köthe) dual space X ′ is defined by

‖g‖X′ = sup
f∈X

∫
|fg| dλ

‖f‖X
and X ′ = {g : ‖g‖X′ <∞}.

To avoid technicalities we assume X has the Fatou property :

fn ↑ f and ‖fn‖X bounded =⇒ f ∈ X and ‖fn‖X ↑ ‖f‖X .

It is known that the Fatou property is equivalent to X = (X ′)′.

2.7. Down spaces. The definition of the dual norm leads immediately to
a general Hölder inequality for X and X ′,

∫
|fg| dλ ≤ ‖f‖X‖g‖X′ .

This inequality cannot be improved without restrictions on f or g. That is,
for fixed g there is an f that makes the ratio of the two sides as close to 1
as desired. Also, assuming the Fatou property, for fixed f there is an g that
makes the ratio of the two sides as close to 1 as desired.

However, if f is fixed and g is known to be decreasing, then some im-
provement can be expected. This is because the functions g that make the
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ratio of the two sides close to 1 may not happen to be among the decreasing
functions. Define the down space of X, denoted D(X), by

D(X) = {f : ‖f‖D(X) <∞} where ‖f‖D(X) = sup
0≤g decr.

∫
|f |g dλ

‖g‖X′

to get, for all (non-negative) decreasing g,
∫
|f |g dλ ≤ ‖f‖D(X)‖g‖X′ .

Since the norm in D(X) is less than or equal to the norm in X, this improves
the Hölder inequality above. Before it can be of use, however, it is necessary
to understand the norm in D(X).

As we will see, the norms in the down space, D(X) and its dual, D(X)′

are related to the norms in X and X ′ via decreasing envelopes. To make
this connection we first note that the definition of the down norm ensures
‖f‖D(X) ≤ ‖f‖X for all f ∈ X. Also, the functional description of the
second partial order shows that ‖h‖D(X) ≤ ‖f‖D(X) whenever Ih ≤ If .

We begin by looking at the simpler and more general relation between the
dual space D(X)′ and the monotone envelope g↓. See [17] for a statement
of this result in greater generality.

Theorem 2.1. For any Banach function space X, a function g is in D(X)′

if and only if g↓ is in X ′. In fact,

‖g‖D(X)′ = ‖g↓‖X′ .

Proof. Fix a λ-measurable function g. For any non-negative f ,
∫

f |g| dλ ≤
∫

fg↓ dλ ≤ ‖f‖D(X)‖g↓‖X′ .

Taking the supremum over all f yields ‖g‖D(X)′ ≤ ‖g↓‖X′ .
On the other hand, using the functional description of g↓, we have

∫
fg↓ dλ = sup

Ih≤If

∫
hg dλ

≤ sup
Ih≤If

‖h‖D(X)‖g‖D(X)′

≤‖f‖D(X)‖g‖D(X)′

≤‖f‖X‖g‖D(X)′ .

Taking the supremum over all f yields ‖g‖D(X)′ ≥ ‖g↓‖X′ to complete the
proof. �
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The relationship between the down space and the monotone envelope fo

is similar but holds in less generality.

Theorem 2.2. For any Banach function space X, f ∈ D(X) whenever
fo ∈ X and

‖f‖D(X) ≤ ‖fo‖X .

If the averaging operators in A are contractions on X then fo ∈ X whenever
f ∈ D(X) and

‖f‖D(X) = ‖fo‖X .

Proof. Since If ≤ Ifo we have

‖f‖D(X) ≤ ‖fo‖D(X) ≤ ‖fo‖X .

On the other hand, if the operators in A are contractions on X then it
follows from the formal self-adjointness of the operators in A that they are
also contractions on X ′. Thus

∫
fog dλ ≤

∫
fogo dλ = sup

A∈A

∫
fAgo dλ

≤ sup
A∈A
‖f‖D(X)‖Ago‖X′ = sup

A∈A
‖f‖D(X)‖AAgg‖X′

≤ ‖f‖D(X)‖g‖X′ .

Here Ag is the averaging operator in A based on the level intervals of g, so
that Agg = go. Taking the supremum over all g ∈ X ′ yields ‖f‖D(X) ≥
‖fo‖X and completes the proof. �

The down spaces give a simple perspective on the D-type Hölder inequal-
ities introduced by Halperin and Lorentz in [12] and [19]. If f ≥ 0 and g is
decreasing then ∫

fg dλ ≤ ‖fo‖X‖g‖X′ .

The inequality is sharp if the operators in A are contractions on X. In fact,
we have established the more general fact that, for any f, g ≥ 0,

∫
fg dλ ≤ ‖f‖D(X)‖g‖D(X)′ = ‖fo‖X‖g↓‖X′ .

The inequality is sharp if the operators in A are contractions on X.
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2.8. Rearrangement invariant spaces. Theorem 2.2 leads us to inves-
tigate spaces X on which the operators in A are contractions. A large,
well-studied class of spaces with this property is the class of rearrangement
invariant spaces. See, for example, [5].

Functions f and g are equimeasurable provided

λ{x : |f(x)| > α} = λ{x : |g(x)| > α}

for all α > 0. A Banach function space X is rearrangement invariant (r.i.)
if equimeasurable functions have the same norm in X.

The (generalized) inverse of the decreasing function α 7→ λ{x : |f(x)| > α}
is called the decreasing rearrangement of f and denoted f∗. For any f and g,

λ{x : |f(x)| > α} = |{t > 0 : |f∗(t)| > α}|

and ∫
fg dλ ≤

∫ ∞

0

f∗g∗.

A Banach function space X is called universally rearrangement invariant
(u.r.i.) if ∫ t

0

f∗ ≤
∫ t

0

g∗ for all t > 0 =⇒ ‖f‖X ≤ ‖g‖X .

Since equimeasurable functions have the same rearrangement, it follows that
a u.r.i. space is always r.i. The converse holds if the underlying measure λ
is resonant, that is, if for any λ-measurable f and g

sup
h∗≤g∗

∫
fh dλ =

∫ ∞

0

f∗g∗.

It is well-known that a σ-finite measure is resonant if and only if it is non-
atomic or else purely atomic with all atoms having equal weight.

Here we consider u.r.i. spaces over general measures. This automatically
includes all r.i. spaces over resonant measures. We avoid r.i. spaces over
measures that are not assumed to be resonant because this setting has some
unpleasant complications. For example, the dual of a u.r.i. space is u.r.i. no
matter what the measure but the dual of an r.i. space need not be r.i. if the
underlying measure is not resonant.

Exercise. Construct an r.i. space whose dual is not r.i.
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Roughly speaking, if the norm of f in X can be expressed in terms of f∗

then X is r.i. For example,

‖f‖L1 ≡
∫
|f | dλ =

∫ ∞

0

f∗ and ‖f‖L∞ ≡ ess sup
x∈R

|f(x)| = sup
t>0

f∗(t),

so L1 and L∞ are r.i. spaces. We can do better than this, however. If∫ t

0
f∗ ≤

∫ t

0
g∗ for all t > 0 then

‖f‖L1 = lim
t→∞

∫ t

0

f∗ ≤ lim
t→∞

∫ t

0

g∗ = ‖g‖L1

and

‖f‖L∞ = lim
t→0

1
t

∫ t

0

f∗ ≤ lim
t→0

1
t

∫ t

0

g∗ = ‖g‖L∞ ,

so L1 and L∞ are u.r.i. The spaces L1 and L∞ are much more than just
examples of u.r.i. spaces. They are the starting points for a beautiful de-
scription of all u.r.i. spaces coming from the theory of interpolation. One
consequence of this description is that any operator that is bounded on L1

and L∞ is bounded on all u.r.i. spaces.
We can apply this important fact to the averaging operators introduced

above. It is a simple matter to verify that every A ∈ A is a contraction on
both L1 and L∞ and thus each A ∈ A is a contraction on every u.r.i. space.

Corollary. If X is a u.r.i. space with the Fatou property then ‖f‖D(X) =
‖fo‖X and ‖f‖D(X)′ = ‖f↓‖X′ .

Explicit expressions for the down norms of L1 and L∞ are easy to find
and will eventually lead us to a complete description of the down spaces for
all u.r.i. spaces:

‖f‖D(L1) = ‖fo‖L1 =
∫

fo dλ =
∫

A|f ||f | dλ =
∫
|f | dλ = ‖f‖L1 .

Thus D(L1) = L1 with identical norms.
Recall that If(x) =

∫
(−∞,x]

f dλ and set Λ(x) =
∫
(−∞,x]

dλ. Then

‖f‖D(L∞) = ‖fo‖L∞ = lim
x→−∞

fo(x) = lim
x→−∞

Ifo(x)/Λ(x) = ess sup
R

Ifo/Λ.

But Ifo is the least λ-concave majorant of If and it is easy to check that
the function

(ess sup
R

I|f |/Λ)Λ
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is a particular λ-concave majorant of I|f |. It follows that

ess sup
R

Ifo/Λ ≤ ess sup
R

I|f |/Λ.

Since I|f | ≤ Ifo this inequality is actually equality and we have

‖f‖D(L∞) = ess sup
R

I|f |/Λ = ‖I|f |/Λ‖L∞ .

It is important to point out that the down space of a u.r.i. space need not
be u.r.i. For example, D(L∞) is not u.r.i. Let λ be Lebesgue measure on
(0,∞). For each y > 1 set fy = χ(y−1,y). Then f∗y = χ(0,1) for all y so the
fy are all equimeasurable. However, fo

y = (1/y)χ(0,y) so

‖fy‖D(L∞) = ‖fo‖L∞ = 1/y.

2.9. Weighted Lebesgue and Lorentz spaces. There are Lp spaces
of functions defined on any fixed measure space. A feature of weighted
Lebesgue spaces is that they may be viewed as Banach function spaces with
respect to various measures. The choice of measure does not change the
underlying Banach space or its Banach dual but it does have implications
when considering rearrangement invariance and the Köthe dual.

Let 1 ≤ p < ∞ and let w : R → [0,∞] be λ-measurable. The weighted
Lp space with norm

‖f‖Lp
λ(w) =

(∫
|f |pw dλ

)1/p

= ‖f‖Lp
wλ

may be viewed as a Banach function space of λ-measurable functions or
as a Banach function space of (wλ)-measurable functions. With the right
choice of measure, a weighted Lp space is u.r.i.

In the first case the dual norm of g is

sup
f

∫
fg dλ

‖f‖Lp
λ(w)

=
(∫
|g|p′w1−p′ dλ

)1/p′

= ‖g‖
Lp′

λ (w1−p′ )

and in the second case the dual norm of g is

sup
f

∫
fgw dλ

‖f‖Lp
wλ

=
(∫
|g|p′w dλ

)1/p′

= ‖g‖
Lp′

wλ

.
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These two norms lead to different, but isometrically isomorphic, spaces of
functions.

With this in hand we consider the dual of Lorentz space. Let λ be a res-
onant measure, let 1 ≤ p ≤ ∞ and suppose w is a decreasing function on
(0,∞). Then Λp(w) is the space of all λ-measurable functions f for which

‖f‖Λp(w) ≡ ‖f∗‖Lp
w

<∞.

The dual of Λp(w) has norm

‖g‖Λp(w)′ = sup
f

∫
fg dλ

‖f‖Λp(w)
= sup

f∗

∫∞
0

f∗(g∗/w)w

‖f∗‖Lp
w

= ‖g∗/w‖
D(Lp′

w )
.

Since Lp′
w is r.i. with respect to the measure w(x) dx, we have

‖g‖Λp(w)′ = ‖(g∗/w)o‖
Lp′

w
.

The above calculation is valid even when w is not decreasing, although in
that case the “norm” in Λp(w) does not satisfy the triangle inequality.

Since pointwise formulas for the level function are not easy to work with,
this formula can be unwieldy. However, it does show that equivalent norms
for D(Lp′

w ) give equivalent norms for the dual of Λp(w).

2.10. Equivalent norms for the down spaces. Let Λ(x) = λ(−∞, x]
and define the dual operators P and Q by

Pg(x) =
1

Λ(x)

∫

(−∞,x]

g dλ and Qf(x) =
∫

[x,∞)

f
dλ

Λ

Note that if g ≥ 0 is decreasing then Pg is decreasing and g ≤ Pg. Also, if
f ≥ 0 then Qf is decreasing.

Theorem 2.3. If X is u.r.i. and Q is bounded on X then ‖f‖D(X) ≈ ‖Qf‖X
for all non-negative f .

Proof. If g is decreasing then
∫

fg dλ ≤
∫

f(Pg) dλ =
∫

(Qf)g dλ ≤ ‖Qf‖X‖g‖X′ .

Taking the supremum over all decreasing g gives ‖f‖D(X) ≤ ‖Qf‖X .
On the other hand, since X is u.r.i. and Q is bounded on X, X ′ is u.r.i.

and P is bounded on X ′. Thus, ‖Pgo‖X′ ≤ C‖go‖X′ ≤ C‖g‖X′ for any
g ≥ 0 and so

∫
(Qf)g dλ ≤

∫
(Qf)go dλ =

∫
f(Pgo) dλ ≤ C‖f‖D(X)‖g‖X′ .

It follows that ‖Qf‖X / ‖f‖D(X) to complete the proof. �
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There is also an equivalent norm for D(X) involving the P operator. Let
L map f to the constant function

Lf(x) = Pf(∞) =
∫

f dλ∫
dλ

.

Then Lf = Lfo. Note that if λ is an infinite measure then Lf(x) = 0 for
all f . The following technical lemma appears in [28].

Lemma. If λ is resonant and X is r.i. then ‖(P +L)fo‖X ≤ 3‖(P +L)f‖X .

Theorem 2.4. If λ is resonant, X is r.i., and the operator P +L is bounded
on X then ‖f‖D(X) ≈ ‖(P + L)f‖X .

Proof. ‖f‖D(X) = ‖fo‖X and

1
3‖fo‖X ≤ 1

3‖Pfo‖X ≤ ‖(P + L)f‖X ≤ ‖(P + L)fo‖X ≤ C‖fo‖X .

�

These two equivalent norms extend earlier results involving the norm of
D(X), see [12], [19], [1], [23], [14]. Suppose 1 < p < ∞ and W (x) =

∫ x

0
w

and consider the D-type Hölder inequality. If f ≥ 0 and g is decreasing then

∫ ∞

0

fg ≤
(∫ ∞

0

(∫ ∞

x

f

W

)p′

w(x) dx

)1/p′ (∫ ∞

0

gpw

)1/p

,

∫ ∞

0

fg ≤ 3
(∫ ∞

0

( ∫ x

0
f∫ x

0
w

+

∫∞
0

f∫∞
0

w

)p′

w(x) dx

)1/p′ (∫ ∞

0

gpw

)1/p

.

We also easily deduce a known result for the dual of Lorentz space: For
any g,

‖g‖Λp(w)′ ≈
(∫ ∞

0

(∫ ∞

x

g∗

W

)p′

w(x) dx

)1/p′

,

‖g‖Λp(w)′ ≈
(∫ ∞

0

(∫ x

0
g∗∫ x

0
w

+

∫∞
0

g∗∫∞
0

w

)p′

w(x) dx

)1/p′

.
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2.11. Application: Factoring Hardy’s inequality. Hardy’s inequality
is often viewed as an inequality in ℓp sequence spaces and even more often
as an inequality in Lp for Lebesgue measurable functions on the half line
(0,∞). Its applications and generalizations have received a great deal of
attention from [13] to [22], [18] and the references therein. For many years
the two views developed more or less separately, each with their particular
techniques. We argued in [32] that the natural setting for Hardy’s inequality
is as an Lp

λ space inequality for functions with respect to a general measure λ.
A great many results in both the sequence case and the case of Lebesgue
measurable functions can be achieved much more simply from that point of
view.

Consider the following question: For which measures λ, µ does P : Lp
λ →

Lq
µ boundedly? Because there are two indices and two measures in this

formulation one does not expect a simple answer but surprisingly, a sim-
ple answer is available. The techniques used to provide this answer vary
greatly and can be quite technical. We show that all the major results can
be deduced from a simple factorization where the Hardy inequality is used
on a single space (one index and one measure) and the condition which en-
sures the boundedness of P arises naturally from the requirement that the
monotone functions in one Lp space are embedded in another.

The “One Hardy Inequality” needed to carry out this factorization follows
readily from the classical Hardy inequality, together with standard results
from the theory of rearrangements. If p > 1 then P : Lp

λ → Lp
λ, specifically,

(∫ ∣∣∣∣
1

Λ(x)

∫

(−∞,x]

f dλ

∣∣∣∣
p

dλ

)1/p

≤ p′
(∫
|f |p dλ

)1/p

.

The existence of the level function provides a crucial reduction of the
above question. See [24], [25]. The Hardy averaging operator is bounded if
and only if its restriction to decreasing functions is bounded. Specifically,
P : Lp

λ → Lq
µ is bounded if and only if P : Lp

λ ∩ {decr.} → Lq
µ is bounded.

Moreover the bound is the same. In the proof of this reduction, one direc-
tion is obvious and the other follows from a simple estimate using the level
function:

‖Pf‖Lq
µ
≤ ‖Pfo‖Lq

µ
≤ C‖fo‖Lp

λ
≤ C‖f‖Lp

λ
.

A decreasing function f is less than or equal to its average, Pf . This ob-
servation, together with the One Hardy Inequality above, shows that ‖f‖Lp

λ

and ‖Pf‖Lp
λ

are equivalent for decreasing functions. Therefore P : Lp
λ → Lq

µ

if and only if Lp
λ ∩ {decr.} id→֒ Lq

µ. This can also be viewed as a factoriza-
tion where the Hardy operator is applied only to the decreasing functions in
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a single space,

Lp
λ ∩ {decr.} P→ Lp

λ ∩ {decr.} id→֒ Lq
µ

For this factorization to give a simple answer to our question we need
a simple characterization of the embedding step. We need to know for which
measures λ, µ is

Lp
λ ∩ {decr.} id→֒ Lq

µ?

This splits naturally into two cases. If p ≤ q then an application of
Minkowski’s integral inequality yields the characterizing condition,

sup
x

µ(−∞, x]1/qΛ(x)−1/p <∞.

To handle the case q < p we make the obvious substitution to reduce to the
case q = 1 and then use the first equivalent norm for D(X) = D(Lp/q

λ ). The
embedding holds if and only if Qµ ∈ L

p/(p−q)
λ where Qµ(x) =

∫
[x,∞)

dµ
Λ .

2.12. Related inequalities. As an illustration of the flexibility of this
method we show how easily a class of related inequalities can be characterized
along with the Hardy inequality itself. Suppose ϕ : (0,∞) → R is either
concave and increasing or convex and decreasing. Define the operator T on
f ≥ 0 by

Tf(x) = (ϕ−1 ◦ P (ϕ ◦ f))(x) = ϕ−1

(
1

Λ(x)

∫

(−∞,x]

ϕ(f(t)) dλ(t)
)

.

Then T : Lp
λ → Lq

µ if and only if P : Lp
λ → Lq

µ. To see this, observe first that
Jensen’s inequality implies Tf ≤ Pf so the boundedness of P implies the
boundedness of T . On the other hand, for a decreasing function f we have
f ≤ Tf so the boundedness of T implies the boundedness of the embedding
of decreasing functions. As we have just seen, this implies that P is bounded.

In particular, this gives a characterization for the boundedness of the
Geometric Mean Operator, just take ϕ(t) = log(t). It also gives a character-
ization of Hardy’s inequality for negative indices by taking ϕ(t) = 1/t.

3. Quasiconcave functions and Fourier inequalities

We require the following facts from the previous section. If Ik are disjoint
bounded intervals define the operator A ∈ A by

Af(x) =

{
1

λ(Ik)

∫
Ik

f dλ, x ∈ Ik,

f(x), x /∈ ∪kIk.
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Let f ≥ 0. For all decreasing g ≥ 0 the level function fo of f satisfies
∫

fog dλ = sup
A∈A

∫
f(Ag) dλ = sup

Ih≤Ig
h decr.

∫
fh dλ.

Suppose 0 < q < 1. The Hardy inequality with p = 1,

(∫ ∞

0

(∫ x

0

f

)q

w(x) dx

)1/q

≤ C

∫ ∞

0

fu,

holds for all f ≥ 0 if and only if

(∫ ∞

0

u↓(x)q/(q−1)

(∫ ∞

x

w

)q/(1−q)

w(x) dx

)(1−q)/q

<∞.

3.1. Embedding quasiconcave functions. A Lebesgue measurable func-
tion f on (0,∞) is quasiconcave if f(x) is increasing and f(x)/x is decreasing.
(The term quasiconcave is sometimes used to denote any function equivalent
to a quasiconcave function but we do not make that definition here.) It is
convenient to introduce generalized quasiconcavity as well. For α + β > 0,
let Ωα,β be the collection of functions f such that xαf(x) is increasing and
x−βf(x) is decreasing. Clearly, Ω0,1 is the collection of quasiconcave func-
tions.

In view of our experience with embedding the decreasing functions it
seems reasonable to ask the following question. For which α, β, u and w is

Lp(w) ∩ Ωα,β
id→֒ Lq(u)

bounded? See [15], [20], [21] for some results on this and related questions.
We will see later that an understanding of these embeddings will lead to
applications involving the dual of Lorentz spaces and to Fourier inequalities
between Lorentz spaces.

Following the method introduced in [29] we work on the above question
in this form: We wish to find all α, β, u and w for which

sup
f∈Ωα,β

‖f‖Lq(u)

‖f‖Lp(w)
<∞.

The first step is to replace f by f1/p to reduce to the case p = 1. Note that
f ∈ Ωα,β if and only if fp ∈ Ωpα,pβ .
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Next, for f ∈ Ωα,β let g(x) = xα/(α+β)f(x1/(α+β)) to reduce to the case
α = 0 and β = 1. It is easy to check that g ∈ Ω0,1, ‖f‖Lq(u) = ‖g‖Lq(U) and
‖f‖L1(w) = ‖g‖L1(W ), for appropriate weights U and W , given in terms of u
and w.

These two observations reduce the question to finding all u and w for
which

sup
g∈Ω0,1

‖g‖Lq(U)∫
gW

<∞.

3.2. Operators that map (almost) onto Ωα,β. Introduce the operators
Hα, Hβ and Hβ

α by

Hαh(x) = x−α

∫ x

0

tαh(t) dt, Hβh(x) = xβ

∫ ∞

x

t−βh(t) dt

and

Hβ
αh(x) = Hαh(x) + Hβh(x) =

∫ ∞

0

min{(t/x)α, (x/t)β}h(t) dt.

It is easy to check that
∫∞
0

(Hβ
αf)g =

∫∞
0

f(Hα
β g). Also, and most impor-

tantly for us, if h ≥ 0 then Hβ
αh ∈ Ωα,β .

It is a well-known fact that every quasiconcave function g is equivalent to
its least concave majorant g̃. Since every concave function is differentiable
almost everywhere it is easy to see that every concave function is the limit
of an increasing sequence of functions in the range of H1

0 . The conclusion,
stated more precisely, is that if g ∈ Ω0,1 then there exists hn ≥ 0 such that
H1

0hn ↑ g̃ and 1
2 g̃ ≤ g ≤ g̃. This enables us to replace the supremum over

all g ∈ Ω0,1 by a supremum over all non-negative functions. Now we wish to
find those u and w for which

sup
h≥0

‖H1
0h‖Lq(U)∫
(H1

0h)W
<∞.

Using H1
0 = H0 + H1 in the numerator and moving the operator to W in

the denominator reduces the supremum to two weighted Hardy inequalities.
Specifically,

sup
h≥0

‖H0h‖Lq(U)∫
h(H0

1W )
<∞ and sup

h≥0

‖H1h‖Lq(U)∫
h(H0

1W )
<∞

Our work on the Hardy inequality with p = 1 provides a characterization
for the finiteness of each of these suprema.
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3.3. Necessary and sufficient conditions. Combining the two condi-
tions we get above into one condition and carefully making our way back
from the case α = 0, β = 1, and p = 1 to the general case yields a simple
answer to our original question. As usual with such embeddings, it splits
into two cases. If 0 < p ≤ q <∞ then

sup
f∈Ωα,β

‖f‖Lq(u)

‖f‖Lp(v)
≈ sup

t>0
[Hpα

pβ v(t)]−1/p[Hqα
qβ u(t)]1/q.

If 0 < q < p <∞ and 1/r = 1/q − 1/p then

sup
f∈Ωα,β

‖f‖Lq(u)

‖f‖Lp(v)
≈

(∫ ∞

0

(Hpα
pβ v)−r/p(Hqα

qβ u)r/pu

)1/r

.

An alternate form of this will be useful. After integration by parts we see
that the last integral is equivalent to

(∫ ∞

0

Hqαu(t)r/qHpα
pβ v(t)−r/qHpβv(t)

dt

t

)1/r

+
‖x−α‖Lq(u)

‖x−α‖Lp(v)

+
(∫ ∞

0

Hqβu(t)r/qHpα
pβ v(t)−r/qHpαv(t)

dt

t

)1/r

+
‖xβ‖Lq(u)

‖xβ‖Lp(v)
.

3.4. Application: The dual of the Lorentz Gamma-space. The
Lorentz space Γp(v) is defined to be the collection of λ-measurable func-
tions such that

‖f‖Γp(v) ≡ ‖f∗∗‖Lp(v) <∞.

Here f∗∗(x) = 1
x

∫ x

0
f∗ and f∗ is the non-increasing rearrangement of f with

respect to the measure λ.
The dual norm for this space has been shown to be another Lorentz

Γ-space in [11], [9], [10]. The work above on embeddings of quasiconcave
functions provides another expression for the dual norm.

Suppose 1 < p <∞ and λ is a resonant measure. Then

‖g‖Γp,λ(v)′ ≈ ‖g∗‖Lp′ (v0)
+ ‖g∗∗ − g∗‖Lp′ (v∞) + V0‖g∗‖L∞ + V∞‖g∗‖L1

where

v0(t) =
1
t

(
1
tp

∫ t

0

v(x) dx +
∫ ∞

t

v(x)
dx

xp

)−p′
1
tp

∫ t

0

v(x) dx,

v∞(t) =
1
t

(
1
tp

∫ t

0

v(x) dx +
∫ ∞

t

v(x)
dx

xp

)−p′ ∫ ∞

t

v(x)
dx

xp
,
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V0 =
(∫ ∞

0

x−pv(x) dx

)−1/p

and V∞ =
(∫ ∞

0

v(x) dx

)−1/p

.

For details of the proof see [29]. An unusual feature of this expression for the
dual norm is the appearance of the term g∗∗ − g∗. Spaces defined using this
expression are called Lorentz S-spaces, see [8], and defined (modulo constant
functions) by

‖g‖Sp(w) = ‖g∗∗ − g∗‖Lp(w).

3.5. Why should f∗∗ − f∗ appear? Given g we can solve the equation
f∗∗(t) = 1

t g
∗∗( 1

t ) and check that g∗∗(t) = 1
t f

∗∗( 1
t ) as well.

Moreover, if w(t) = v( 1
t )t

p−2 then v(t) = w( 1
t )t

p−2 and

‖f‖Γp(v) = ‖f∗∗‖Lp(v) = ‖g∗∗‖Lp(w) = ‖g‖Γp(w)

so the correspondence between f and g above gives an isometry of Lorentz
Γ-spaces. However,

‖f‖Λp(v) = ‖f∗‖Lp(v) = ‖g∗∗ − g∗‖Lp(w) = ‖g‖Sp(w).

Evidently this isometry between Γ-spaces does not extend to the larger
Λ-spaces. In fact, its extension interchanges the factors in the intersection
Γp(v) = Λp(v) ∩ Sp(v), taking Λp(v) to Sp(w) and Sp(v) to Λp(w) while
preserving the Γ-spaces.

We have seen that the dual of a Λ-space is a Γ-space. Via this isometry
we see that the dual of an S-space is also a Γ-space. It is natural then, that
the dual of a Γ-space should have aspects of both Λ- and S-spaces. Our
expression for the dual of the Γ-space makes this clear.

3.6. The Fourier transform on Lorentz spaces. For an application of
both monotone envelopes and the embedding of quasiconcave functions we
turn to the Fourier transform on Rn defined by

Ff(x) =
∫

Rn

e−ix·yf(y) dy

For related work on the boundedness of the Fourier transform see [2], [4],
[3]. Since F : L1 → L∞ and F : L2 → L2, there is a D > 0 such that

∫ z

0

(Ff)∗(t)2 dt ≤ D

∫ z

0

(∫ 1/t

0

f∗
)2

dt, z > 0.
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This is a result from [16] and applies to any operator that maps L1 → L∞

and L2 → L2, that is, to every operator of type (1,∞) and (2, 2).
Fix an f and let h(t) = (1/D)(Ff)∗(t)2 and g(t) =

(∫ 1/t

0
f∗

)2. Observe
that Ih ≤ Ig, h is decreasing, and g ∈ Ω2,0.

Let u, v : [0,∞)→ [0,∞] and let C be the best constant in

(∫ ∞

0

(Ff)∗(t)qu(t) dt

)1/q

≤ C

(∫ ∞

0

(∫ 1/t

0

f∗
)p

v(t) dt

)1/p

.

A simple change of variable shows that this inequality expresses the bound-
edness of the Fourier transform as a map from Γp(w) → Λq(u). Here
w(t) = tp−2v(1/t).

We ask for which weights u and v is this C finite?
First we look at a sufficient condition for the finiteness of C. With g and

h as above we see that if q ≥ 2 then

C2

D
≤ sup

g∈Ω2,0

sup
Ih≤Ig
hdecr.

‖h‖Lq/2(u)

‖g‖Lp/2(v)

= sup
g∈Ω2,0

sup
A∈A

‖Ag‖Lq/2(u)

‖g‖Lp/2(v)

.

The corresponding necessary condition depends on the features of the
Fourier transform and requires a certain amount of careful construction, see
[30]. The result is this, if q ≥ 0 then

C2 ≥ (const.) sup
z>0

sup
A∈A

‖Aωz‖Lq/2(u)

‖ωz‖Lp/2(v)

.

Here ωz(t) = min{z−2, t−2}.
Restricting our attention to the case where necessity and sufficiency over-

lap we see that if 0 < p ≤ 2 ≤ q <∞ then

(∫ ∞

0

(Ff)∗(t)qu(t) dt

)1/q

≤ C

(∫ ∞

0

(∫ 1/t

0

f∗
)p

v(t) dt

)1/p

holds if and only if

sup
z>0

sup
A∈A

‖Aωz‖Lq/2(u)

‖ωz‖Lp/2(v)

<∞.

Since the sufficient condition applies to more operators than the neces-
sary condition we can draw the following conclusion from the existence of
a necessary and sufficient condition, even without appealing to the form of
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the condition: If 0 < p ≤ 2 ≤ q < ∞ and the Fourier transform is bounded
from Γp(w) to Γq(u) then so is every operator of type (1,∞) and (2, 2).

Before we can reasonably say that we have characterized the Fourier in-
equality with the necessary and sufficient condition just given we have to
ask an important question. Is the weight condition easier to handle than the
original inequality? It is not clear that this is the case in general, but in the
important special case q = 2 the condition becomes very simple indeed.

If 0 < p ≤ 2 then

sup
z>0

sup
A∈A

‖Aωz‖L1(u)

‖ωz‖Lp/2(v)

= sup
z>0

‖ωz‖L1(uo)

‖ωz‖Lp/2(v)

≈ sup
x>0

(
1
x2

∫ x

0

uo

)1/2 (
1
xp

∫ x

0

v(t) dt +
∫ ∞

x

v(t)
dt

tp

)−1/p

.

The finiteness of the above expression is necessary and sufficient for any
one of the following equivalent statements:

F : Γp(w)→ Γ2(u)

F : Γp(w)→ Λ2(u)

F : Γp(w)→ Γ2(uo)

F : Γp(w)→ Λ2(uo)

3.7. The Fourier weight condition and an optimal r.i. space. Let
p ≥ 1. A concrete expression for

sup
A∈A

(∫
(Ag)pu

)1/p

= sup
Ih≤Ig
hdecr.

(∫
hpu

)1/p

for all decreasing g (or just for g ∈ Ω2,0) would extend the weight character-
ization for the Fourier transform on Lorentz spaces.

Define the space Θp(u) by its norm,

‖g‖Θp(u) = sup
Ih≤Ig∗
h decr.

(∫
hpu

)1/p

= sup
h∗∗≤g∗∗

(∫
(h∗)pu

)1/p

.

It can be shown that Θp(u) is a Banach space for any u and that we have
the embeddings

Γp(u) ⊂ Θp(u) ⊂ Λp(u).

In fact, Θp(u) is the largest r.i. space contained in Λp(u) and if Λp(u) can
be renormed to become a Banach space then all three spaces coincide, up to
equivalent norms.

The connection with monotone envelopes is that if p = 1 then Θ1(u) =
Λ1(uo).
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4. A Calderón couple of down spaces

Our construction of down spaces and their duals demonstrates a surprising
connection between the two monotone envelopes, the least decreasing majo-
rant and the level function. One envelope gives an expression for the norm
of the down space and the other an expression for its dual. Specifically, if X
is a u.r.i. function space then

‖f‖D(X) = ‖fo‖X and ‖g‖D(x)′ = ‖g↓‖X′ .

A fundamental result of Calderón [7] shows that the u.r.i. spaces are
precisely the exact interpolation spaces between L1

λ and L∞λ . In this section
we follow [33], investigate the interpolation properties of the corresponding
down spaces and prove a very strong result. Specifically, we show that
(D(L1

λ),D(L∞λ )) is a Calderón couple of spaces and from this we deduce
that the down spaces of u.r.i. spaces are precisely the exact interpolation
spaces between D(L1

λ) and D(L∞λ ). Although the pair (L1
λ, L∞λ ) is self-

dual, the pair (D(L1
λ),D(L∞λ )) is not so we also investigate the dual pair

(D(L∞λ )′,D(L1
λ)′), achieving almost as strong a result.

4.1. Interpolation of operators. Let (X1,X2) be a couple of Banach
spaces contained in X1 + X2. For a careful definition of compatible couples
of Banach spaces and for definitions and proofs of the other ideas introduced
briefly below, see [6].

An operator T : X1 + X2 → X1 + X2 is called admissible if

‖T‖X1→X1 ≤ 1 and ‖T‖X2→X2 ≤ 1.

A Banach space X which is intermediate between X1 and X2, i.e.,

X1 ∩X2 →֒ X →֒ X1 + X2,

is an exact interpolation space if ‖T‖X→X ≤ 1 for every admissible T . Define
the Peetre K-functional by

K(t, x;X1,X2) = inf
x=x1+x2

‖x1‖X1 + t‖x2‖X2 .

If Φ is a Banach Function Space of Lebesgue measurable functions, contain-
ing the function t 7→ min{1, t}, then Φ is called a parameter of the K-method.
The space KΦ(X1,X2), of all x ∈ X1 + X2 for which

‖x‖KΦ(X1,X2) ≡ ‖K(·, x;X1,X2)‖Φ <∞,

is an exact interpolation space between X1 and X2.
If the inequality K(t, x;X1,X2) ≤ K(t, y;X1,X2) for all t > 0 implies

that there exists an admissible T such that Ty = x, then (X1,X2) is called
a Calderón couple.

For a Calderón couple, the KΦ are the only exact interpolation spaces.
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Theorem 4.1 ([7]). (L1
λ, L∞λ ) is a Calderón couple.

4.2. An informal K-functional calculation. Fix a σ-finite measure λ
on R and set L1 ≡ L1

λ, L∞ ≡ L∞λ .
For f ≥ 0, K(t, f ;L1, L∞) = inff=f1+f2 ‖f1‖L1 + t‖f2‖L∞ .
If f = f1 + f2 with ‖f2‖L∞ ≡ supx |f2(x)| = α then there is a clear best

choice for f2, namely, f2 = min{f, α}. In this case f1 = f − f2 = (f − α)+

and it follows that f∗1 = (f∗ − α)+. Choose y so that f∗(y) = α. Then

K(t, f ;L1, L∞) = inf
f=f1+f2

∫
f1 dλ + t sup

x
|f2(x)|

= inf
α

∫
(f − α)+ dλ + tα

= inf
y

∫ y

0

f∗ + (t− y)f∗(y).

Set the derivative to zero: f∗(y) − f∗(y) + (t − y)df∗

dy (y) = 0 so y = t.
Therefore

K(t, f ;L1, L∞) =
∫ t

0

f∗.

The informality of this calculation is evident in our use of phrases like
“clear best choice”, “it follows that”, and our differentiation of a function
that may not, in fact, be differentiable. With sufficient care, however, this
argument may be made precise. The result itself is well known.

4.3. Universally rearrangement invariant spaces. Once the K-funct-
ional is known it is simple and instructive to see how (L1, L∞) being a Cal-
derón couple provides a connection between u.r.i. spaces and exact interpo-
lation spaces.

Suppose X satisfies L1 ∩ L∞ →֒ X →֒ L1 + L∞.
If X is u.r.i. then let T be an admissible operator and g ∈ X. For t > 0,

∫ t

0

(Tg)∗ = inf
f1+f2=Tg

‖f1‖L1 + t‖f2‖L∞

≤ inf
g1+g2=g

‖Tg1‖L1 + t‖Tg2‖L∞

≤ inf
g1+g2=g

‖g1‖L1 + t‖g2‖L∞ =
∫ t

0

g∗.

Since X is u.r.i., Tg ∈ X and ‖Tg‖X ≤ ‖g‖X . Thus T is a contraction on X
and so X is an exact interpolation space between L1 and L∞.
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Conversely, if X is an exact interpolation space between L1 and L∞, then
suppose

∫ t

0
f∗ ≤

∫ t

0
g∗. Since (L1, L∞) is a Calderón couple, there exists an

admissible T such that Tg = f . This T is a contraction on X, so f ∈ X and
‖f‖X ≤ ‖g‖X . Thus X is u.r.i.

4.4. Two more informal K-functional calculations. Recall that
D(L1) = L1 with identical norms and, writing D∞ = D(L∞), that

‖f‖D∞ = ‖fo‖L∞ and ‖f‖(D∞)′ = ‖f↓‖L1 .

Our last K-functional calculation relied on the fact that one of the spaces
involved was L∞. We can imitate it closely to find the K-functional of
((D∞)′, L∞). See also [26].

For f ≥ 0, K(t, f ; (D∞)′, L∞) = inff=f1+f2 ‖f↓1 ‖L1 + t‖f2‖L∞ .
If f = f1 + f2 with ‖f2‖L∞ ≡ supx |f2(x)| = α then there is a clear best

choice for f2, namely, f2 = min{f, α}. In this case f1 = f − f2 = (f − α)+

and it follows that f↓1 = (f↓ − α)+. Choose y so that (f↓)∗(y) = α. Then

K(t, f ; (D∞)′, L∞) = inf
α

∫
(f↓ − α)+ dλ + tα

= inf
y

∫ y

0

(f↓)∗ + (t− y)(f↓)∗(y).

Set the derivative to zero: (f↓)∗(y) − (f↓)∗(y) + (t − y)d[(f↓)∗]
dy (y) = 0 so

y = t. Therefore

K(t, f ; (D∞)′, L∞) =
∫ t

0

(f↓)∗.

In the calculation of K(t, f ;L1,D∞), neither space is L∞ so a slightly
different approach has to be taken.

Let Λ(x) =
∫
(−∞,y]

dλ and recall that in addition to the formula for
‖f‖D∞ involving the level function, we also have

‖f‖D∞ = sup
y

1
Λ(y)

∫

(−∞,y]

f dλ.

For f ≥ 0, K(t, f ;L1,D∞) = inff=f1+f2 ‖f1‖L1 + t‖fo
2 ‖L∞ .

If f = f1 + f2 view ‖f1‖L1 as fixed. Then f2 has fixed mass and fo
2 is

minimized by taking the mass of f2 as far right as possible. The clear best
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choice (ignoring atoms) is f1 = fχ(−∞,x] and f2 = fχ(x,∞) for some x. Thus

K(t, f ;L1,D∞) = inf
x

∫

(−∞,x]

f dλ + t sup
y>x

1
Λ(y)

∫

(x,y]

f dλ

= inf
x

sup
y>x

(
1− t

Λ(y)

)∫

(−∞,x]

f dλ +
t

Λ(y)

∫

(−∞,y]

f dλ.

This is the least λ-concave majorant of
∫
(−∞,Λ−1(t)]

f dλ. Therefore

K(t, f ;L1,D∞) =
∫

(−∞,Λ−1(t)]

fo dλ =
∫ t

0

(fo)∗.

4.5. Constructing admissible operators. Now that we have the
K-functional for (L1,D∞) we can address the problem of showing it is
a Calderón couple. First suppose λ is Lebesgue measure on (0,∞).

To show that (L1,D∞) is a Calderón couple, we start with the inequality
∫ t

0

fo ≤
∫ t

0

go, t > 0,

and produce an operator T such that

‖T‖L1→L1 ≤ 1, ‖T‖D∞→D∞ ≤ 1, and Tg = f.

Actually, we produce three admissible maps to get from g to f ,

g 7→ go 7→ fo 7→ f.

The map g 7→ go is essentially the averaging operator Ag from A, al-
though the possibility of an unbounded interval makes for some technical
complications.

Is Ag admissible? Each operator A ∈ A is easily seen to be a contraction
on L1. Since A is self-adjoint, to see that it is a also contraction on D∞, it
is enough to show that it is a contraction on (D∞)′. But,

‖Af‖(D∞)′ =
∫

(Af)↓ ≤
∫

(A(f↓))↓ =
∫

A(f↓) =
∫

f↓ = ‖f‖(D∞)′ .

The map fo 7→ f is also a kind of averaging operator, based on the level
intevals of f . We skip over the special attention which must be paid to the
unbounded level interval if there is one. The operator we need is

Bfh(x) =





f

R
Ik

h
R

Ik
f
, x ∈ Ik,

h(x), x /∈ ∪kIk.
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The proof of admissibility of this operator Bf is similar (but not identical)
to the proof that Ag is admissible. We omit the details.

The map from go 7→ fo will be the limit of a sequence of averaging oper-
ators, each on a single interval. Once again, we skip over the complications
that arise when the intervals are unbounded.

We are free to suppose here that f and g are decreasing so f = fo and
g = go. Let q1, q2, q3, . . . be a countable dense subset of (0,∞), perhaps
the rational numbers.

With g = g0, suppose intervals I1, . . . , In−1 and functions g1, . . . , gn−1

have been constructed so that If ≤ Igk for each k < n. Let ℓn be the tangent
line to the concave function If at the point qn and let In be the interval
where ℓn ≤ Ign−1. The concave function min{Ign−1, ℓn} has a derivative
almost everywhere so we may define gn by Ign = min{Ign−1, ℓn}.

Figure 11: If , Ig, and a tangent
line to If at q0.

Figure 12: If and Ig1.

Figure 13: If , Ig1, and a tangent
line to If at q1.

Figure 14: If and Ig2.
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Figure 15: If , Ig2, and a tangent
line to If at q3.

Figure 16: If and Ig3.

For each n take An to be the averaging operator on the single interval In

and observe that gn = Angn−1. Set Th(x) = limn→∞(An . . . A1)h(x) and
verify that the limit exists and defines an admissible operator. This operator
T applied to the function g satisfies ITg = limn→∞ ITgn = If and hence
Tg = f as required.

This shows that (L1,D∞) is a Calderón couple in the case of Lebesgue
measure on the half line.

4.6. Aside: The modulus of absolute continuity. In working with
the limit above we actually define I(Th) first, then show it is absolutely
continuous and define Th as its derivative. To do this, we require an estimate
of the modulus of absolute continuity of a function Ih on an interval. (The
h may not be positive.)

There is no such thing.

After asking around and trying to look it up in a few texts, I realized why
no one has bothered to mention it. The natural definition would be

ωabs(Ih, [0, x], δ)

= sup
{ J∑

j=1

|Ih(xj)− Ih(xj−1)| : 0 ≤ xj ≤ x,
J∑

j=1

|xj − xj−1| < δ

}

but it quickly turns into something more familiar,

ωabs(Ih, [0, x], δ) =
∫ δ

0

h∗.
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4.7. General measures. Let L1
λ, D∞

λ be spaces of λ-measurable functions
and L1, D∞ be spaces of Lebesgue measurable functions on (0,∞).

Assume, as usual, that Λ(x) = λ(−∞, x] < ∞ for each x ∈ R. Let
ϕ(t) = inf{x ∈ R : t ≤ Λ(x)} be the generalized inverse of Λ and set
Φf = f ◦ ϕ. The non-empty intervals among (Λ(x)−,Λ(x)) are disjoint and
the corresponding averaging operator, Aλ, is a projection onto the range
of Φ.

L1 + D∞
id←−
−→
Aλ

Aλ(L1 + D∞)
Φ←−
−→
Φ−1

L1
λ + D∞

λ

One must check that (fo)∗ = Φ(fo) = (Φf)o.
To see that (L1

λ,D∞
λ ) is a Calderón couple for arbitrary λ, we apply the

case of Lebesgue measure. If
∫ t

0
(fo)∗ ≤

∫ t

0
(go)∗ then

∫ t

0
(Φf)o ≤

∫ t

0
(Φg)o

so there is an admissible T : L1 + D∞ → L1 + D∞ such that TΦg =
Φf . It follows that Φ−1AλTΦ : L1

λ + D∞
λ → L1

λ + D∞
λ is admissible and

(Φ−1AλTΦ)g = f .

4.8. Summary and comparison. Let Int(X1,X2) denote the set of all
exact interpolation spaces between X1 and X2. Here L1 and L∞ are under-
stood to be spaces of λ-measurable functions on R.
The couple (L1, L∞)
• K(t, f ;L1, L∞) =

∫ t

0
f∗

• (L1, L∞) is a Calderón couple
• X ∈ Int(L1, L∞) if and only if X is u.r.i.

The couple (L1,D∞)
• L∞ ⊂ D∞

• K(t, f ;L1,D∞) =
∫ t

0
(fo)∗

• (L1,D∞) is a Calderón couple
• Y ∈ Int(L1,D∞) if and only if ‖f‖Y = ‖fo‖X for some u.r.i. space X
• Y ∈ Int(L1,D∞) and has the Fatou property if and only if Y = D(X),

with identical norms, for some u.r.i. space X with the Fatou property
The dual couple ((D∞)′, L∞)
• (D∞)′ ⊂ L1

• K(t, f ; (D∞)′, L∞) =
∫ t

0
(f↓)∗

• Open question: Is ((D∞)′, L∞) a Calderón couple?
• If Z ∈ Int((D∞)′, L∞) then ‖f‖Z′′ = ‖f↓‖X′ for some u.r.i. space X
• If ‖f‖Z = ‖f↓‖X′ for a u.r.i. space X then Z ∈ Int((D∞)′, L∞)
• Z ∈ Int((D∞)′, L∞) and has the Fatou property if and only if Z =

D(X)′, with identical norms, for some u.r.i. space X with the Fatou
property
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5. Addenda

5.1. Notation. For the convenience of the reader, some symbols and
phrases are listed here according to the subsection where they are first in-
troduced.
Section 2.1: I and I∗

Section 2.2: Monotone envelopes, f↓, f↓, fo (the level function)
Section 2.3: λ-concavity, averaging operators, A, the level intervals of a func-
tion, Af

Section 2.7: Down spaces, D(X)
Section 2.8: The rearrangement of a λ-measurable function, f∗, u.r.i. spaces,
Λ(x)
Section 2.9: Lp

λ(w), Λp(w)
Section 2.10: Operators P , Q, and L
Section 3.1: Quasiconcave functions, Ωα,β

Section 3.2: Operators Hα, Hβ , Hβ
α , the least concave majorant g̃ of a func-

tion g
Section 3.4: f∗∗, Γp(v), Sp(w)
Section 3.7: Θp(u)
Section 4.1: Admissible operator, interpolation space, K-functional, Calde-
rón couple

5.2. Answers to all the exercises. To find an r.i. space whose dual
is not r.i., let δx denote the measure consisting of a single atom of mass
1 at x and set λ = δ1 + 2δ2 + 3δ3. Identify the λ-measurable function f
with (f(1), f(2), f(3)) ∈ R3 and let X be the weighted L1 space with norm
‖(a, b, c)‖X = |a|+ 3|b|+ 4|c|. If two elements of this space are equimeasur-
able, say (a, b, c)∗ = (d, e, f)∗ (with a, b, c, d, e, f ≥ 0,) then an easy argument
shows that either (a, b, c) = (d, e, f) or else a = b = f , and c = d = e. In the
first case the norms are trivially equal and in the second case,

‖(a, b, c)‖X = a + 3b + 4c = 4a + 4d = d + 3e + 4f = ‖(d, e, f)‖X .

This shows that X is a rearrangement invariant space. (Of course, as we
may readily verify by looking at (0, 0, 1) and (3, 0, 0), X is a not a universally
rearrangement invariant space.)

The norm in X ′ is the norm in a weighted L∞ space,

‖(r, s, t)‖X′ = sup
a,b,c≥0

|r|a + 2|s|b + 3|t|c
a + 3b + 4c

= max{|r|, 2
3 |s|, 3

4 |t|}.

To see that X ′ is not r.i. observe that (1, 1, 2)∗ = (2, 2, 1)∗ but

‖(1, 1, 2)‖X′ =
3
2
6= 2 = ‖(2, 2, 1)‖X′ .
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[13] G. Hardy, J. E. Littlewood and G. Pólya: Inequalities. Second Edition. Cam-
bridge University Press, Cambridge, 1952. Zbl 0047.05302, MR 13,727e.

[14] H. P. Heinig and A. Kufner: Hardy operators of monotone functions and se-
quences in Orlicz spaces. J. London Math. Soc. (2) 53 (1996), no. 2, 256–270. Zbl
0853.42012, MR 96m:26025.

[15] H. P. Heinig and L. Maligranda: Weighted inequalities for monotone and concave

functions. Studia Math. 116 (1995), no. 2, 133–165. Zbl 0851.26012, MR 96g:26022.

[16] M. Jodeit Jr. and A. Torchinsky: Inequalities for Fourier transforms. Studia
Math. 37 (1971), 245–276. Zbl 0224.46037, MR 45 #9121.



240 GORD SINNAMON

[17] R. Kerman, M. Milman and G. Sinnamon: On the Brudnyi-Krugljak duality
theory of spaces formed by the K-method of interpolation. To appear.

[18] A. Kufner and L.-E. Persson: Weighted Inequalities of Hardy Type. World Sci-
entific Publishing Co., London, 2003. Zbl 1065.26018, MR 2004c:42034.

[19] G. G. Lorentz: Bernstein Polynomials. Mathematical Expositions, no. 8. Univer-
sity of Toronto Press, Toronto, 1953. Zbl 0051.05001, MR 15,217a.

[20] L. Maligranda: Weighted inequalities for monotone functions. Fourth Interna-
tional Conference on Function Spaces (Zielona Góra, 1995). Collect. Math. 48 (1997),
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