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We consider the behavior of metrical transitivity of invariant and quasi -in variant 
measures under the product-operation and for the operation of inductive limit of 
a countable family of cr-finite invariant measures. 

In the present paper, an approach to some questions of measure theory is 
discussed, which is rather useful in certain situations where a measurable space 
(£, S) is given equipped with a group G of transformations of E and a nonzero 
cj-finite G-quasi-invariant (G-invariant) measure jU defined on S. In many cases, 
\i turns out to be metrically transitive with respect to G (see the definition below). 

It is well known that the metrical transitivity (or, equivalently, ergodicity) for 
invariant and quasi-invariant measures plays a significant role in various questions 
of modern analysis and probability theory. The metrical transitivity of invariant 
and quasi-invariant measures is an important property for these measures. Moreo­
ver, the metrical transitivity of measures is frequently crucial in the process of 
investigation of many interesting topics of the theory of dynamical systems. For 
instance, this property is closely connected with the uniqueness property of 
invariant measures, with nonseparable extensions of invariant and quasi-invariant 
measures, etc. In this connection, see e.g. [1], [2], [3], [4], [5], [6], [9]. 

For our further purposes, it is also convenient to introduce the following 
notation: 
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jV = the set of all natural numbers. 
Q = the set of all rational numbers. 
R = the set of all real numbers. 
[i' = the completion of a given measure //. 
dom (JU) = the cr-algebra on which a given measure \i is defined. 

Let E be a nonempty set and let G be a group of transformations of E. We say 
that a G-invariant (G-quasi-invariant) measure \i on E is metrically transitive with 
respect to G if, for each ^-measurable set X with fi(X) > 0, there exists 
a countable family (gn)nEN <= G, satisfying the equality 

= 0. n(E\{Jg„(X)\ 
\ neN I 

The following example shows that some cr-algebras S admit nonzero cr-finite 
quasi-invariant measures, but do not admit nonzero cr-finite invariant measures. 

Example 1. Let E = T be the unit circle on the Euclidean plane and let G be 
a group of transformations of T, such that: 

a) each element from G is a diffeomorphism of T; 
b) G contains an uncountable subgroup consisting of isometric transformations 

of T; 
c) there exists at least one element from G which is not an isometric transfor­

mation of T 
Let S be the cr-algebra of all Lebesgue measurable subsets of T Then: 
(1) the classical Lebesgue measure on S is quasi-invariant with respect to G; 
(2) there does not exist a non-zero cr-finite G-invariant measure defined on S. 
Note that in this example the metrical transitivity of the Lebesgue measure with 

respect to G plays an essential role. 
It is natural to investigate the question of metrical transitivity for products of 

cr-finite invariant and quasi-invariant measures, assuming that all them are metri­
cally transitive. In this connection, notice that: 

1. If (£/, Gt9 dom (/i/), fii) (1 < i < n) is a finite family of measurable spaces 
equipped with cr-finite invariant measures, then the product space 

i~i Eh YI G» n d°m{^ n & 
\<i<n \<i<n \<i<n \<i<n 

is equipped with a cr-finite ( f ] G,-)-invariant measure; 
1 < i < n 

2. If (EhGhdom(ii),ii)(i e I) is a family of measurable spaces equipped with 
probability quasi-invariant measures, then the product space 

f l Eh Y, Gh Yl dom (/i/), Yi /if 
iel iel iel iel 



is equipped with a probability ( £ G,)-quasi-invariant measure, where ]T G,) denotes 
iel iel 

the direct sum of the groups G, (i e I). 
Sometimes, a more general concept of metrical transitivity is needed. Namely, 

let (£, G,S,/i) be again a space equipped with a cr-finite G-invariant 
(G-quasi-invariant) measure and let H be a subfamily of G. We say that /i is 
metrically transitive with respect to H if, for each ju-measurable set X with 
ji (X) > 0, there exists a countable family (hn)nEN c if, satisfying the equality 

fi(E\[jhn(X)) = 0. 
\ neN I 

Example 2* Let (JE, G, dom (/i), ft) be a measurable space equipped with a cr-fi­
nite G-quasi-invariant measure and let if be a subfamily of G. Then the following 
two assertions are equivalent: 

1. \x is metrically transitive with respect to if; 
2. if Z is an arbitrary ^-measurable subset of E such that fi(h(Z)/\Z) = 0 for 

all transformations /i e if, then we have /i(Z) = 0 or / i ( £ \Z ) = 0. 

Let us consider one more example which yields a purely topological characte­
rization of the metrical transitivity of the classical Lebesgue measure and plays an 
essential role in studyings various properties of this measure. 

Example 3. Let E be a finite-dimensional Euclidean space, let if be a subgroup 
of the group of all isometric transformations of £, and A denote the Lebesgue 
measure on E. Then the following two assertions are equivalent. 

a) I is metrically transitive with respect to if; 
b) for each point x e £, the orbit if (x) is uncountable and dense everywhere in 

E. 
For the proof, see, e.g., [2] or [6]. 
Now, we can formulate the following statement. 

Theorem 1. Let (£,-, G,-,/i/)(l < i < n) he a finite family of measurable spaces 
equipped with o-finite invariant (respectively, quasi-invariant) measures. If each 
measure \i[ (1 < i < n) is metrically transitive with respect to a countable 
subgroup Hi a G,(l < i < n), then the product measure Yl & ^ metrically 

1 < i < n 

transitive with respect to the group J~[ if,. In particular, the measure J~J ^, is 
\<i<n \<i<n 

metrically transitive with respect to Yl Gi-
\<i<n 

The proof of Theorem 1 can be found in [7]. Actually, the argument used in the 
proof yields a more general result. Namely, if (E„G„/i,)(l < i < n) is a finite 
family of cj-finite invariant (respectively, quasi-invariant) measures such that every 
measure fij (1 < i < n — 1) is metrically transitive with respect to some countable 
group Hj cz G,-(l < i < n — 1) and \in is metrically transitive with respect to G,„ 
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then the product measure |~] //,- is metrically transitive with respect to J"] Gt. 
l<i<n \<i<n 

As already mentioned, the notion of metrical transitivity of an invariant measure 
is closely connected with the uniqueness property of the same measure. 

Let again £ be a nonempty set, G be a group of transformations of E and let 
M be a class of a-finite G-invariant measures on E (let us remark at once that the 
domains of measures from M can differ from each other). We say that a measure 
fieM has the uniqueness property with respect to M if, for every measure v e M 
such that dom (fi) = dom (v), there exists a coefficient t e R+ for which the equality 
v = t * n is fulfilled. 

Evidently, if M = {v: v is a n-finite G-invariant measure defined on dom (//)}, 
then the previous definition reduces to the usual definition of the uniqueness 
property of invariant measures (see, e.g., [5], [6], [7]). 

Now, let us formulate an auxiliary statement, which we need in our further 
considerations. 

Lemma 1. Let (£, G) be a space with a transformation group and let \i be 
a nonzero o-finite G-quasi-invariant measure on E. Suppose that G contains an 
uncountable subgroup H acting freely in E. Then there exists a subset of 
E nonmeasurable with respect to fi. 

Lemma 2. Let E be a nonempty set, G be a group of transformations of 
E containing an uncountable subgroup H acting freely in E, and let /i be 
a complete a-finite G-invariant measure on E. Then the following two assertions 
are equivalent: 

1. p. has the uniqueness property; 
2. /i is metrically transitive. 
The proofs of Lemmas 1 and 2 can be found in [5]. 
From Lemma 2 and from [7] we deduce the next statement. 

Theorem 2, Let (£,, G*, /i,-) (i e I) be an arbitrary family of measurable spaces 
equipped with complete invariant probability measures. If each measure ^ (i e I) 
is metrically transitive with respect to the group G; (i e I), then the product measure 
Y[ fii is metrically transitive with respect to the product group Y\ Gt> 
iel iel 

In the space RN there exists a n-finite measure x satisfying the following 
relations: 

(1) x is invariant with respect to some vector subspace of RN which is 
everywhere dense in RN; 

(2) x -S metrically transitive with respect to the direct sum ]T Qh where Qt = Q 
for all i e N. ieN 

Note that ]T Qt is countable, which enables us to apply Theorem 1. More 
ieN 

detailed information about x is presented in [5]. 
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In an analogous manner we can construct a tJ-finite invariant measure for the 
countable product of spaces equipped with nonzero c/-finite invariant measures 
(see, e.g. [10]). Let (£,-, Gi9 fa) (i e N) be a countable family of measurable spaces 
with cT-finite invariant measures. Let us assume that there exist sets 
Ai <-= Ei(ieN), such that 

#(Ai ) = ! 
We put 

An = Ei x £2 x ... x En x m A 

For an arbitrary n e N let Xn denote the measure defined by the formula 

\ l < i < n / M>w ' 

and let Jn be the measure on the space J~J £,- defined by 
ieN 

(VX)fX e ndom{n) ==> Jn{X) = i„(Xn A„) 
\ ieN 

For an arbitrary set X e J"] dom (fi), there exists a limit 
ie/V 

X{X)= limx(X). 

Moreover, the functional x lS a cr-finite ( ^ G,)-invariant measure on the a-algebra 
ieN 

Y\ dom (n) in the space Y\ Ei. For this measure we have 
ieN ieN 

X((YIE)\([JA)) = O. 
W/6N / \ieN / / 

In other words, the set (J A{ is a support of %. In fact, x c a n be considered as an 
ieN 

inductive limit of the given family of measures (/i,-),-6lv. 
The following notion is (in a certain sense) a local version of the uniqueness 

property. This notion was first introduced and discussed in [8]. 
Let £ be a nonempty set, G be a group of transformations of £,S be 

a G~invariant r/~algebra of subsets of £ and let M be a class of G-invariant 
measures defined on S. We say that a measure /xe M has the uniqueness property 
on a set Z e S, if for each measure v e M, the relation 

(\/X)(X eS=>\(XnZ) = [i(X n Z)) 

is satisfied. 
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Lemma 3. If every measure \i\ (i e N) is metrically transitive with respect to 
a countable subgroup Ht c= G* (i e N), then the measure x' has the uniqueness 
property on the set (J A„ with respect to the class M of all a-finite (]T G/)-

neN ieN 

invariant measures /a such that JU(Q At) = L 
ieN 

For the proof see, e.g., [7]. Using this lemma, we can prove the next statement. 

Theorem 3, If every measure fit (i e N) is metrically transitive with respect to 
a countable subgroup Hi a Gt (i e N), then the measure %' is metrically transitive 

with respect to (£(?,•). 
ieN 

The proof of Theorem 2 essentially relies on the fact that the property of 
invariance of a measure can be transferred from an algebra to the generated 
cr-algebra. In general, this fails to be true for the property of quasi-invariance of 
a measure. It is worth noting that the metrical transitivity of measures also cannot 
be transferred from an algebra to the generated cr-algebra. Indeed, let us consider 
the Cantor discontinuum 

-z = n{0;-}*, 
keZ 

where Z is the set of all integers. Furthermore, for x e [0; 1] let us denote by 
/J$ a measure on {0;l}/c such that 

lAx\{0})= x,i$({l})= 1 -x 
and let 

/iw = n^x ) . 
keZ 

Let P(Z) be the group of all permutations of Z and let g(a) = (ag(k))kez9 where 

a = (ak)kez e 2Z, geP(Z), g(k) = k + 1. 

If Gz is the group generated by all transformation g9 then in view of the Birkhoff 
ergodic theorem it turns out that the measure /jM is metrically transitive with 
respect to the group Gz. Take now y = 1 — x and define a Gz-invariant measure 
\i by the formula 

fi = x/iW + y{p}. 

It is possible to prove that the measure \i is not metrically transitive (for details, 
see [6]), but its restriction to the algebra of elementary sets of 2Z is metrically 
transitive. 

Notice that a certain analog of Lemma 2 for quasi-invariant measures is valid if 
the uniqueness property is replaced by the equivalence of these measures. Using 
Lemma 1, we can establish the following statement concerning the behaviour of 
quasi-invariant measures under the operation of their product. 
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Theorem 4. Let (£,-, Gi9 [iij (i el) be a family of probability Grquasi-invariant 
measures. If the group QT G/) contains an uncountable subgroup acting freely in 

iel 

the space E = J~] Eif and v is another a-finite QT Gi)~quasi-invariant measure on 
iel iel 

E such that dom (v) = dom (J~[ /i/)', then v is absolutely continuous with respect to 
ІЄІ 

(FJ/i/)', i-e- for eac'h set X e dom (["[ ///)', we have the implication 
iel iel 

Y\^'(X) = 0=>v{X) = 0. 
iel 

Since v is absolutely continuous with respect to (Or^/1* w e c a n aPPly * e 
iel 

classical Radon-Nikodym theorem to these two measures. Hence there exists 

a (Y\ /i/)r-measurable function 
iel 

il/:Y\Ei->R+ 

iel 

such that the equality 

\ iel ' 

is fulfilled for every ([~J /i/)'-measurable set X. Clearly, if the function \jj is strictly 
iel 

positive, then the measures v and (fj/e/ A-*)' arc equivalent. 

Remarks Assume that each group G, (i e I) acts freely in the space Et (i e I) and 
is nontrivial, i.e. G, contains at least two transformations. If the set / isuncount-
able, then the group ^]G/ is uncountable, too, and acts freely in the space 

iel 

Y[ E{. Therefore, Theorem 4 can be applied to this situation. 
iel 
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