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Abstract. We present a method for determining the context-dependent
denotation of simple object-denoting mathematical expressions in math-
ematical documents. Our approach relies on estimating the similarity
between the linguistic context within which the given expression occurs
and a set of terms from a flat domain taxonomy of mathematical concepts;
one of 7 head concepts dominating a set of terms with highest similarity
score to the symbol’s context is assigned as the symbol’s interpretation.
The taxonomy we used was constructed semi-automatically by combin-
ing structural and lexical information from the Cambridge Mathematics
Thesaurus and the Mathematics Subject Classification. The context infor-
mation taken into account in the statistical similarity calculation includes
lexical features of the discourse immediately adjacent to the given expres-
sion as well as global discourse. In particular, as part of the latter we
include the lexical context of structurally similar expressions throughout
the document and that of the symbol’s declaration statement if one can
be found in the document. Our approach has been evaluated on a gold
standard manually annotated by experts, achieving 66% precision.

1 Introduction

Consider the following discourse fragment from [14]:

. . . Let f : X → B be a surjective morphism and let ωX/B denote the
relatively canonical sheaf of differentials. Let us assume that the generic
fibre is smooth of genus g and let us denote by δ the number of singular
points in the fibres. We write Λn for the determinant of f*ωn

X/B and

λn for the degree of Λn . . . .
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Even a layperson, without any knowledge whatsoever on the subject matter
of the discourse from which the above fragment has been extracted, is capable
of inferring the name of the object which the boxed expression, Λn, denotes:
In the same sentence in which the expression in question occurs she finds a
statement “We write Λn for the determinant of f*ωn

X/B” from which she can
infer that Λn must denote an object called “determinant”. She may not know
what a determinant is specifically and how to compute it, but she can at least
identify the domain term that names the object for which the symbol stands in
order to find its meaning, for instance, in a textbook.4

The above-quoted fragment exemplifies a fairly typical way in which
mathematical discourse is written. While mathematical documents abound
in symbols, a large proportion of the symbols used are explicitly introduced in
the discourse or stated to denote specific objects. A corpus study on symbol
declarations in mathematical writing revealed that around 70% of object-
denoting symbolic expressions randomly selected from mathematical scientific
papers were explicitly stated to denote objects of specific types [15].

In computational linguistics, the problem of identifying which sense of
a polysemous word is meant in a given sentence is known as word sense
disambiguation (WSD) and has been one of the active research areas since the
beginning of interest in word sense disambiguation in the forties.5 Clearly, an
automated text understander, if it is to make inferences about a discourse, must
be in a position to discriminate between the meanings of words and correctly
recognize the meaning in context. With the increasing interest in automated
processing of technical and scientific documents, in particular, with the view
to building interactive digital libraries of scientific writing6 the same holds of
automated processing of scientific prose. In particular, in case of exact sciences
which make use of symbolic notation, identifying the meaning of not only
the linguistic expressions, but also formal expressions is an obvious task and
challenge. Interpretation of symbolic mathematical expressions can be a useful
source of information in a number of sub-tasks in a mathematical document
processing pipeline for digitizing mathematics. For instance, in the task of
parsing mathematical notation, i.e. identifying the structure and (compositional)
semantics of symbolic expressions, the information about the expressions’
interpretation can guide the selection (or weighing) of likely parse candidates.
This could be useful in processing LATEX documents as well as in mathematical
OCR, in particular, in handwriting recognition; for instance, in examples such as

4 Note that for the purposes of the knowledge-poor methods discussed in this paper, it
is sufficient to determine that “determinant of f*ωn

X/B” denotes an object via a domain
term (“determinant”). In fact, as a reviewer pointed out, in this particular example,
this determinant is a sheaf over a smooth fibration, not a number computed from
a matrix, as a non-expert might suspect. This shows that for more knowledge-rich
methods, a tight collaboration between authors and linguists is of essence.

5 For a recent comprehensive overview of the state of the art, see [8].
6 (See, for instance, EuDML (http://www.eudml.eu/) or WDML (http://www.

mathunion.org/WDML/) for recent efforts in this direction.)

http://www.eudml.eu/
http://www.eudml.eu/
http://www.mathunion.org/WDML/
http://www.mathunion.org/WDML/
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above, in deciding between horizontal adjacency and super-/subscript relation
when the super-/subscript is written partly across the centre horizontal line of
the expression.

Our previous study on disambiguating symbolic expressions has shown
that the local linguistic context, within which mathematical expressions are
embedded, provides a good source of information for recognizing a class of
objects to which a mathematical expression belongs [5]. However, the approach
addressed only those mathematical expressions which are syntactically part
of a nominal group and, in particular, are in an apposition relation with an
immediately preceding noun phrase; i.e. the expressions addressed came from
a linguistic pattern: “. . . noun_phrase symbolic_math_expression . . . ”, as in the
example: “. . . the inverse function ω1 . . . ”. Only the immediate left linguistic
context of a symbolic was used in the disambiguation process, despite the fact
that mathematical texts are known to introduce notations and concepts as they
go along.

In this paper we propose a new approach to interpreting mathematical
expressions. Our interpretation strategy is inspired by recent computational
WSD approaches which use statistical co-occurrence measures to estimate
semantic relatedness between lexical contexts. In our case, co-occurrence
statistics are computed using on the one hand, both the local discourse within
which the expression under analysis is embedded as well as the relevant
segments of the entire document (global discourse) and, on the other hand,
sets of terms from a lexical resource we built. As in [5], we use a lexical
resource of mathematical terms which corresponds to a flat taxonomy of
mathematical objects and which provides an association between sets of domain
terms which name mathematical objects and names of broader semantic classes
of mathematical objects. The taxonomy has been constructed semi-automatically
by combining structural and lexical information from the Mathematics Subject
Classification and the Cambridge Mathematics Thesaurus. The class names
themselves serve as symbolic interpretations of mathematical expressions under
analysis.

The class of expressions addressed In this work we attempt to interpret only simple
object-denoting mathematical expressions. “Simple” refers to the expressions’ high-
level structure: The terms may be atomic identifiers and super-/sub-scripted
atomic identifiers; the expression(s) in the super-/subscripts can be of arbitrary
complexity. For instance, Λn and ωX/B are simple expressions, while f : X→ B
is not. Throughout this paper, the term “simple mathematical expression(s)”
refers to this class of symbols.

Problem statement We formulate the interpretation problem as follows: Given
a mathematical document containing a target mathematical expression of the
type described above, a simple object-denoting term, can we indicate one (or
more) concepts from a predefined set of concepts which corresponds to a
coarse-grained denotation of the given expression?
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Outline The paper is organized as follows: In Section 2 we introduce the corpus
from which the documents we analyze stem and outline the preprocessing steps.
In Section 3 we introduce the taxonomy of mathematical objects constructed
for this study. In Section 4 we describe the approach to interpreting simple
object-denoting mathematical terms: We introduce the similarity measures, the
two types of context based on which similarity is computed, and the algorithm
itself. In Section 5 we summarize the creation of a gold standard for evaluation,
the evaluation measures we used, and the results themselves.

2 The Data and Preprocessing

For the purposes of this work we used 10,000 mathematical documents from the
arXMLiv collection, processed by the LaTeXML system [10,12]. arXMLiv is subset
of arXiv, an archive of electronic preprints of scientific papers in the fields of,
among others, mathematics, statistics, physics, and quantitative biology7. The
documents we used stemmed from the mathematics subset of arXiv.

LaTeXML uses three formats for representing mathematical expressions of
which two are relevant for this study: In the XMath format mathematical
expressions are encoded as a linear sequence of tokens, with the explicit
requirement for LaTeXML not to generate any semantic parse tree beyond the
token level (unless the semantics is explicitly encoded in the LATEX source). The
presentation format, MathML, is a widely used W3C standard for rendering
mathematical content on the Web [1].8 Figure 1 shows the XMath and MathML
representations of the expression D/D0. The two formats are used to retrieve
simple mathematical terms as defined in the Introduction.

2.1 Tokenization and identification of target expressions

Each of the 10,000 documents in the corpus was word- and sentence-
tokenized,9 and the words were stemmed.10 Then mathematical expressions
were normalized by replacing them with unique identifiers and the mappings
between the identifiers and the two relevant representations were stored for
each mathematical expression. Simple mathematical expressions were identified

7 http://www.arxiv.org
8 http://www.w3.org/Math/
9 A sentence is understood, in a standard sense, as a grammatical unit consisting of one

or more clauses. Sentence-tokenization was performed using a rule-based tokenizer
based on a standard set of end-of-sentence punctuation marks and a number domain-
specific rules for sentences ending with mathematical expressions which may not end
with end-of-sentence punctuation.

10 We use stemming as a knowledge-poor substitute for lemmatization. This solution has
obvious drawbacks, however, context-sensitive lemmatization is out of scope at the
time this work is conducted because we do not have access to a large-scale dictionary
for mathematical discourse, nor to any standard language processing tools for this
domain.

http://www.kwarc.info/projects/arXMLiv/
http://www.kwarc.info/projects/arXMLiv/
http://arxiv.org/
http://arxiv.org/
http://www.w3.org/Math/
http://www.arxiv.org
http://www.w3.org/Math/
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<Math mode="inline" tex="{\cal D}/{\ cal D}_{0}" xml:id="S1.p3.m6">
<XMath>

<XMTok role="UNKNOWN" font="caligraphic">D</XMTok>
<XMTok meaning="divide" role="MULOP" style="inline">/</XMTok>
<XMTok role="UNKNOWN" font="caligraphic">D</XMTok>
<XMApp role="POSTSUBSCRIPT" scriptpos="2">

<XMArg rule="Subscript">
<XMTok meaning="0" role="NUMBER">0</XMTok>

</XMArg>
</XMApp>

</XMath>
</Math>

<m:math display="inline ">
<m:mrow>

<m:mi mathvariant=" script ">D</m:mi>
<m:mo>/</m:mo>
<m:msub>

<m:mi mathvariant=" script ">D</m:mi>
<m:mn>0</m:mn>

</m:msub>
</m:mrow>

</m:math>

Fig. 1. XMath (top) and MathML (bottom) representations of the expression D/D0

by analyzing the MathML and XMath representations11 and the results were
manually verified for the expressions used for the gold standard.

2.2 Domain term identification

The purpose of identifying mathematical domain terms was two-fold: First, we
identify domain terms in the Mathematics Subject Classification while building
the lexical resource for interpretation and, second, we use domain terms in
the course of identifying symbol declaration statements which are used in the
interpretation process.

To identify domain terms, we implemented a modified version of the
algorithm presented in [4]. In our implementation, only n-gram counts are
used and no linguistic information; in particular, we do not have part of speech
(POS) tag information which the authors use to identify noun phrases.12 We

11 We omit the algorithm here.
12 Again, due to the notorious lack of linguistic processing tools for mathematical

discourse we opt for a knowledge-poor approach here. We are presently working
on building up an annotated corpus of mathematical discourse in order to train a

http://www.w3.org/Math/
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Table 1. An excerpt from MSC 2010

40-XX SEQUENCES, SERIES, SUMMABILITY

40 Axx Convergence and divergence of infinite limiting processes
40 Bxx Multiple sequences and series
40 Cxx General summability methods
40 Dxx Direct theorems on summability
40 Exx Inversion theorems
40 Fxx Absolute and strong summability
40 Gxx Special methods of summability
40 Hxx Functional analytic methods in summability
40 Jxx Summability in abstract structures

therefore employed a tailored stop-word list including items which are not
closed-class words and not part of classical stop-word lists, but which are also
not likely to be part of names of mathematical domain objects. These included,
for the most part, common verbs.13

The threshold for discarding n-gram candidates was set at five or less
occurrences in the corpus (low-frequency n-grams). As in the original algorithm,
the remaining n-grams were scored by taking into account their length,
frequency, and the number of their nested occurrences in longer n-grams.
The score threshold for discarding candidate domain terms was set at 10.14

3 A Taxonomy of Mathematical Objects

3.1 The resources

Mathematics Subject Classification The Mathematics Subject Classification15

(MSC) is a hierarchically organized classification of mathematical domains
encompassing over 5,000 sub-areas of mathematics and has been developed
with the view to helping retrieval of documents from the AMS Mathematical
Reviews Database (MathSciNet)16 and the Zentralblatt MATH (ZMATH)17.
Table 1 shows an excerpt from the MSC 2010 representing the first level of the
“SEQUENCES, SERIES, SUMMABILITY” class. Each MSC subject class consists
of a class code and a high-level class name, and includes a list of mathematical
sub-areas subsumed under the given class. The sub-ares, in turn, may also

POS tagger for the domain. Small-scale experiments with tagging using off-the-shelf
POS-tagging models yielded, unsurprisingly, highly sub-standard results, therefore
we aim at training a dedicated tagger for mathematical discourse.

13 The extended stop-word list did not, however, include prefixes which do occur in
mathematical object names, such as “semi-”, “quasi-”, “sub-”, “pseudo-”, etc., be it
hyphenated or not.

14 For the details of the algorithm, please refer to the cited article.
15 http://www.ams.org/mathscinet/msc/
16 http://www.ams.org/mathscinet/
17 http://www.zentralblatt-math.org

http://www.ams.org/msc/
http://www.zentralblatt-math.org/zmath/
http://www.ams.org/mathscinet/msc/
http://www.ams.org/mathscinet/
http://www.zentralblatt-math.org
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function ExtractMinimalLengthPaths(MSC, CMT)

MathTerms := findMultiwordTerms(MSC)
removeModifiers(mathTerms)
TopNode := CMT node with no node along “broader”-relation
SetOfPaths := ∅
foreach Term in Mathterms

if Term occurs in CMT
MinLengthPath=Dijkstra(TopNode, Term)
add MinLengthPath to SetOfPaths

return SetOfPaths

Fig. 2. Pseudo-code of the minimal length path extraction algorithm

include sub-classes which denote more fine-grained topical distinctions within
the given sub-domain. Using the domain term identification algorithm outlined
above, we automatically extract mathematical domain terms contained in the
names of the MSC classes.

Cambridge Mathematics Thesaurus The University of Cambridge Mathematics
Thesaurus18 (CMT) is part of the Millennium Mathematics Project.19 The CMT
contains 4,583 concepts together with short explanations and thesaurus relations
such as “broader/narrower” and “references/referenced by”. We exploit the
thesaurus’ hierarchy by following the “broader/narrower” relations in order to
find hypernyms of mathematical terms.

3.2 Building the taxonomy

Automated processing First, in order to obtain a set of concepts, multi-word
mathematical terms were extracted from the MSC using a variant of the domain
term identification algorithm from [4] (function findMultiwordTerms in the
pseudo-code in Figure 2). The extracted multi-word terms were simplified
to single-word terms by removing their adjectival or noun modifiers using
lexical rules (removeModifiers). The obtained set consisted of 341 unique
mathematical concept names. 170 of these were also found in the CMT and
were used in further automated processing.

Next, we used the “broader/narrower” relations from the CMT to traverse
the CMT graph in order to retrieve the hypernyms of the extracted MSC terms.
For each of the 170 terms, the algorithm first finds the root of the CMT graph
(a node without any parent nodes along the “broader” relation) and then looks
for the shortest path down to the given term, i.e. we find the minimal sub-graph
induced by the set of common higher mathematical concepts. The algorithm is
summarized in Figure 2.

18 http://thesaurus.maths.org
19 http://mmp.maths.org/

http://www.ams.org/msc/
http://thesaurus.maths.org
http://mmp.maths.org/
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Algebraic object : Set : Semigroup : Monoid
Attribute : Quality : Property : Physical property : Position
Number : Real : Rational : Integer : Divisor

Fig. 3. Examples of minimal length paths extracted from the CMT

The obtained minimal length paths serve as a starting point to clustering
mathematical concepts under higher-level concepts. Consider, for instance,
the extracted minimal length paths corresponding to the concepts Monoid,
Position, and Divisor shown in Figure 3. These paths allowed us to further
manually classify the concepts as more general object types, e.g. Monoid as
an Algebraic object, Position as a Qualitative attribute, and Divisor as a
Number object. The manual classification process is summarized below.

Manual processing We manually transformed the obtained minimal length
paths into paths of length at most two (i.e. each term/concept has at most
one intermediate hypernym/super-concepts) obtaining the following top-level
classes of mathematical objects:

1. Algebraic object : General algebraic object,
2. Algebraic object : Mapping or function,
3. Number object,
4. Notational and logical object,
5. Geometric object,
6. Qualitative attribute,
7. Method or Process.

The top-level classes were selected in such way that they are the least
ambiguous in terms of classifying a mathematical concept into one of them.
We therefore merged two closely related classes: Algebraic object : Number
object and Quantitative attribute because the distinction between them was too
fine-grained, obtaining a common class for number concepts, Number object.
The class Algebraic object : Mapping or function is the result of merging
Algebraic object : Mapping and Algebraic object : Function; In the CMT
Function is subsumed both under Algebraic object directly and under Map
which is also subsumed under Algebraic object, resulting in a cycle. In order
to avoid ambiguity in interpretation, these two classes were merged.

170 MSC concepts were already subsumed under the above-mentioned
classes. We then manually classified the remaining 171 MSC concepts which
were not found in the CMT, obtaining a flat taxonomy of mathematical objects.
An excerpt of the taxonomy is shown in Table 2.

While the flat structure captures the complexity of the relations between
mathematical object types only at a coarse-grained level, this is sufficient for our
current purposes for two reasons: First, given the knowledge-poor approach
we pursue, we aim at a high-level classification at present, and second, the
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Table 2. An excerpt from the taxonomy/the lexical resource

Mathematical Set of subsumed mathematical concepts
object class
Algebraic object: array, element, field, intersection, group, module, matroid, matrix,

ring, category, groupoid, set, domain, neighborhood, pair, range,
region, semigroup, monoid, . . .

General algebraic
object
Algebraic object:
Mapping or

code, correspondence, function, functor, intersection, metric,
morphism, order, transformation, bundle, functional, mapping,
norm, operator, kernel, homomorphism, . . .function

Number object number, quaternion, harmonic, dimension, prime, limit, index,
exponent, real, error, rational, fraction, integer, divisor, factor,
quotient, residue, constant, difference, . . .

Notational or equation, formula, notation, symbol, variable, unknown, index,
form, representation, scheme, condition, conjecture, constraint,
convention, criterion, hypothesis, lemma, . . .

logical object

Geometric object curve, path, trajectory, diagram, figure, polygon, square, graph,
network, lattice, tessellation, tiling, polyhedron, torus, space, . . .

Qualitative concentration, position, property, invariant, symmetry, singularity,
convexity, complexity, additivity, adjunction, coherence, compact-
ness, computability, connectedness, . . .

attribute

Method algorithm, inference, calculation, computation, inverse, method,
transformation, dilation, reduction, glide, differentiation, integra-
tion, measurement, operation, . . .

or process

purpose of the taxonomy is to serve as a lexical resource with all the 341 MSC
terms subsumed under one of the above-mentioned names of mathematical
object classes which correspond to high-level common denotations of the sets
of terms.20 Section 4.2 shows how the sets of terms are matched with linguistic
contexts in which a symbolic mathematical expression, whose interpretation is
to be disambiguated, occurs. The present approach to disambiguation is at its
core similar to the one introduced previously in [5], however, the new lexical
resource for interpretation is superior by comparison with the one we used
earlier in several respects: First, there is a clear relation between the top-level
classes and the subsumed concepts: in all the cases the relation is of is-a type.
Secondly, as mentioned above, the sets of terms themselves are coherent: they
cluster terms which are hyponyms of a more general term which all of the
member terms denote (at a coarse level of detail). Finally, the lexical resource
comprises a smaller number of classes which should remove some spurious
ambiguity in selecting a type as an interpretation of a mathematical expression.

20 Note that EngMath [6], an existing ontology of mathematics, cannot be directly used
for this purpose; EngMath is a formal ontology developed with the goal of serving
as a machine-readable formal specification. Also the scope of EngMath is focused
on mathematics in the engineering domain; it encompasses the following concepts:
scalar, vector, and tensor quantities, physical dimensions, units of measure, functions
of quantities, and dimensionless quantities (ibid.)
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4 Interpreting Simple Object-Denoting Expressions

The process of interpreting mathematical expressions consists of three stages:
First, the documents are preprocessed and mathematical expressions which are
targets for interpretation, i.e. simple mathematical expressions, are identified
(see Section 2). Then for each target mathematical expression, we calculate the
similarity between the linguistic context in which it occurs and each set of
mathematical terms in the lexical resource. The final interpretation of target
expression is assigned using a scoring function.

4.1 Word-to-word similarity

In the disambiguation process we use similarity measures in order to decide
which sets of terms from the lexical resource is closest to the lexical context of a
target expression. The similarity between two words is calculated as follows:

sim(w1,w2) =

{
Dice(w1,w2) when Dice(w1,w2) > λ

Co-occurrence-based measure otherwise
(1)

where Dice(w1,w2) is the Dice’s character-based word-to-word similarity:21

Dice(w1,w2) =
2 ∗ ncommon_bigrams

nbigrams_w1 + nbigrams_w2

(2)

and Co-occurrence-based measure is one of the following measures of lexical
co-occurrence: Pointwise Mutual Information (PMI), Mutual dependency (MD),
Pearson’s χ2, and Log-likelihood ratio (LL). All of these are standard corpus-
based lexical association measures and have been previously successfully used
in various computational linguistics tasks to estimate the relative probability
with which words occur in proximity [13,3,2]. Based on experimentation we
used λ = 0.7 as the threshold for using string-based similarity.

4.2 The interpretation algorithm

Before presenting the core interpretation algorithm we make precise what
constitutes the components of the linguistic context of a target expression
which we take into account in the course of interpretation.

The context of a mathematical expression For each target mathematical expression
which we attempt to interpret, we take into account the global and local lexical
context CC = CL ∪ CG consisting of two sets of domain terms:22

CL is the set of domain terms which occur in the local context of a mathe-
matical expression, more specifically, within a window of textual content

21 Dice accounts for different inflectional variants of words in the lexical resource and in
the linguistic context of a mathematical expression.

22 Lexical mathematical domain terms are meant here.
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preceding and following the given mathematical expression, i.e. within the
immediately preceding and following linguistic context,23

CG is the set of domain terms which occur in the global context of the
entire document. More specifically, we consider terms which occur in the
declaration statements of the given target expression or of other expressions
which are structurally similar to the target expression, according to the
notion of structural similarity defined in [15].24

Each extracted mathematical term from CL and CG contributes to the final
similarity score proportionally to its importance in the disambiguation process.

Disambiguation To infer the meaning a mathematical expression we use
an approach inspired by methods of word sense disambiguation from
computational linguistics which use inventories of word senses and measures
of semantic similarity to map a word in context to its possible sense(s) from an
inventory; see, for instance, [11,9].

Our approach to interpreting mathematical expressions uses the mathemat-
ical object classes shown in Table 2 on the left as the the inventory of possible
“senses” of symbolic mathematical expressions. In order to identify the class
which corresponds to the given use of a target mathematical expression, we map
the mathematical terms (w) from the expression’s context, CC (defined above),
to the mathematical terms (term) subsumed under each class of mathematical
objects from the taxonomy (Class). To accomplish this, we adapt the approach
to estimating the semantic similarity of two text segments T1 and T2 proposed
in [9]. As estimates of semantic similarity between sets of words, we use the
measures presented in Section 4.1. The Context-to-Class similarity is calculated
using the following scoring function:

Sim(C, Class) =
∑
w∈C

maxSim(w, Class)× cw(w), where (3)

maxSim(w, Class) = max
term∈Class

[sim(w, term)] (4)

23 In the current implementation we used the window of ±2 sentences with respect to
the sentence within which the target mathematical expression occurs. Paragraph and
section boundaries were not considered at this time.

24 Identification of declaration statements was performed automatically by applying a
set of regular expressions to preprocessed documents in which domain terms have
been identified (see Section 2). The set was bootstrapped from a small set of seed
patterns using the simple variant of the anchored patterns approach proposed in [7].
Using the final set of bootstrapped patterns, the algorithm achieved retrieval precision
of 89% and recall of 77% on a test set. We do not include the details of the approach
here. For a general description of the method, see [7].

Following [15] we consider two simple expressions to be structurally similar if they
share the same top-level node in the expression tree and their expression trees have
the same structure modulo the structure of the super-/subscript terms. For instance,
ωi and ωn−1 are structurally similar according to these criteria. By contrast, P2

c and
Ak

n are not similar because they differ in the top-node identifier.
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function findCandidateInterpretations(targetME)

CG := ∅, CL := ∅
foreach occurrence of targetME
if occurrence is explicitly declared

add definiendum to CG

foreach ME structurally similar to targetME
foreach occurrence of ME

if occurrence is explicitly declared
add definiendum to CG

select ±2-sentence context window W of targetME
foreach word w in W

add w to CL

foreach C in {CL,CG}

foreach Class in Taxonomy
compute Sim(C, Class)
update maxSim(C, Class)

return Class corresponding to maxSim(C, Class)

Fig. 4. Pseudo-code of the interpretation algorithm; targetME is a simple mathematical
expressions as defined in the Introduction

Sim(C, Class) is computed for each class of concepts from the taxonomy and
represents the similarity score between the context of the given mathematical
expression and the domain terms which name concepts from the given class,
C is CL or CG (see above), sim(w, term) is the word-to-word similarity defined
by Equation 1, and cw(w) is a weight (see below). The pseudo-code of the
interpretation algorithm is shown in Figure 4.

The weight cw(w) is computed according to the following criteria:

– For term in CL (local context; here: window of ±2-sentences) we consider
the distance to the target mathematical expression with the weights
decreasing with the distance in words between the term and the target
expression,

– For terms in CG (global context; declarations) the weights decrease from
the first to the last occurrence of the expression in the document. This
reflects the fact that in most cases symbols are declared with their first
occurrence [15].

The final score for a Class as an interpretation of the given mathematical
expression is computed as a combination of the local and global context scores:

Score(CC, Class) = αSim(CG, Class) + (1 − α)Sim(CL, Class) (5)
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where Sim(C, Class) was defined by Equation 3. computed for all classes
from the taxonomy. The class with the maximum score is assigned as the
interpretation of the given mathematical expression.25

5 Evaluation

In order to evaluate the interpretation procedure we created a gold standard
set of mathematical expressions with interpretations provided by experts. The
interpretation algorithm was run on the gold standard and two evaluation
measures were computed for different values of the α parameter.

5.1 The gold standard

The evaluation set Mathematical expressions for the gold standard set were
selected as follows: A set of 200 mathematical documents was randomly selected
from the preprocessed corpus described in Section 2. Then one random simple
mathematical expression was picked from each of the selected documents
yielding a set of 200 occurrences of different mathematical expressions. The
selected mathematical expressions were annotated by experts as described
below.

Procedure The data for the gold standard was randomly split into 7 disjoint
annotation sets each of which contained from 28 to 30 mathematical expressions.
The annotation was performed using a web-interface we created. Mathematical
expressions were presented to the annotators together with the entire document.
The annotators were asked to assign a type to a symbolic expression highlighted
in the document. An excerpt from the annotation instructions is shown in
Figure 5. The 7 object types listed in the instructions directly corresponded to
the classes from the taxonomy we used as a lexical resource.

Annotators The annotators were recruited on voluntary basis from colleagues
with strong mathematical background. We contacted 18 candidate annotators,
out of whom 7 responded: five were computer scientists (three post-graduates
and two with doctorates), and two were working mathematicians with
doctorates in mathematics. Two sets were moreover annotated by the second
author of the paper. Four sets were annotated by 2 annotators in order to verify
agreement. 7 identified disagreement cases were adjudicated by the authors of
the paper.

25 Note that the lexical similarity-based approach as such is language-independent;
it is likely, though, that for a heavily inflected language a different threshold for
word-to-word similarity would have to be used. However, because the lexical resource
we use is English and because the rules for identifying declaration statements are
language-specific, the evaluation is currently limited to English discourse.
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Your task is to annotate symbolic mathematical expressions in mathematical documents.
For each indicated expression we ask you to provide the information on the type of
object the expression denotes in the given context.

For this task we distinguish seven general classes of mathematical objects or concept
types [. . . ]. These are:

1. General algebraic objects, such as “array”, “element”, “field”, “intersection”, “group”,
etc.
2. Algebraic objects which denote correspondences, i.e. mappings or functions, such as
“correspondence”, “function”, “functor”, “intersection”, “metric”, “morphism”, etc.
. . .
7. Objects denoting methods or processes, such as “algorithm”, “inference”, “calculation”,
“computation”, “inverse”, “method”, etc.

Many mathematical objects could be classified as more than one of the above types.
For instance, many algebraic objects could be also classified as geometric objects. A
manifold is such an example: it can be viewed as a set on the one hand, i.e. a general
algebraic object, or, in geometry, as a mathematical space with a dimension, a geometric
property, i.e. a geometric object. In cases of such ambiguities, please annotate the type
corresponding to the sense in which the object is used in the given context.

Fig. 5. Excerpt from the annotation instructions

5.2 Evaluation measures
We use precision (P) and mean reciprocal rank (MRR) as evaluation measures.
In classification, precision is the proportion of correctly labeled examples out of
all labeled examples. MRR is one of the standard measures used in information
retrieval for evaluating performance of systems which produce ranked lists of
results, for example, ordered lists of documents retrieved in response to a query.
It is the inverse of the rank of the expected (best) result. More specifically,

P =
tp

tp + fp
× 100 and MRR =

1
N

N∑
i=1

1
ranki

where tp is the number of true positive classifications, fp is the number of false
positives, N is the number of evaluated instances, and rank is the position of
the correct classification in the list of results.

5.3 Results
Figure 6 shows the results plots for both evaluation measures at different
values of α (the parameter which weighs the contribution of local vs. global
context similarity scores to the overall score). The lines correspond to the
different word-to-word similarity measures: Pointwise Mutual Information,
Mutual Dependency, χ2, and Log-Likelihood (see Section 4.1). Solid lines denote
precision, dashed lines mean reciprocal rank.
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Fig. 6. Precision and mean reciprocal rank plots.

In general PMI and MD yield better results than χ2 and LL on our data
set. The maximum precision and mean reciprocal rank scores are obtained for
α = {0.40, 0.45, 0.50, 0.70} using PMI as the similarity measure (P = 66.50%,
MRR = 0.79). The general pattern for PMI and MD appears the same: the
combination of local and global context (α mid-range) gives better results than
local or global context alone (α = 0 and α = 1, respectively). While yielding
somewhat lower results, the MD plot line appears flatter than the PMI plot
on both measures, that is, MD is more stable across the different values of α
than PMI. Both χ2 and LL perform best when relying on the global context
alone, that is, when the interpretation is based solely on the explicit symbol
declaration.

6 Conclusion

We presented a knowledge-poor method of finding a denotation of simple object-
denoting symbolic expressions in mathematical discourse. We have shown that
the lexical information from the linguistic context immediately surrounding
the expression under analysis as well as the lexical information from the larger
document context both contribute to achieving the best interpretation results.

Considering that the presented method relies on only limited linguistic
knowledge (co-occurrence statistics over documents preprocessed using
stemming and stop-word filtering), the precision results we have obtained
encourage further exploration of the approach, in particular, extending it
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with more linguistically-informed analysis. We are presently annotating a
subset of the corpus used in the experiments described here with parts of
speech tags in order to train domain-specific POS-tagging models. We expect
several improvements due to POS-tagging, among others, better domain term
identification and, consequently, better identification of declaration statements,
as well as access to shallow syntactic analysis of the immediate context of
mathematical expressions.

We have also shown a method of constructing a flat taxonomy of
mathematical objects which can serve as a lexical resource for corpus similarity-
based approaches. Multi-annotator tagging of a subset of a gold standard by two
annotators, using the classes from the taxonomy as annotation labels, resulted
in only 7 disagreements on 112 instances. In spite of the low disagreement count,
there are at least two obvious problems with the evaluation presented here: First,
admittedly, the annotation with the taxonomy classes and the evaluation was
conducted on a small-scale. We are planning further annotation experiments in
order to further validate the suitability of the taxonomy for the mathematical
expression interpretation task. Second, from a mathematical perspective, the
taxonomy we constructed is disappointingly high-level. However, this is about
all we can hope for with knowledge-poor methods. As we already remarked
in footnote 4, knowledge-rich methods will need a tight collaboration between
experts and linguists. The former need to supply machine-understandable
mathematical domain ontologies (classifications of mathematical objects and
relations between them) while the latter need to adapt parsing and semantic
analysis algorithms to take advantage of these and also to accomodate the fact
that these ontologies are dynamic, i.e., change over the course of a document
(or document collection). We conjecture that ontologies needed for document
processing tasks are best created by semantically annotating (and thus partially
formalizing) the mathematical documents that introduce them — a process that
will have to involve linguistic analysis to scale. The knowledge-poor methods
presented in this paper can be viewed as a small step in this direction.
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