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SKETCHES OF NONLINEAR
CALDERON-ZYGMUND THEORY

GIUSEPPE MINGIONE

ABSTRACT. I am going to survey a number of recent non-linear regularity
results that, put together, outline what might be considered a non-linear
version of Calderén-Zygmund theory.
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1. INTRODUCTION

Calderén-Zygmund (CZ) theory, in its classical formulation, is concerned
with determining, possibly in a sharp way, the integrability and differen-
tiability properties of solutions to linear elliptic and parabolic equations in
terms of the regularity of the given data. In these notes we shall briefly out-
line some results aimed at forming a non-linear version of the classical CZ
theory [21], [22], where linear equations are replaced by quasilinear, possibly
degenerate ones of the type

—diva(z, Du) = u (1.1)
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defined on a bounded domain 2 C R™. Here p is a Borel measure in R"
with finite total mass. More in general, we shall also consider equations of
the type

—diva(z, Du) = H, (1.2)

where H is a distribution having a suitable structure. The chief model
example we have in mind involves the p-Laplacean operator

—div(|Du[P~?Du) = u, H. (1.3)

In some cases we shall also consider systems. The general assumptions con-

sidered here, and modeled on the structure properties of the operator in

(1.3), prescribe that a: Q x R®™ — R"™ is a Carathéodory vector field — and

therefore a priori only measurable with respect to x — satisfying the following

strong p-monotonicity and growth assumptions:

{ V(8?4 212+ |22?) P22 25 — 21> < (a(w, 22) — al@, 21), 22 — 21) (1.4)
la(z, 2)| < L(s* + |2*)P~1/2 '

whenever x € Q, z,21,20 € R™, where 0 < v < L. Here we initially take
p > 1, s > 0; further restrictions on the range of p will be eventually speci-
fied. While assumptions (1.4) are nearly minimal in order to obtain certain
low order regularity results, when instead looking for higher regularity on
— for instance differentiability estimates on Du — we shall need additional
regularity on the vector field and we shall for instance consider the following;:

la(z, 2)| + (52 + |2|)?|a. (z, 2)| < L(s® + |z[2)®~D/2,
v(s? 4 [212)P7D2|N2 < (az(x, 2)A, A), (1.5)
la(, 2) — a(xo, 2)| < Lw(|z — mo) (s + |2[*)P~1/2,

whenever z,zg € 0, z, A € R", where 0 < v < L and s > 0. The symbol
a, denotes the partial derivative of a(-), and a, is again to be assumed
Carathéodory regular, while w: (0,00) — [0,1] is @ modulus of continuity,
i.e. a non-decreasing function such that

lim w(p) = 0.
0—0

This means that a(-) depends on the “coefficients” z in a continuous way.
The parameter s > 0 is used to distinguish the case of degenerate ellipticity
(s = 0) of equations as (1.3) from the nondegenerate one (s > 0).
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Basic notation. In the rest of the paper Q C R™ will denote a bounded,
Lipschitz regular domain, and n > 2; by B(z,R) C R"™ we denote the
open ball with radius R > 0, centered at z, i.e. B(z,R) := {y € R" :
|z —y| < R}. When the center will not be relevant we shall simply denote
Bgr = B(xz, R). In a similar way, we shall denote by Qg the general Euclidean
hypercube with sidelength equal to 2R, and sides parallel to the coordinate
axes. We shall denote by ¢, §, € etc. general positive constants; relevant
functional dependence on the parameters will be emphasized by displaying
them in parentheses; for example, to indicate a dependence of ¢ on the real
parameters n, p, v, L, we shall write ¢ = ¢(n,p, v, L). Finally, according to
a standard notation, given a set A C R™ with positive measure and a map
v € L'(A,R™), we shall denote by

its integral average over the set A. Moreover, in the following, when treating
equations as in (1.1) and the measure p is actually an integrable function,
we shall denote also

(4) = /A il da

2. THE DUALITY RANGE AND ENERGY SOLUTIONS
In this section we shall consider equations and systems of the type (1.2),
where H € W—1#' and, in particular,

H = div(|F|P72F), F e LP(Q,R").

Accordingly, we shall consider the following notion of energy solution:

Definition 2.1 (Energy solutions). An energy solution v to
div a(z, Du) = div(|F|P2F), (2.1)
under assumptions (1.4) or (1.5), is a function belonging to W1?(Q2) such

that
/(a(m,Du),Dap) dm:/(\F\p_zF, D) dx (2.2)
Q Q

holds for every ¢ € C2°(Q).

In the rest of this section we shall consider such a notion of solution and
we shall abbreviate, as usual, energy solution by solution. Moreover, unless
otherwise specified, in this Section 2 we shall always assume that p > 1.
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2.1. Basic results. Let us consider the following non-homogeneous p-La-
placean equation as a model problem:

div(|DulP~?Du) = div(|F|P~2F) for p > 1. (2.3)

Note that the right-hand side of (2.3) is written in the peculiar form
div(|F|P=2F) in order to facilitate a more elegant presentation of the re-
sults, and also because such form naturally arises in the study of certain
projections problems motivated by multi-dimensional quasi-conformal ge-
ometry [43]. Anyway, one could immediately consider a right-hand side of
the type div G by an obvious change of the vector field

G
Gl
The following fundamental result in essentially due to TADEUSZ IWANIEC:

Theorem 2.1 ([43]). Let u € WP(R™) be a weak solution to the equation
(2.3) in R™. Then

F
G= |F|”*1W = F=|G|7

F e L"(R") = Du € L"(R"™) for every v > p.

The innovative method introduced by IWANIEC in [4] essentially replaces
the classical use of singular integrals and explicit representation formulas
(typical of the linear setting) with that of maximal operators and local reg-
ularity estimates for homogeneous equations; we shall come on this point
later on. The local version of the previous result is

Theorem 2.2. Let u € WHP(Q) be a weak solution to the equation (2.3)
i ), where Q is a bounded domain in R™. Then

FelLl (Q = Due L]l () foreveryy > p. (2.4)

loc loc

Moreover, there exists a constant ¢ = c(n,p,v) such that for every ball
Br € Q it holds that

(7{9 Du|7dx)i<c<]{3|Dupdx);+c<]{3|F|7dx)i. (2.5)
R/2 R

R

See for instance [1] for a proof in a more general setting. From now on,
for ease of presentation, we shall confine ourselves to treat local regularity
results.

The non-trivial extension to the case when (2.3) is a system has been
obtained by DIBENEDETTO & MANFREDI, who caught a borderline case
too; the case 1 < p < 2 has been treated in [29].
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Theorem 2.3 ([28], [29]). Let u € WLP(Q,RY) be a weak solution to the
system (2.3), where Q is a bounded domain in R™, and N > 1. Then (2.4)
holds. Moreover,

F € BMOjo(2, RY") = Du € BMOy,.(Q, RV™).

2.2. BMO. To introduce BMO functions, let us consider the quantity

[W]Ry = [W]Re.0 = sup f lw(x) — (w) | dx.
BrCQ,R<Ro JBgr

Then a measurable map w belongs to BMO(Q) if an only if [w]g, < oo,
for every Ry < oco. It turns out that BMO C L7 for every v < oo, while
a deep and celebrated result of JOHN & NIRENBERG tells that every BMO
function actually belongs to a suitable weak Orlicz space generated by an
N-function with exponential growth [48], and depending on the BMO norm
of w. Specifically, we have

[{z € Qr: lwix) — (w)oal >N} _
|Qr| -

where Qg is a cube whose sidelength equals R, and c;, co are absolute con-
stants. Anyway BMO functions can be unbounded, as shown by log(1/|z]).
For the proof of (2.6) a good reference is for instance [32, Theorem 6.11].

Related to BMO functions are functions with vanishing mean oscillation.
These have been originally defined by SARASON [68] as those BMO func-
tions w that satisfy

1(n) exp(—[w]c;:QR), (2.6)

li = 0.
Jim [l

In this manner one prescribes a way to allow only mild discontinuities, since
the oscillations of w are measured in an integral, averaged way.

By now classical results due to CHIARENZA, FrRAscA and LONGO [23]
assert the validity of linear CZ theory for those problems/operators involving
VMO coefficients. This happens also in the non-linear case, as proved by
KINNUNEN & ZHOU who considered a class of degenerate equations whose
model is given by

div(c(z)|DuP~?Du) = div(|F|P~2F) for p > 1, (2.7)
where the coefficient ¢(-) is a function satisfying
c(-) eVMO(Q) and 0<v<c(z) <L <o0. (2.8)

The outcome is now:
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Theorem 2.4 ([54]). Let u € W1P(Q) be a weak solution to the equa-
tion (2.7) in Q, where Q is a bounded domain in R™ and the function c(-)
satisfies (2.8). Then assertions (2.4)—(2.5) hold for u and the constant in
estimate (2.5) also depends on the coefficient function c(-).

2.3. More general operators. We will now turn to more general equa-
tions of the type (2.1), where a:  x R®™ — R™ is a continuous vector field
satisfying (1.5). The regularity of solutions to homogeneous equations as

div a(z, Dv) =0, (2.9)

is an important ingredient in the proof of the gradient estimates for non
homogeneous equations, in that the regularity estimates for solutions to (2.9)
are then used in a local comparison scheme to get proper size estimates for
the gradient of solutions to (2.1). Therefore, in order to state a theorem of
the type 2.2, one has to consider operators such that solutions v to (2.9) enjoy
the maximal regularity, which in our case is Dv € LY for every v < oco. On
the other hand, an obvious a posteriori argumentation is that if an analogue
of Theorem 2.2 would hold for equation (2.1), then applying it with the
choice F' = 0 would in fact yield Dv € L” for every v < oo.

This is the case for solutions to (2.9) under assumptions (1.5). Therefore
the following holds:

Theorem 2.5. Let u € WHP(Q) be a weak solution to the equation (2.1)
under the assumptions (1.5), where Q is a bounded domain in R™. Then
(2.4) holds for u and moreover

(]{BR/2 | Dul|” dx)% < c( ]iR(Du| + 5)P dx)% +c(]{9 Tak d;v)% (2.10)

R

holds for every ball B € 2, where ¢ = ¢(n,p,v, L,7).

See for instance [1], from which a proof of the previous result can be
adapted. There is a number of possible variants of the previous result and
here we present one featuring VMO coefficients, a conditions weaker than
the one of continuous coefficients considered in Theorem 2.5 above. More
precisely, we are dealing with equations of the type

divle(z)a(Du)] = div(|F|P~2F) for p > 1, (2.11)

where the vector field a: R® — R”™ satisfies (1.5) — obviously recast for
the case where there is no z-dependence, while the coefficient function ¢(-)
satisfies (2.8). We have
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Theorem 2.6. Let u € WHP(Q) be a weak solution to the equation (2.11)
in 2, where ) is a bounded domain in R™, and such that assumptions (2.8)
and (1.5) are satisfied. Then the assertions in (2.4) and (2.10) hold for u,
and the constant ¢ appearing in (2.10) depends also on the coefficient c(-).

For a proof one could for instance adapt the arguments from [1], [67].
The previous result can be also extended to the boundary when considering
the Dirichlet problem — as (2.14) below, under very mild assumptions on
the regularity of the boundary 0€2; we will not deal very much with bound-
ary regularity, and for such issues we for instance refer to [18] and related
references.

2.4. The case of systems. Theorem 2.3 tells us that CZ estimates extend
to the case of systems when considering the specific p-Laplacean system.
We now wonder which extent the results of the previous section extend to
general systems. The reason for Theorem 2.3 to hold is that, as first shown
by URALTSEVA [76] and UHLENBECK [75], solutions to the homogeneous p-
Laplacean system div(|Du[P=2Du) = 0 are actually of class C*® for some
a > 0. This makes the local comparison argument work, finally leading to
Theorem 2.3. We also recall that, as pointed out in the previous section,
the regularity of solutions to associated homogeneous problems is crucial to
obtain the desired CZ estimates.

In the case of general systems as (2.1), and satisfying (1.5), we cannot
expect a result like Theorem 2.3 to hold, actually for a very simple reason.
It is known that solutions to general homogeneous systems as

diva(Dv) =0, (2.12)

are not everywhere regular; they are C1®-regular only when considered out-
side a closed negligible subset of €2, in fact called the singular set of the
solution. Moreover, even for p = 2, and in the case of a smooth vector field
a(-), SVERAK & YAN [70] have shown that solutions to (2.12) may even be
unbounded in the interior of €2; for such issues see for instance the recent
survey paper [62]. This rules out the validity of Theorem 2.3 for general
systems in that, should it hold, when applied to the case (2.12) it would
imply the everywhere Holder continuity of v in €2, clearly contradicting the
existence of unbounded solutions proved in [70].

On the other hand, an intermediate version of Theorem 2.3, which is valid
for general systems and designed to match the regularity suggested by the
examples of SVERAK & YAN [70], holds in the following form:

Theorem 2.7 ([55]). Letu € WHP(Q,RY) be a weak solution to the system
diva(z, Du) = div(|F|P~2F)
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for N > 1, where  is a bounded domain in R™ and the continuous vector
field a: Q x RN™ — RN sqtisfies (1.5) when suitably recast for the vectorial
case. Then there exists § = §(n, N,p,v, L) > 0 such that

FelLl (QRY") = Duc L (Q,RN™)

loc loc

whenever 9
p§~y<p+—p2+5 when n > 2, (2.13)
n—

while no upper bound is prescribed on v in the two-dimensional case n = 2.
Moreover, the local estimate (2.10) holds.

Note that the previous theorem does not contradict the counterexample
in [70], since this does not apply when n = 2. The previous result comes
along with a global one. For this, we shall consider the Dirichlet problem

diva(z,Du) =0 in , 514
u=wv on N (2.14)
for some boundary datum v € WP (€, RY); here we assume for simplicity

that 09 € C*®, but such an assumption can be relaxed. The main result
for (2.14) is:

Theorem 2.8 ([55]). Let u € WHP(Q RY) be the solution to the Dirichlet
problem (2.14) for N > 1, where Q is a bounded domain in R™ and the
continuous vector field a:  x RN" — RN" satisfies (1.5) when suitably
recast for the vectorial case. Then there exists 6 = d(n, N,p,v, L) > 0 such
that

/ |Du|? dx < c/ (|Dv| + s)” dx
Q Q

holds whenever (2.13) is satisfied for n > 2, while no upper bound is imposed
on 7y in the two-dimensional case n = 2; the constant ¢ depends only on n,
N} p7 1/7 L} fY? 89'

The previous theorem reveals to be crucial when deriving certain improved
bounds for the Hausdorff dimension of the singular set of minima of integral
functions — see [55] — and when proving the existence of regular boundary
points for solutions to Dirichlet problems involving non-linear elliptic sys-
tems and vectorial functionals [33], [56]. Moreover, the peculiar upper bound
on 7y appearing in (2.13) perfectly fits with the parameters values in order to
allow the convergence of certain technical iterations occurring in [33], [55],
[56].



SKETCHES OF NONLINEAR CALDERON-ZYGMUND THEORY 113

The proofs of Theorems 2.7, 2.8 are based on an arguments that differ
from those in [44] but rather rely on some more recent methods used by
CAFFARELLI & PERAL [20] in order to prove higher integrability of solutions
to some homogenization problems and, as those from [43], [28], use maximal
operators.

2.5. Parabolic problems. The extension to the parabolic case of the
results of the previous sections is quite non-trivial. In fact, the validity of
Theorem 2.2 for the parabolic p-Laplacean system

uy — div(|Dul[P~2Du) = div(|F|P72F) (2.15)

remained an open problem for a while in the case p # 2 even in the case
of one scalar equation N = 1; it was settled only recently in [2]. All the
parabolic problems in this section, starting by (2.15), will be considered in
the cylindrical domain

QT =0 X (O,T),

where, as usual, {2 is a bounded domain in R™, and T > 0.

Let us now explain where the additional difficulties are coming from. The
proof of the higher integrability results in the elliptic case strongly relies on
the use of maximal operators. This approach is completely ruled out in the
case of (2.15). This is deeply linked to the fact that the homogeneous system

uy — div(|Du|P~2Du) =0 (2.16)

locally follows an intrinsic geometry dictated by the solution itself. This is
essentially DIBENEDETTO’s approach to the regularity of parabolic problems
[27] we are going to briefly streamline. The right cylinders on which the
problem (2.16) enjoys good a priori estimates when p > 2 are of the type

Q.,(\>"PR? R) = Br(z0) x (to — A "PR2 to + N> "PR?),

where 29 = (x9,%9) € R"™! and the main point is that A must be such that

/ |Dul? ~ AP. (2.17)
Qzy (AN2~PR%,R)

The last line says that Q,,(A2"PR?, R) is defined in an intrinsic way. It is
actually the main core of DIBENEDETTO’s ideas to show that such cylinders
can be constructed and used. Now the point is very simple: since the cylin-
ders in (2.17) depend on the size of the solution itself, then it is not possible
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to associate to them, and therefore to the problem (2.16), a universal family
of cylinders — that is independent of the solution considered. In turn this
rules out the possibility of using parabolic type maximal operators.

In the paper [2] we overcame this point by introducing a completely new
technique bypassing the use of maximal operators, and giving the first Har-
monic Analysis free, purely PDE proof, of non-linear CZ estimates. The
result is split in the cases p > 2 and p < 2.

Theorem 2.9 ([2]). Let u € C(0,T, L>(Q,RN)) N LP(0, T, WLP(Q,RY)) be
a weak solution to the parabolic system (2.15), where Q is a bounded domain
m R™, and p > 2. Then

)

FeLl (Q,R"") = Due L] (Qr,RN™)  for every v > p.
Moreover, there exists a constant ¢ = c¢(n, N, p,v, L,~) such that for every
parabolic cylinder Qr = Br(zo) x (to — R?,to + R?) € Qr it holds that

L (2.18)

(][ |Du|” dx dt)%
QRry/2
< c{( ]{QR(IDulp +1) dxdt)% N ( ]{QR . dxdt)q .

We note the peculiar form of the a priori estimate (2.18), which fails to
be a reverse Holder type inequality as (2.10) due to the presence of the
exponent p/2, which is the the scaling deficit of the system (2.15). The
presence of such exponent is natural and can be explained as follows: in
fact, let us consider the case F' = 0, that is (2.16). We note that if u is
a solution, then, with ¢ € R being a fixed constant, the function cu fails to
be a solution of a similar system, unless p = 2. Therefore, we cannot expect
homogeneous a priori estimates of the type (2.10) to hold for solutions to
(2.15), unless p = 2, when (2.18) becomes in fact homogeneous. Instead, the
appearance of the scaling deficit exponent p/2 in (2.18) precisely reflects the
lack of homogeneity. Another sign of the lack of scaling is the presence of
the additive constant in the second integral, this is a purely parabolic fact,
linked to the presence of a diffusive term — that is u; — in the system.

We turn now to the case p < 2. This is the so called singular case since
when |Du| approaches zero, the quantity |Du|P~2, which roughly speaking
represents the lowest eigenvalue of the operator div (|Du|P~2Du), tends to
infinity. Anyway, this interpretation is somewhat misleadings here: we are
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interested in determining the integrability rate of Du, therefore we are in-
terested in the large values of the gradient. Thus, in a sense, this is the
real degenerate case for us. Here a new phenomenon appears: we cannot
consider values of p which are arbitrarily close to 1, as described in [27]. The
right condition turns out to be

2n

> —F,
p n+2

(2.19)
otherwise, as shown by counterexamples, solutions to (2.16) may be even
unbounded. This can be explained by looking at (2.16) when |Du| is very
large: if p < 2, and it is far from 2, then the regularizing effect of the
elliptic part — the diffusion — is too weak as |Du|P~2 is very small, and the
evolutionary part develops singularities like in ODESs, where no diffusion is
involved. For the case p < 2 the result is now:

Theorem 2.10 ([2]). Letu € C(0,T, L*(Q,RN))NLP(0, T, WP (Q,RYN)) be
a weak solution to the parabolic system (2.15), where Q is a bounded domain
in R™, and p < 2 satisfies (2.19). Then

FelL?

loc

(Qr,R"") = Duc L]

loc

(Qr,RN™)  for every v > p.

Moreover, there exists a constant ¢ = ¢(n, N,p,v, L,q) such that for every
parabolic cylinder Qr = Br(xo) x (to — R?,tg + R?) € Qr it holds that

(][ | Dul da:dt);
Q
e . (2.20)

SC[(][ROD“'Z)*l)dxdt)’l’Jr (][RFdedt)i]mwzw—zn.

Note how in the previous estimate the scaling deficit exponent p/2 in
(2.18) is replaced by 2p/(p(n + 2) — 2n), a quantity that stays finite as long
as (2.19) is satisfied. Therefore, estimate (2.20) exhibits in quantitative way
the role of assumption (2.19).

Theorems 2.9 and 2.10 admit of course several generalizations; for in-
stance, a possible one concerns general parabolic equations of the type

uy — diva(Du) = div(|F[P~2F),

where the vector field a(-) satisfies (1.5). In this case Theorems 2.9 and 2.10
hold in the form described above, with a constant ¢ depending also on v, L.



116 GIUSEPPE MINGIONE

Further extensions to the case of systems, in the spirit of Theorem 2.7, are
available in [36].

We conclude with a another integrability result in the stationary case,
recently obtained in [17], and concerning gradient estimates for obstacle
problems. A point of interest here is that, differently from the usual results
available in the literature, the obstacles considered here are just Sobolev
functions, and therefore discontinuous, in general. We shall just report on
the simplest model elliptic case involving the minimization problem

Min [ |Dv|Pdx, vE€EK, (2.21)
Q

where
K:={veW,P(Q):v>¢ac}, peWP ).

We now have
Theorem 2.11 ([17]). Let u € WP(Q) be the unique solution to the obsta-
cle problem (2.21), where Q is a bounded domain in R™. Then

Y EWLET(Q) = ue WEI(Q)  for every v > p.

loc

Moreover, for every Br € ,

(7{31{/2 | Du|” d:z:)% < c( ]{3R |Du|pdx>% +c( ]ZBR Dy dx)%7

where ¢ = ¢(n, p,v, L,7).

The previous theorem is obviously optimal, as it follows by considering
the gradient integrability of u on the contact set {u = 1}, where Du and D
coincide almost everywhere. For more general elliptic cases and parabolic
extensions we refer to [17].

3. THE SUBDUAL RANGE AND VERY WEAK SOLUTIONS

In this section we shall deal with the case the right-hand side does not belong
to W*I’p', and, specifically, with the case considered in (1.1). Following
a rather consolidated tradition, we shall talk about measure data problems
also in those cases when the datum involved is not genuinely a measure, but
also a function with low integrability properties. For the sake of simplicity,
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we shall concentrate on Dirichlet problems, with homogeneous boundary
datum, of the type
—diva(z,Du) =p in Q,

u=0 on 09, (3-1)

where Q@ C R™ is a bounded open subset with n > 2, while u is a (signed)
Borel measure with finite total mass |u|(Q) < co. Of course, it is always
possible to assume that the measure u is defined on the whole R™ by letting
|pe] (R™\ Q) = 0, therefore in the following we shall do so. As for the structure
properties of the problem,we shall consider assumptions (1.4). Moreover,
when considering (1.4) the structure constants will satisfy

1
2-—<ps<n 0<v<1<L 520 (3.2)

This time the adopted notion of solution requires a larger discussion. We
start by the following crude distributional definition, particularizing the one
in (2.2).

Definition 3.1 (Very weak solutions). A very weak solution u to the prob-
lem (3.1) under assumptions (1.4) is a function u € W, ''(Q) such that
a(z, Du) € L*(Q,R™) and

/(a(x, Du), Dy) dx = / @dp  holds for every ¢ € C°(9). (3.3)
Q Q

Very weak solutions exist beside usual energy solutions and non-unique-
ness occurs. Even for simple linear homogeneous equations of the type

div(A(xz)Du) = 0,

as shown by a classical counterexample of SERRIN [69], for a proper choice
of the strongly elliptic and bounded, measurable matrix A(z), two solutions
show up: one of them belongs to the natural energy space W12, and it
is therefore an energy solution; the other one does not belong to W12,
and for this reason in a time, where the concept of very weak solution was
not very familiar, was conceived as a pathological solution. This situation
immediately poses the problem of uniqueness of solutions. When u € WL
uniqueness takes place, of course. Two examples when this happens are given
below.



118 GIUSEPPE MINGIONE

Example 1 (Density type conditions). In the case of a Borel measure p in
the right-hand side, there is a classical trace type theorem due to ADAMS [3]
stating that if the density condition

ul(Br) S R"PF (3-4)

holds for some & > 0, then it follows that p € (W, *()) = W17 (Q).
Therefore, for such measures we have the existence of a unique energy so-
lution. We notice that the p-capacity of a ball Bg is comparable to R" P,
therefore (3.4) implies that the measure in question is absolutely continuous
with respect to the p-capacity. Indeed, Sobolev functions are those that can
be defined up to set of negligible p-capacity.
Example 2 (High integrable functions). When the measure is a function
and p € L7(Q), then for certain values of v we have € W1 (Q). In fact,
Sobolev imbedding theorem yields, when p < n
« np
Wl’pQCLp ), * = .
0" () (), p"=—— 5
Therefore, L®")'(Q) ¢ W~12'(Q2). This means that if € L(Q) and
> (p*) — np
v = (p") p——
then there is a unique energy solution to (3.1). This argument can be refined
up to Lorentz spaces — see Definition 4.4 below. In fact, the improved Sobolev
embedding theorem gives

Wo(Q) € L(p*, p)(Q) G L (Q) = L(p*, p*) ().

For a proof see for instance [73]. But since (L(p*,p))’ = L((p*)’,p’), we have
that if u € L((p*),q)(Q) with ¢ < p’, then there exists a unique energy
solution to (3.1).

Example 3 (Non-linear Green’s functions). By the fundamental solution
to the p-Laplacean equation we mean the function

G, (x) = lz|5=1 if2<p<n, (3.5)
! loglz| ifp=mn, '

!

which is indeed the unique solution to the problem
—div(|DulP~2Du) = ¢(n,p)§ in Q,

u=20 on OS2 (36)

amongst those obtainable via approximation (see next section for the precise
meaning). Here § is Dirac mass charging the origin and ¢(n, p) is a constant
depending only on n and p.
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The notion of solution used in this paper for treating measure data prob-
lems and equations as (1.1) is stronger than that simply given by the Defi-
nition 3.1 of very weak solution. Indeed, in the following we shall deal with
solutions obtained via approximation methods and this in completely nat-
ural in view of the existence theory available. Next section is dedicated to
this.

3.1. Solvability and SOLA. Here we discuss the basic solvability of (3.1)
and, accordingly, the notion of solution adopted here. The main point is that
although uniqueness is still lacking, it is always possible to solve (3.1) in the
plain sense of Definition 3.1. Since distributional solutions are not unique,
at this point there are in the literature several definitions of solution adopted
towards the settlement of the uniqueness problem — see for instance [12] for
the definition of entropy solutions, and [26] for the definition of re-normalized
ones. Here we shall adopt the notion of solution obtained by limits of approx-
imations (SOLA); these are solutions obtained via an approximation scheme
using solutions of regularized problems. The approximation procedure and
its convergence has been settled down by BOCCARDO & GALLOUET [15],
[16]; see also [25]. The idea is to approximate the measure p via a sequence
of smooth functions {fi} C L*(Q), such that fr — p weakly in the sense
of measures, or fy — p strongly in L'(£2) in the case u is a function. At
this point, by standard monotonicity methods, one finds a unique solution
uy, € WP (Q) to

—diva(z, Dug) = fr in Q,
ur, =0 on 0.

The arguments in [15] lead to establish that there exists u€ Wy ™ P~1}(Q)
such that, up to a not relabeled subsequence,

upy —u and Duy — Du strongly in L™=} (Q) and a.e.

and (3.1) is solved by u in the sense of (3.3). We have therefore found a dis-
tributional solution having the remarkable additional feature of having been
selected via an approximation argument through regular energy solutions.
It is important to notice that, as described for instance in [25], in the case
p is an L'-function, by considering a different approzimating sequence { fi,}
strongly converging to f in L'(Q), we still get the same limiting solution wu.
As a consequence, the described approximation process allows to build a class
of solutions, those in fact obtained by approximation, in which the unique
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solvability of (3.1) is possible. For this reason, from now on, when dealing
with the case the measure p is a actually an L'-function, we shall talk about
the solution to (3.1), meaning by this the unique solution found by the above
settled approximation scheme.

3.2. Basic regularity results. It is interesting to compute the degree of
integrability of G),(+) introduced in (3.5) since, by the unique solvability of
(3.6), it is possible to test the optimality of the regularity results for general
measure data problems by comparing them with the properties of G,(-).
Note that |[DG)| = || =™)/(P=1) and therefore it follows that

Gyl € M7 (RY) and [DG, P! € M, (RY),
the first being meaningful of course when p < n. As shown later in The-
orem 4.4 and Remark 4.2, G,(-) exhibits the worst behaviour amongst the
solutions with measure data problems, according to the rough principle stat-
ing that “the more the measure concentrates, the worse solutions behave”.
There is a vast literature on the regularity of solutions to measure data
problems; here we report a few basic ones.

Theorem 3.1 ([12], [31]). Under the assumptions (1.4), there exists a so-
lution u € WyP~H(Q) to (3.1) such that

|u\p_1 € M%P(Q) forp<n

and
|DulP~! € M7=1(Q). (3.7)

The result of the previous theorem has been obtained in some preliminary
forms in [15], [72]; the form above has been obtained in [12] for the case p < n,
while the case p = n, with the consequent M™ estimate, is treated in [31].
Results for systems have been obtained in [30].

We now switch to the case when the measure is actually a function

we L), y>1 (3.8)

For this we premise the following:

Remark 3.1 (Maximal regularity). The equations we are considering
have measurable coefficients, and this means that x — a(z,z2) is a mea-
surable map. The maximal regularity in terms of gradient integrability
we may expect, even for energy solutions to the homogeneous equation
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diva(z,Du) = 0, is at most Du € L{ , for some ¢ which is in general
only slightly larger than p, and depends in a critical way on n, p, v, L. This
is basically a consequence of Gehring’s lemma [40], [44], which indeed allows
to prove that in the case p = 0 we have Du € L9. Therefore, we are not
expecting to get much more that Du € L? in general for solutions to the
measure data problems considered in the following. Therefore, with abuse
of terminology, we shall consider Du € LP as the maximal regularity for the

gradient of solutions u.

The previous remark allows to restrict the range of parameters of v, the
exponent appearing in (3.8). We first look for values of  such that L7 ¢
W' otherwise the existence of an energy solution such Du € LP follows.
We are in fact almost at the maximal regularity. As a matter of fact when
considering measure data problems one is mainly interested in those solutions
which are not energy ones. By Example 2 we see that the right condition is

np ey
1< < — = fOI‘ <n. 3.9
L (p*) P (3.9)

Theorem 3.2 ([16]). Under the assumptions (1.4) and (3.8)—~(3.9), the so-
lution u € W' () to (3.1) is such that

n

|DulP~! € L7=7 (Q).

Finally, a borderline case:

Theorem 3.3 ([16]). Assume that (1.4) hold and that the measure p is
a function belonging to Llog L(Y). The solution u € Wy (Q) to (3.1) is
such that

|DufP~' € L7 ().

Theorems 3.1-3.3 establish a low order CZ-theory for elliptic problems
with measure data which is completely analogous to that available in the
linear case for the Poisson equation —Awu = p and therefore optimal in the
scale of Lebesgue’s spaces.

Remark 3.2. The lower bound 2 — 1/n < p assumed in (3.2) is linked to
the fact that the non-linear Green’s function Gj(-), and SOLA, in general,
stop belonging to W1 when 1 < p <2 —1/n. We refer to [12] for more on
this last case.



122 GIUSEPPE MINGIONE

4. NONLINEAR ADAMS THEOREMS

The results in this section, taken from [63], [64], extend in different direc-
tions the regularity results available for measure data problems presented in
Section 3, showing CZ estimates in new types of function spaces. We shall in
fact present optimal non-linear extensions of classical results of ADAMS [4]
and ADAMS & LEWIS [7]. Moreover, we shall present a localization of the
classical Lorentz spaces estimates obtained by TALENTI [72]. Some of these
local estimates have been later obtained and extended in [24]. A few exten-
sions of the results presented here to the parabolic setting are contained in
[11].

We recall the reader that in the following by solution we mean a SOLA,
with the meaning given in Section 3.1. Therefore, the results below hold in
general for any SOLA to (3.1); moreover, a unique SOLA exists when the
measure right-hand side belongs to L'. Moreover, for the sake of simplicity
we shall confine ourselves to the case p > 2; results for the case 2 —1/n <
p < 2 can be achieved combining the methods in [66] with those from [64].

4.1. Morrey spaces. Morrey spaces provide a way of measuring the size
of functions which is in some sense orthogonal to that of Lebesgue spaces.
In fact, while these read the size of the super-level sets of functions — as re-
arrangement invariant spaces — Morrey spaces use instead density conditions
in their formulation. Specifically, the condition is

/ |w|Ydz < MYR"® and 0<6<n, (4.1)
Br

to be satisfied for all balls Br C  with radius R.

Definition 4.1. A measurable map w: Q@ — R*, belongs to the Morrey
space LYY (Q,RF) = L79(Q) if an only if it satisfies (4.1), and moreover one
sets

||w||"L’%9(Q) :=1inf{M” > 0: (4.1) holds} = sup Ra_"/ |w|” d.
BrCQ Br
Obviously LY™ = L7, and L"° = L>. The Morrey scale is orthogonal to
the one provided by Lebesgue spaces in fact
LY ¢ LY1log L for every 6 > n,

that is, no matter how close 8 is to zero, therefore no matter how close LY?
is to L* in the Morrey scale. We recall that the space L7 log L(2) is that
of those functions w satisfying

/ " log(e + w]) dz < oo,
Q
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so that LY c LY log L C L7 for every 4’ > ~ > 1. This space can be struc-
tured as a Banach space, and a norm (actually equivalent to the standard
Luxemburg one usually adopted when dealing with Orlicz spaces) is given
by the quantity

w

il log L(Q2) * ][ w]? log(e + W) dzx. (4.2)

Q

This astonishing fact has been first observed in [47]. In a similar way the
classical Marcinkiewicz-Morrey spaces [7], [5], [71] are naturally defined.

Definition 4.2. A measurable map w: Q — R* belongs to the Marcinkie-
wicz-Morrey space MY (Q, RF) = M9 (Q) if an only if
sup R~ ”Hw||MW(BR) = bup sup "R ""|{x € Bg : |w(z)| > A}
BrCQ CQA>0 (4.3)
=: ||w||M%9(Q) < 00.
Extending the previous results of STAMPACCHIA [71] in an endpoint way,
ADAMS considered Riesz potentials

B = [ W se Ol (1.4

and proved the following:

Theorem 4.1 ([4]). Let 8 € [0,0); for every v > 1 such that By < 6 we

have ’
pe LR = Is(p) € L= (R™). (4.5)
When v =1 and 8 < 6 we have
pe LY (R") = Iy(n) € M77 7 (R, (4.6)
and ,
pe LM (R™) N Llog L(R™) = I4(p) € L77Y(R™). (4.7)

Note that in the standard case n = 6 (no genuine Morrey spaces are
considered) the previous theorem extends classical results about regularizing
properties of Riesz potentials, where 6 replaces n everywhere. Theorem 4.1
has a few immediate consequences for the regularity of solutions to Poisson
equation —Awu = p (for simplicity considered in R™ when p has compact
support).

e L7 — Dy € L%"g provided 1 < v < 6. (4.8)

The previous implication is obvious since estimates via fundamental solutions
give |Du(x)| S Ii(|ul)(z).
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4.2. Nonlinear versions. Here we shall introduce the non-linear poten-
tial theory versions of Theorem 4.1 and of (4.8) in the context of measure
data problems: this means that images of Riesz potentials are replaced by
solutions to non-linear equations with p-growth, for example p-harmonic
functions. Specifically, we are dealing with solutions to problems of the type
(3.1); due to the fact that x — a(z, z) is just measurable, the maximal regu-
larity expected in terms of gradient integrability is essentially Du € LP; see
also Remark 3.1.

Since after Theorem 4.1 we expect the Morrey space parameter 6 to play
the role of the dimension n, in formal accordance with (3.9), we start as-
suming that )

p
1<y < bp—0+p

a condition whose actual role will be discussed in Remark 4.1 below. We
have the following non-linear potential theory version of (4.5):

and p<0<n, (4.9)

Theorem 4.2 ([64]). Assume (1.4) and that the measure p is a function
belonging to L% () with (4.9). Then the solution u € Wy~ (Q) to the
problem (3.1) is such that

0~
m,e

|DulP~t e L] 77 (). (4.10)
Moreover, the local estimate

6= _ _
<cR > T(IDul + 8)P I (Bg) + ellill e ()
(Bry2)

p—1
(X
holds for every ball Br C ), with a constant ¢ only depending on n, p, v,
L, ~.

Observe that, on one hand for p = 2 inclusion (4.10) locally gives back
(4.8), while on the other (4.10) is also the natural Morrey space extension of
the non-linear result of Theorem 3.2, to which it locally reduces for n = 6.
In the relevant borderline case v = 0p/(fp — 0 + p) the “energy solution”
regularity Du € LP?(Q) ¢ L2 () holds.

loc loc
Remark 4.1 (Sharpness of condition (4.9)). The choice of parameters in
(4.9) is optimal for the gradient integrability in the sense that the upper
bound for v is the minimal one allowing for the maximal regularity Du € LP.
In fact, we have

1
Op — O (p )<p

< —— 4.11
’y_ﬁp—ﬂ—l—p 0—~ (4.11)
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Related to this fact is Theorem 4.3 below. Moreover, by Example 1 in
Section 3, a Borel measure y satisfying (3.4) for some € > 0 and for every
ball Bg C R"™ belongs to the dual space W‘“’/7 and therefore (3.1) is
uniquely solvable in WO1 'P(Q). This is the reason for assuming p < 6 in
Theorem 4.2 and Theorem 4.4 below. The case p = 6 forces v = 1 and
therefore falls in the realm of measure data problems: it will be treated
in Theorem 4.5 below. Note that Holder’s inequality and (4.1) imply that
\u|(Br) = [|p| dz](Br) < MR" %7, and therefore, again by the mentioned
ADAMS’ result, in order to avoid trivialities we should also impose that
py < 6. But keep in mind (4.9) and note that

Op

0
— < - << 1<p<eh.
Op—0+p " p =P=

Therefore, assuming the first inequality in (4.11) together with p < 6 implies
py < 0.

Theorem 4.3 ([64]). Assume (1.4) and that the measure p is a function
belonging to L79(Q) with v > 0p/(@p — 0 +p) and p < 6 < n. Then the
solution u € Wy P~ (Q) to the problem (3.1) is such that

Du € Lh’e(Q) for some h = h(n,p,v, L,v,0) > p.

loc

Moreover, for every ball B C Q) with R <1 the local estimate

6 _ _n_ ﬁ
|Dull o () < RETFTN(1Dul + )| o) + el b

holds with a constant ¢ depending only on n, p, v, L.

The previous result tells that, provided p is regular enough, the solutions
enjoys the maximal regularity allowed by the operator.

In the case v = 1 we cannot obviously expect Theorem 4.2 to hold; in-
stead, imposing an Llog L type integrability condition on u allows to deal
with the case v = 1 too, obtaining the natural analogue of (4.7).

Theorem 4.4 ([64]). Assume that (1.4) holds and that the measure p is
a function belonging to LY%(Q) N Llog L(Q) with p < @ < n. Then the
solution u € W '*~1(Q) to the problem (3.1) satisfies

_0
|DulP~t € L7 1(Q). (4.12)

loc
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Moreover, the reverse Holder-type inequality

<]{3R/2 |Du
o (4.13)

1 I e
+c|u||zl,e(BR)[][ |u|log(e+7f |dy)dx]
Br

holds for every ball Bg C 2, with a constant ¢ depending only onn, p, v, L.

6—1
)" <c][ (|Du| + s)P~' da
Br

The previous theorem is the natural extension to Morrey spaces of Theo-
rem 3.3. We note that the appearance of the Llog L-type functional in the
right-hand side of the last estimate is exactly what we expect in a reverse
Holder-type inequality as (4.13), since the last quantity defines a norm in
Llog L, as observed in (4.2).

In order to conclude the non-linear extension of Theorem 4.1, giving the
analogue of (4.6), we introduce Morrey spaces of measures.

Definition 4.3. We say that a Borel measure, defined on 2, belongs to the
Morrey space L'?(Q) if and only if

lallzo @) = sup R |ul(Br) < oc. (4.14)
R

The non-linear analogue of (4.6) is now:

Theorem 4.5 ([63]). Under the assumptions (1.4), and p € LY%(Q) with
p < 0 < n, there exists a solution u € Wol’p_l(Q) to the problem (3.1) such
that

|Du|p ! € Mloc ( ) (415)
Moreover, the local estimate
D= By S cROT(|1Dul + 8)P M L) + el Lo (s

holds for every ball Bp € 2, with a constant ¢ depending only onn, p, v, L.

Just a few comments: in order to avoid trivialities we assumed p < 0 < n,
otherwise, in the case 6 < p, the measure p satisfies (3.4) and therefore
belongs to the dual space W~1%'(Q) by a result of ADAMS [3] — compare
with Example 2 — and there exists a unique solution v € VVO1 P(Q), found via
usual monotonicity methods — note that, obviously, 8(p — 1)/(6 — 1) < p.

Theorem 4.5 incorporates in a local way-being nevertheless extendable
up to the boundary — all the main integrability results previously obtained
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for equations with measure data in the literature. When 6 = n and, in
particular, no density information on the measure is assumed, we find back
the result in (3.7). When p = n, a case forcing § = p = n, we find back for the
case of n-Laplacean equation the M"-regularity results obtained in [31], and
particularly the explicit M™ local estimates subsequently obtained in [52].
In the borderline case 6 = p we have Du € MP, locally, and therefore this is
in perfect accordance with what happens when 6 < p: the LP-regularity of
the gradient is here just missed by a natural Marcinkiewicz factor. Finally,
let us mention that original ADAMS’ theorem [4] of course applies when f
in (4.6) is a measure rather than a function — of course, Riesz potentials
naturally act on measures too.

Remark 4.2 (Dimensional remark). The qualitative information yielded by
Theorem 4.5 is somehow interesting: let us recall that a measure p which
belongs to LY, and that therefore satisfies |u|(Bg) < R"?, cannot con-
centrate on sets with Hausdorff dimension larger than n — #. Therefore
Theorem 4.5 tells that the less the measure p concentrates, the better solu-
tions behave, confirming that the Dirac measure case is in some sense the
worst one when analyzing the qualitative properties of solutions to measure
data problems.

4.3. Lorentz spaces and finer regularity. Lorentz spaces are a two-
parameter scale of spaces which refine Lebesgue spaces in a sense that will
be clear in a few lines. Lorentz spaces can be actually released as inter-
polation spaces using the K-functional interpolation theory of GAGLIARDO,
LioNs and PEETRE, or using trace theory; we shall not pursue this abstract
approach in the following rather pointing at a very straight presentation.

Definition 4.4. The Lorentz space
L(t,q)(Q), with1l<t<ooand0<q< oo,

is defined by prescribing that a measurable map w belongs to L(t,q)(Q) if
an only if

o 2 d\
ol e = q/o Wiz e w@l > ) T <o (116)

when ¢ < oo; for ¢ = oo we set L(t,00)(2) := M*(Q), and this means finding
Marcinkiewicz spaces back.

The quantity in (4.16) is only a quasinorm, i.e., it satisfies the triangle
inequality only up to a multiplicative factor larger than one, and we remark
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that in the following, when writing L(t,q) without further specifications, we
shall mean that t and q vary in the range specified in (4.4). We nevertheless
remark that there is a canonical way to equip Lorentz spaces with a norm
when ¢ > 1, equivalent to the quantity introduced in (4.16). Good references
for Lorentz spaces are for instance [13], [41].

Recalling that in this paper €2 has always finite measure, we remark that
the spaces L(t, q)(2) “decrease” in the first parameter ¢, while increasing in g;
moreover, they “interpolate” Lebesgue spaces as the second parameter ¢
“tunes” t in the following sense: for 0 < ¢ < t < r < oo we have, with
continuous embeddings, that

L" = L(r,r) C L(t,q) C L(t,t) C L(t,r) C L(q,q) = L.

Remark 4.3 (Lorentz spaces are not bizzarre). In fact Lorentz spaces serve
to describe finer scales of singularities, not achievable neither via the use of
Lorentz spaces nor of Marcinkiewicz ones. We have seen that Marcinkiewicz
spaces describe in a sharp way potentials. For instance, with the ambient
spaces being R™, we have

1
¥ ¥
FRE e MY (By)\ L7 (By).
The perturbation of a potential via a logarithmic singularity is then described
via Lorentz spaces by

1

1
e L(1,9)(B1) = q¢> .
27 log” [7] (v, 9)(B1) q

g

The last strict inequality tells us that Lorentz spaces are even less fine that
one would wish! Note how the inverse relation between 8 and ¢ demonstrates
the fact that Lorentz spaces increase in the second index.

The “morreyzation” of the Lorentz norm leads to consider the so called
Lorentz-Morrey spaces [7], [5]; this means coupling definition (4.16) with
a density condition.

Definition 4.5. A measurable map w belongs to L(t, ¢)(Q) for 1 <t < oo,
0 < g <ooand @ € [0,n] if and only if

6—n
t

1wl Lot ) = BS;E)QR lwll (t,q)(BR)

1
° a d\\ 9
= sup (q/ (MR"|{x € Bg : |w(x)| > /\}|)Z > < 0.

Brco\ Jo A
Moreover, one sets L?(t,00)(Q) := M*?(Q) and again we find back Marcin-
kiewicz-Morrey spaces defined in (4.3).
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Remark 4.4. As already mentioned above, it follows from the definition in
(4.16) that L(t,t) = L, in fact by Fubini’s theorem we have

h d\
laollyn = ¢ [ X € Asla@)l > 2] T

so that [|w||pe(ay = [|w]|L(t,0)(a). As a consequence we also get that L'f =
LO(t,t) and [|wl| oy = lwll Lo e (a) hold. Of course, L"(t,q) = L(t, q).

We finally proceed with the “morreyzation” of Llog L, using the fact that
the quantity in (4.2) defines a norm in Llog L.

Definition 4.6. The Morrey-Orlicz space LlogL(2) for 6 € [0,n] is de-
fined by saying that a map w belongs to Llog L?(Q) if and only if

w110 = sup R%||lwl|L

w21 g LO(2) BREQ w21 g L(BR)
w

f Brlw(y)| dy)

We are now ready for the results in such finer scales of spaces. Here is
a classical result on Riesz potentials, which is actually a rather easy con-
sequence of the off-diagonal version of Marcinkiewicz interpolation theorem
and of the classical theorems on the boundedness of Riesz potentials.

Theorem 4.6. Let 5 € [0,n]; let v > 1 be such that v < n and let ¢ > 0.
We have

A sup Refn/ |w\log(e+ dx < oo.
Br

BrCQ

pe Ll a)(®") = Is(w) € L( 5 a) R")

See [64] for additional details. A result of ADAMS & LEWIS is instead:

Theorem 4.7 ([7]). Let 5 € [0,0); let v > 1 be such that By < 0, and let
q> 0. We have

0 n 0 07 9(] ) n
pe L0 (RY) = To(n) € L' (=5, 5= ) (&),

We note two important points. In the case v = ¢, when L%(v,q) = L9,
Theorem 4.7 reduces to Theorem 4.1, part (4.5), as obviously expected. On
the other hand, when 6 = n, and therefore no Morrey space condition comes
into the play, we have L%(v, q) = L(v, q¢) but nevertheless Theorem 4.7 does
not reduce to Theorem 4.6. This is not a gap in the theory but a genuine
discontinuity phenomenon discussed at length and by mean of counterex-
amples in [7], [5]. No surprise that a similar discontinuity phenomenon will
pop-up in the non-linear case too.

The non-linear analogue of Theorem 4.7 is now:
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Theorem 4.8 ([64]). Assume (1.4) and that the measure p is a function
belonging to L%(vy,q)(Q) with v, 6 as in (4.9) and 0 < q¢ < oo. Then the
solution u € Wy P~ (Q) to (3.1) satisfies

Oy b

Dup_leL‘g( :
| Du| el p—

) locally in 2.

Moreover, the local estimate

p—1
IDulP™ o e 20y )

b= _ _
< cR M(1Dul + )P M L (Bry + cllill Lo (.00 (Br)
holds for every ball B C ), where ¢ depends only onn, p, v, L, v, q.

We just notice that applying the previous result with the choice v =
q, therefore dropping the Lorentz space scale, we obtain Theorem 4.2 as
a particular case. Taking instead ¢ = n, therefore dropping the Morrey
scale, does not yield the sharp result for the case of Lorentz spaces, due to
the discontinuity phenomenon described after Theorem 4.7; for this we refer
again to [5], [7]. The sharp version is anyway in Theorem 4.10 below.

Along with the higher integrability of Du comes a result about w.

Theorem 4.9 ([64]). Assume (1.4) and that
l<vy<8/p and p<0<n.

Assume that the measure p is a function belonging to L (v, q)(Q) with 0 <
q < 0o. Then the solution u € WP ' (Q) to the problem (3.1) is such that

_ 0 fq
uP~ter? ,
i (9—719 0 —p

) locally in Q.

Moreover, the local estimate

-1
Hal?™ M o por 03By )

06—~
<R (lul + sRPHIp sy + el Lo,y (8

holds for every ball Br C ), with a constant ¢ depending only on n, p, v,
L, v, 0,4

We finally conclude with the natural completion of Theorem 4.4. The
point here is that in Theorem 4.4 the information p € Llog L is added to
reach the full integrability (4.12), rather than the weak one (4.15), and acts
only at this level. To have the proper analogue of (4.10), that is [Dul[P~! €
LO/(0=1).0 necessitates to transfer the Morrey density information, which is

available only at L'-scale in Theorem 4.4, at a full Llog L-level, that is we
have to assume u € Llog LY.
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Theorem 4.10 ([64]). Assume (1.4) and that the measure u is a function
belonging to Llog LO(Q) with p < 6 < n. Then the solution u € WP~ (Q)
to (3.1) is such that

0
71,9
loc

|DulP~t e L Q).

Moreover, the local estimate

|||Du|p_1||L%,e < CRe_l_n|||Du|p_1HL1(BR) +cllpll L 1og Lo (BR)

(Bry2)

holds for every ball Br C €, with a constant ¢ depending only onn, p, v, L.

4.4. Pure Lorentz spaces regularity. In this section we abandon the
case of Morrey regularity, turning our attention to regularity results in clas-
sical Lorentz spaces; in other words we are considering here the case 6 = n.
There is a rather large literature on the topic, basically going back to the
original works of TALENTI [72]. Here we shall present a few results, again
from [64], which feature an alternative approach to the known estimates,
and in particular to TALENTI’s one based on symmetrization. The differ-
ences are in two respects: the theorems presented here involve explicit local
estimates which previously employed methods — symmetrization, truncation
— do not immediately yield; second: here the borderline cases of gradient
estimates are covered. Of course, being our approach aimed at obtaining
local estimates, the problem of deriving the best constants in the a priori
estimates, which is solved in [72], becomes here immaterial. This problem
can be anyway faced by symmetrization methods.

The next results is the non-linear version of Theorem 4.6. As described
after Theorem 4.7, we note a difference with respect to Theorem 4.8, in that
we have a higher gain in the second Lorentz exponent here.

Theorem 4.11 ([64]). Assume that (1.4) holds with p < n and that the
measure [ is a function belonging to L(vy,q)(Q) with 1 <~y < np/(np—n+p)
and 0 < q < oo; then the solution u € WP~ () to the problem (3.1) is
such that

|DulP~t € L(%,q) locally in €. (4.18)

Moreover, the local estimate

_ n=y_, _
DU~ (2 gy (Brye) < R T "I(1Dul + )P i) + el Liv.a)Br)

n—-vy’

holds for every ball B C Q, with a constant ¢ depending only on n, p, v,
L,~,q.
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Inclusion (4.18) was already known in the literature [9], [50], except for the
borderline case v = np/(np—n+p) = (p*)" which was left uncovered; in this
case we are “around the maximal regularity”: Du € L(p,q(p — 1)), locally,
whenever ¢ € (0,00]. The problem for the borderline case was raised for the
first time in [50] for ¢ = oo, and eventually in [9] where inclusion (4.18) is
conjectured for ¢ < co. An attempt in the case ¢ = oo has been given by
ZHONG [78, Theorem 2.30]. Inclusion (4.18) is actually straightforward in
the case (v, q) = ((p*)’,p’), compare with Example 2.

5. HIGHER DIFFERENTIABILITY FOR MEASURE DATA PROBLEMS

Let us concentrate for the moment on the case p = 2. It is clear that, in
general, even for solutions to the basic linear equations Au = p € L' we
cannot assert v € W21, and even locally. We see that it lies exactly in the
initial lack of integrability of the solutions and not in an additional lack of
full differentiability. Indeed, we notice that the lack of integrability starts at
a very primitive level in the fact that, looking at the fundamental solution
G2(+) defined in (3.5) when p = 2, we have (for simplicity we restrict to the
case n > 2)
Gy € M 2(R™)\ L 2(R") and DGy € M *(R™)\ L ' (R™)

loc loc loc loc
while, after differentiating twice we get
9 1
|D Gz(x)lﬁf| - z #0,
€T n
and so this lack of integrability propagates up to second order derivatives
D?Gy € M (R", R™)\ LL (R, R™). (5.1)

We may therefore suspect, as stated above, that the absence of second deriva-
tives for solutions does not depend on a lack in the differentiability scale but
rather on a lack in the integrability scale. We shall try to make this concept
rigorous now in order to recover at least some part of the missing differen-
tiability.

There is now a problem in assertion (5.1): what kind of derivatives are
those in (5.1)? Certainly, not of distributional type. At the moment they
are just the usual, good old pointwise derivatives, which exist, in the case of
the fundamental solution, at every point but the origin. Therefore, in order
to look for a way of formulating a corresponding result for general SOLA to
(3.1) we shall propose a different approach, via fractional derivatives.
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Definition 5.1. For a bounded open set A C R™ and k € R™, parameters
o € (0,1) and g € [1,00), the fractional Sobolev space W 4(A, R™) is defined
requiring that w € W?(A,R"™) if and only if the following Gagliardo-type
norm is finite:

1/q w(z) —w(y)|? 1/q
e N R Y

To view the previous definition in a more intuitive way, the reader may
think of W7 9-functions as those function having “derivatives of order ¢”, in
turn integrable with exponent ¢q. Roughly writing, this means

_ q
[w]g 4oa ::/ dedyz“/ |D°w|?dz”, 0<o <1
w ada |z—yrtoa A

In order to get higher regularity for Du it is therefore natural to require more
regularity on the vector field a(-), and we shall therefore consider assumption
(1.5) rather than (1.4); moreover we shall consider an unavoidable — for
the type of results eventually derived — Lipschitz regularity assumption on
x> a(z, z):

w(R) < R. (5.2)
Theorem 5.1 ([63], [66]). Under the assumptions (1.5) with2—1/n <p <n
and (5.2) let u € Wy (Q) be a SOLA to the problem (3.1).

e If p>2, then

FE
Due W " 1(Q,R”) for every e > 0. (5.3)

loc

e If 2—1/n<p<2, then

p—np(2—p)—¢

DueWw,, > ’1(Q,R”) for every e > 0. (5.4)

loc
e In particular, when p = 2, it holds that

Du e W' -5 (Q,R")  for every e > 0. (5.5)

loc

Remark 5.1. The result in (5.5) positively answers to an old conjecture
of PHILIPPE BENILAN formulated in the case p = 2 [77]; when p # 2 the
theorem above extends the validity of this conjecture to the p-Laplacean
type problems. In the case p > n different fractional differentiability results
are available; for this we refer to [63].
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We obviously observe the change from (5.3) to (5.4) when p becomes
smaller than 2. Note the space in (5.3) makes sense only when p > 2 asp—1
must be larger or equal than 1. The two results match in the case p = 2.
The bifurcation of differentiability statements is typical already when dealing
with the p-Laplacean equation

div(|Dv|P~2Dv) = 0. (5.6)

Indeed in this case it is known (see also [62]) that W!P-solutions v are such
that

W2PP(Q) if p > 2
UE{ oo () iFp 22, (5.7)

WhP@Q)  ifl<p<2

loc

The analogy with the regularity results available for p-harmonic mappings
goes anyway further. Indeed, a so called “non-linear uniformization of sin-
gularities principle” holds — we are here adopting a terminology introduced
by TADEUSZ IWANIEC — in that although the gradient Dwv is in general not
differentiable, certain non-linear expressions involving it, turn in fact out to
be. Such quantities are devised to incorporate the degeneracy features of the
equation. Specifically, with s > 0 as in (1.5) let us introduce the mapping

V(z) = Vi(2) i= (8 + |2H)P7D/%2, ze R,
which is easily seen to be a locally bi-Lipschitz bijection of R™. Notice that
|V (Du)| ~ | DulP/? (5.8)
for |Du| large, and therefore by composing the map V() with Du we expect
to diminish the integrability of V(Du) and to gain in smoothness. The
situation we are going to describe is typical in Complex Analysis, when there
exist functions which turn out to be analytic only after having been raised

to high enough powers. In fact, solutions to (5.6) (under the assumptions
(1.5) with s = 0) satisfy

Vo(Du) = |Du|P=2/2Dy € W, for every p > 1.

A similar situation reproduces in the case of measure data problems as stated
in the next:
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Theorem 5.2 ([63], [66]). Under the assumptions (1.5) with2—1/n <p <mn
and (5.2) let u € Wy (Q) be a SOLA to the problem (3.1).
o If p>2, then

p—e  2(p—1)

V(Du) € W22 7 (Q,R™)  for every e > 0.

loc

o If 2—1/n<p<2, then

p—np(2—p)—¢

2
V(Du) € Wy, **7Y P(Q,R™)  for every e > 0.

Remark 5.2 (Sharpness). We observe that the previous result is sharp in
that we cannot allow for ¢ = 0. This can be tested directly looking at
the non-linear fundamental solution in (3.5) and using fractional Sobolev
embedding theorem, that states (see for instance [8]) that

W s LITZIC/("_UQ) provided ogq < n.

loc

By the previous embedding and (5.8), in both the cases p > 2 and 2—1/n <
p < 2, assuming (5.3) and (5.4) with € = 0 would give |Du[P~! € Lﬁ)c("fl),
which is, however, impossible as the non-linear Green’s function G, in (3.5)
— ie., the unique SOLA to (3.1) with u = § — does not enjoy such an
integrability property. We also note that in the case p < 2 the lower bound
p > 2 — 1/n serves to ensure that the differentiability exponent remains

positive, i.e. some fractional differentiability holds:

p—np(2—p)

2(p—1)
This is in turn clearly related to the fact that below the threshold p =2—1/n
SOLA do not longer belong to W', in general. Observe also that it is
easy to obtain the results in (5.3) and (5.4) for the case u = G, by direct
computation.

1
0< 2——<np.
n

Remark 5.3. Comparing the change of exponents occurring when p crosses
the value p = 2, it is easy to see a perfect analogy between what happens in
the homogeneous case u = 0 and displayed in (5.7), and the differentiability
results of Theorems 5.1 and 5.2.

Finally, we may of course wonder what happens with respect to gradi-
ent (fractional) derivatives when one considers the density condition decay
as (4.14). In this case the density information transfers to the fractional
derivatives as follows, and once again the parameter  appearing in (4.14)
plays the role of n:
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Theorem 5.3 ([63], [66]). Under the assumptions (1.5) with2—1/n <p <mn
and (4.14) in force withp < 0 < n letu € Wol’l(Q) be a SOLA to the problem
(3.1).
o When
p>2 and 0<o <1,

then the local estimate

p—1
/ / |Du ( )| dxdy S CRn—9+(1—O')
Br /Bg |x —y[te

holds whenever Br C Q, with ¢ depending only on n, p, v, L, |u|(),
lullpre, o, dist(Bg, 08).
o When

p—0p(2—p)

2—1/n<p<2 and 0<o< 3

then the local estimate

Br JBgr

P

holds whenever Br C §, with ¢ depending only on n, p, v, L, |u|(),
|l Lre, o,dist(Br, 09).

6. WOLFF POTENTIAL ESTIMATES

In this final section we shall briefly describe some very recent development
in non-linear potential theory made in [65], [34], [35]. Again we shall for
simplicity restrict to the case p > 2, referring to [35] for the case 2 —1/n <
p <2

The point here is to give a complete non-linear analogue of the classical
pointwise gradient estimates valid for the Poisson equation

—Au =y inR", (6.1)

via Riesz potentials. At the same time the results give a somehow unexpected
but natural maximal order — and parabolic — version of a by now classical
result due to KILPELAINEN & MALY [51] and later extended, by means of
a different approach, by TRUDINGER & WANG [74].

To better frame our setting, let us recall a few basic linear results concern-
ing the basic example (6.1) — here for simplicity considered in the whole R"
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— for which, due to the use of classical representation formulas, it is possible
to get pointwise bounds for solutions via the use of Riesz potentials (4.4)
such as

lu(z)] < cla(|p)(x) and  |Du(z)| < ch(|p))(x). (6.2)

We recall that the equivalent, localized version of the Riesz potential Ig(p)(x)
is given by the linear potential

R
Ig(a:,R)::/O ’Wd;’ B e (0,n),

with B(xg, 0) being the open ball centered at xq, with radius ¢. In fact, it
is not difficult to see that

(e, R) < / du(y)

em eyl Is(pB(z, R))(x) < Ig(p)(x)

holds provided g is a non-negative measure. A question is now, is it possi-
ble to give an analogue of estimates (6.2) in the case of general quasilinear
equations such as, for instance, the degenerate p-Laplacean equation? A first
answer has been given in the papers [51], [74], where — for suitably defined
solutions — the authors prove the following pointwise zero order estimate —
i.e. for u — when p < n, via non-linear Wolff potentials:

u(a)] < e ]{3( RZED dy)” W (e R), (63)

where the constant ¢ depends on the quantities n, p, and

R T T
W (2, R) ;:/0 <W) %9 Be(On/p]  (6.4)

is the non-linear Wolff potential of y. Estimate (6.3), which extends to
a whole family of general quasi-linear equations, and which is commonly
considered as a basic result in the theory of quasi-linear equations, is the
natural non-linear analogue of the first linear estimate appearing in (6.2).
Here we present the non-linear analogue of the second estimate in (6.2),
thereby giving a pointwise gradient estimate via non-linear potentials which
upgrades (6.4) up to the gradient/mazimal level. Specifically, we shall con-
sider general non-linear, possibly degenerate equations with p-growth of the
type (1.1) under the assumptions (1.5). Moreover, on the modulus of con-
tinuity w: [0,00) — [0,00) we impose a natural decay property, which is
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essentially optimal for the result we are going to have, and prescribes a Dini
continuous dependence of the partial map x v+ a(z,2)/(|z| + s)P~1:

R -
/ [w(o)] de =:d(R) < 0. (6.5)
0 Y

3

The relevant results will be presented here in the form of a priori estimates
— i.e. when solutions and data are taken to be more regular than needed,
for instance u € C*(Q) and pu € L'(Q). However, they actually hold, via a
standard approximation argument, for general weak and very weak solutions
— i.e., distributional solutions which are not in the natural space W1 (£2)
— to measure data problems such as (3.1), where, as usual, u is a general
Radon measure with finite total mass, defined on 2. See for instance Sec-
tion 3.1. The reason for such choice is that the approximation argument
in question leads to different notions of solutions, according to the regu-
larity /integrability properties of the right-hand side u, therefore, proving
a priori estimates leads to results applying to several different notions of
solutions.
The first result we present is now th following:

Theorem 6.1 ([34]). Let u € C1(Q) be a weak solution to (1.1) with u €
LY (Q), under the assumptions (1.5) and (6.5). Then there exists a positive
constant ¢ = ¢(n,p,v, L) and a positive radius Ry = Ro(n,p,v, L,w(-)) such
that the pointwise estimate

2
|\ Du(z)| < c(][B( R)(|Du|+s)% ay)’ + oW, @ B)  (66)
Z,

holds whenever B(xz, R) C Q, and R < Ry. Moreover, when the vector field
a(-) is independent of x, estimate (6.6) holds with no restriction on R.

The potential Wi‘ Iop appearing in (6.6) is the natural one since its shape
respects the scaling properties of the equation with respect to the estimate
in question; compare with the linear estimates (6.2). When extended to
general weak solutions estimate (6.6) tells us the remarkable fact that the
boundedness of Du at a point xo is independent of the solution w, and of
the vector field a(-) considered, but depends only on the behaviour of |u| in
a neighborhood of x.

A particularly interesting situation occurs in the case p = 2, when we have
a pointwise potential estimate which is completely similar to the second one
n (6.2), that is
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Theorem 6.2 ([65]). Let u € C1(Q) be a weak solution to (1.1) with u €
LY(Q), under the assumptions (1.5) and (6.5) considered with p = 2. Then
there exists a positive constant ¢ = c(n,p,v, L) and a positive radius Ry =
Ro(n,p,v, L,w(+)) such that the pointwise estimate

Du@l <cf  (Dul+s)dy+ 1w ) (6.7)
B(z,R)

holds whenever B(x, R) C Q and R < Ry. Moreover, when the vector field
a(-) is independent of the variable x, estimate (6.7) holds with no restriction
on R.

Beside their intrinsic theoretical interest, the point in estimates (6.6),
(6.7) is that they allow to unify and recast essentially all the gradient
Li-estimates for quasilinear equations in divergence form; moreover they
allow for an immediate derivation of estimates in intermediate spaces such
as interpolation spaces. Indeed, by (6.6), it is clear that the behaviour of Du
can be controlled by that W? o which is in turn known via the behaviour
of Riesz potentials. In fact, this is a consequence of the pointwise bound
of the Wolff potential via the HAVIN-MAZ’YA non-linear potential [42], [6],
that is,

w00 = [ (PR T < o ) o)

Ultimately, we have

p €L = W¥

1/p,p eL =, qe (Ln)v (68)

while Marcinkiewicz spaces must be introduced for the borderline case ¢ = 1.
Inequality (6.8) immediately allows to recast the classical gradient estimates
for solutions to (3.1) such as those due to BOCCARDO & GALLOUET [15], [16]
— when ¢ is “small” — and IWANIEC [43] and DIBENEDETTO & MANFREDI
[28] — when ¢ is “large” — that is, for solutions to (3.1) it holds that

nq(p—1)
—q

pweLl!= DuelL ~<a , ge(l,n).

m
1/p:p
estimates related to (6.8) and classical interpolation theorems for sub-linear

operators one immediately gets estimates in refined scales of spaces such as

Moreover, since the operator y — W is obviously sub-linear, using the
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Lorentz or Orlicz spaces, recovering some estimates of TALENTI [72], but
directly for the gradient of solutions, rather than for solutions themselves.
For several consequences of Theorem 6.1 we again refer to [34] and [24].
Notice that the results of Section 4 cannot be obtained as a corollary from
Theorems 6.1 and 6.2 as, while the regularity with respect to x of a(-) con-
sidered there is the Dini continuity, in Section 4 a measurable dependence
is considered. Finally, we mention that a parabolic analogue of the Wolff
potential estimate in Theorem 6.1 has been recently obtained in [57], [58],
[59].
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