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SINGULAR INTEGRALS AND STRONG MAXIMAL

FUNCTIONS IN WEIGHTED GRAND LEBESGUE SPACES

Vakhtang Kokilashvili

Abstract. In this lecture we will discuss the weighted boundedness problem

for various integral operators in generalized grand Lebesgue spaces L
p),θ
w .

Namely, a complete description of weight functions governing one-weight
inequalities for multiple singular integrals and strong maximal functions will
be presented.

1. The grand Lebesgue spaces and their generalizations

The grand Lebesgue spaces were introduced by T. Iwaniec and C. Sbor-
done [5]. Nowadays, the theory of these spaces and associated small Lebes-
gue spaces is one of the intensively developing directions of modern analysis.
The necessity to investigate these spaces emerged from their rather essential
role in various fields, in particular, in the integrability problem of Jacobian
under minimal hypothesis (T. Iwaniec and C. Sbordone, P. Koskela
and X. Zhong), in the study of maximal operators and, more generally,
quasi-linear operators (A. Fiorenza and M. Krbec), in extrapolation
theory (M. Milman), in variation problems (T. Iwaniec and C. Sbor-
done), in regularity and uniqueness problems in grand Sobolev spaces for
parabolic equations with measure data (A. Fiorenza, A. Mercaldo and
J. M. Rakotoson). In the theory in PDE, it turns out that they are
the right spaces in which some nonlinear equations have been considered
(A. Fiorenza and C. Sbordone, L. Greco etc.).

Let G be a bounded Lebesgue measurable set in Rn. The grand Lebesgue
space Lp)(G) (1 < p <∞) is a rearrangement invariant non-reflexive Banach
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262 VAKHTANG KOKILASHVILI

space defined by the norm

‖f‖Lp)(G) := sup
0<ε<p−1

(
ε

|G|

∫

G

|f(t)|p−ε dt

) 1
p−ε

.

It is worth mentioning that the following continuous embeddings hold:

Lp(G) ↪→ Lp)(G) ↪→ Lp−ε(G), 0 < ε ≤ p− 1. (1.1)

Let w be a weight, i.e., Lebesgue integrable a.e. positive function on G.
We denote by Lq

w(G) (1 < q <∞) the space of all measurable functions on
G for which

‖f‖Lq
w(G) :=

(
1

|G|

∫

G

|f(t)|qw(t) dt
) 1

q

<∞.

It is known that the space L
p)
w (G) defined by the norm

‖f‖
L

p)
w (G)

:= sup
0<ε<p−1

ε
1

p−ε ‖f‖Lp−ε
w (G), 1 < p <∞,

is a Banach function space. Except for the trivial case of w ≡ const the

space L
p)
w (G) is not rearrangement-invariant (see, e.g., [2]).

Let ϕ be positive increasing function on (0, p− 1), 1 < p <∞. We define

Lp),ϕ
w (G) :=

{
f : sup

0<ε<p−1
ϕ(ε)

1
p−ε ‖f‖Lp−ε

w (G) <∞
}
.

In the case ϕ(ε) = εθ, θ > 0 and w ≡ const we have the generalized grand
Lebesgue space denoted by Lp),θ(G). For these spaces and some applications
we refer to [3]. When w 	= const we have the weighted space and denote it

by L
p),θ
w (G). It is known that L

p),θ
w (G) is a Banach function space and that

Lp
w(G) ⊂ L

p),θ1
w (G) ⊂ L

p),θ2
w (G) whenever θ1 < θ2 (see, e.g., [3]). It is clear

that for θ = 0,

‖f‖
L

p),θ
w (G)

≡ ‖f‖Lp
w(G),

the norm in the weighted Lebesgue space.
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SINGULAR INTEGRALS AND STRONG MAXIMAL FUNCTIONS 263

2. The multiple Calderón singular
integral and strong maximal function

The impulse for the study of mapping properties of classical integral op-
erators in grand Lebesgue spaces comes from A. Fiorenza, B. Gupta
and P. Jain [2] who had proved the boundedness of the Hardy-Littlewood
maximal operator in weighted spaces.

Definition 2.1. Let 1 < p < ∞. Let J be an n-dimensional parallelepiped
with sides parallel to coordinate axes. We say that a weight w belongs to
the class Ap(J) (w ∈ Ap(J)) if

Ap(w, J) := sup
J⊂J

(
1

|J |

∫

J

w(x) dx

)(
1

|J |

∫

J

w1−p′(t) dt

)p−1

<∞, (2.1)

where the supremum is taken over all n-dimensional parallelepipeds J with
sides parallel to coordinate axis contained in J.

B. Muckenhoupt [10] proved that the Hardy-Littlewood maximal op-
erator is bounded in weighted classical Lebesgue spaces Lp

w if and only if
w ∈ Ap, i.e., there is a positive constant C such that for all cubes Q,

(
1

|Q|

∫

Q

w(x) dx

)(
1

|Q|

∫

Q

w1−p′(t) dt

)p−1

≤ C <∞.

Later R. Hunt, B. Muckenhoupt and R. L. Wheeden [4] established
that necessary and sufficient condition for the boundedness of the Hilbert
transform in Lp

w is that w belongs to the class Ap defined on the real line.
Let J := I1×I2×· · ·×In, where Ij , j = 1, . . . , n, are closed intervals in R.

Our purpose in this section is to characterize the boundedness of multiple
Calderón singular operator

Caf(x) =
∫

J

n∏

i=1

ai(xi)− ai(ti)

(xi − ti)2
f(t) dt, x = (x1, . . . , xn) ∈ J,

where ai∈Lip 1 on Ii, i = 1, 2, . . . , n. In the case when n=1 and aj(xj)≡xj

this statement was proved in [8]. One-dimensional analogy of Theorem 2.1
was proved in [7]. In the classical weighted Lebesgue spaces similar result
was established in [6].

Now we formulate the main results of this section. We begin with general-
type theorem:
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264 VAKHTANG KOKILASHVILI

Theorem 2.1. Let a linear operator T be bounded in every weighted Lebes-
gue space Lp

w(J) with 1 < p <∞ and w ∈ Ap(J). Then T is also bounded in

the weighted grand Lebesgue space L
p),θ
w (J) for every 1 < p <∞, w ∈ Ap(J)

and θ > 0.

The next statement is also valid:

Theorem 2.2. Let 1 < p < ∞ and let θ > 0. Then Ca is bounded in

L
p),θ
w (J) if w ∈ Ap(J). Conversely, if there exists a positive constant m such

that 0 < m ≤ |a′j(xj)|, j = 1, 2, . . . , n, for a.a. x ∈ J, then the condition

w ∈ Ap(J) is also necessary for the boundedness of Ca in L
p),θ
w (J).

Let us now discuss the following strong maximal operator

Mrf(x) = sup
J�x

(
1

|J |

∫

J

|f(y)|r dy
) 1

r

, r ≥ 1, x ∈ J,

where the supremum is taken over all n-dimensional parallelepipeds in J with
sides parallel to the coordinate axes. The next theorem holds:

Theorem 2.3. Let 1 < p < ∞ and let θ > 0. Then the strong maximal

operator Mr is bounded in L
p),θ
w if and only if w ∈ Ap(J).

Now we give sketches of proofs of the main statements of this section.
The next lemmas will be useful for us.

Lemma 2.1. Let 1 < p < ∞ and let w be a weight on J. Suppose that T
is a linear operator acting boundedly simultaneously in Lp

w(J) and Lp−σ
w (J)

with some positive number σ, σ < p− 1. Then T is bounded in L
p)
w (J).

Lemma 2.2. Let 1 < p < ∞ and let w be a weight on J. Then there is a
positive constant c such that for all f ∈ Lp

w(J) and all parallelepipeds P ⊂ J,
the inequality

‖fχP ‖Lp)
w (J) ≤ cw(P )−1/p‖fχP ‖Lp

w(J)‖χP ‖Lp)
w (J)

holds.

Proof of Lemma 2.1. By the hypothesis of the lemma, we have that
there are positive constants c1 and c2 independent of f such that

‖Tf‖Lp
w(J) ≤ c1‖f‖Lp

w(J)

and
‖Tf‖Lp−σ

w (J) ≤ c2‖f‖Lp−σ
w (J).
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SINGULAR INTEGRALS AND STRONG MAXIMAL FUNCTIONS 265

By the Riesz-Thorin theorem, we have that

‖Tf‖Lp−ε
w (J) ≤ c‖f‖Lp−ε

w (J), 0 ≤ ε ≤ σ, (2.2)

where the positive constant c does not depend on f and ε.
Let us fix ε ∈ (σ, p − 1). Then, using Hölder’s inequality with respect to

the exponent p−σ
p−ε and observing that

(
p−σ
p−ε

)′
= p−σ

ε−σ , we find that

‖Tf‖Lp−ε
w (J) ≤ cJ

(∫

J
|Tf(x)|p−σw(x) dx

) 1
p−σ

w(J)
ε−σ

(p−σ)(p−ε) , (2.3)

where
cJ := max

{
1, |J|−1

}
.

Further, the conditions σ < p− 1 and ε ∈ (σ, p− 1) yield that

0 <
ε− σ

(p− σ)(p− ε)
<

p− 1− σ

p− σ
. (2.4)

Let us denote

w(J) :=
∫

J
w.

Applying (2.2)–(2.4), we find that

‖Tf‖
L

p)
w (J) = max

{
sup

0<ε≤σ
ε

θ
p−ε ‖Tf‖Lp−ε

w (J), sup
σ<ε≤p−1

ε
θ

p−ε ‖Tf‖Lp−ε
w (J)

}

≤ max
{

sup
0<ε≤σ

ε
θ

p−ε ‖Tf‖Lp−ε
w (J), cJ sup

σ<ε≤p−1
ε

θ
p−ε ‖Tf‖Lp−σ

w
w(J)

p−1−σ
p−σ

}

≤ cmax
{
1, sup

σ<ε≤p−1
ε

θ
p−εσ−

θ
p−σ w(J)

p−1−σ
p−σ

}
sup

0<ε≤σ
ε

θ
p−ε ‖Tf‖Lp−ε

w (J)

≤ cmax
{
1, (p− 1)θσ−

θ
p−σ (1 + w(J))

p−1−σ
p−σ

}
sup

0<ε≤σ
ε

θ
p−ε ‖f‖Lp−ε

w (J)

≤ c(p− 1)θσ−
θ

p−σ (1 + w(J))
p−1−σ
p−σ ‖f‖

L
p)
w (J).

�
Lemma 2.2 in the one-dimensional case was proved in [1]. The proof for

n-dimensional parallelepipeds is similar.

Proof of Theorem 2.1. Sufficiency is a consequence of Lemma 2.1 be-
cause the class Ap has the property: w ∈ Ap(J) =⇒ w ∈ Ap−σ(J) for some
small positive number σ (see, e.g., [1]).

Necessity. Using Lemma 2.2 and choosing appropriate test functions, we
can derive that (2.1) holds for all n-dimensional parallelepipeds J in J having
sufficiently small diameters. Now the result follows immediately. �
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266 VAKHTANG KOKILASHVILI

Proof of Theorem 2.3 is similar to that of Theorem 2.2; therefore it is
omitted.

3. Weighted multiple singular operators
and strong maximal functions

For given linear operator T , we consider the weighted operator

Tw : f → wT
( f

w

)
.

Boundedness of the operator Tw in Lp(J), 1 < p < ∞, is equivalent to the
boundedness of T in the function space defined by the norm

‖ϕw‖Lp,θ(J).

Note that for grand Lebesgue space the equivalence

f ∈ Lp)
w (J)⇐⇒ fw1/p ∈ Lp)(J)

does not hold.
The following theorem is valid:

Theorem 3.1. Let a weighted operator Tw be bounded in every Lebesgue
space Lp(J) with 1 < p < ∞ and a weight w satisfying the condition wp ∈
Ap(J). Then Tw is also bounded in Lp),θ(J) for every 1 < p <∞, wp ∈ Ap(J)
and θ > 0.

Proof. We start with the observation that there exist numbers σ ∈ (0, p−1)
and M > 0 such that

‖Tw‖Lp−ε(J)→Lp−ε(J) ≤M (3.1)

for arbitrary ε, 0 < ε < σ. Indeed, it is known that if wp ∈ Ap(J) then
there exists such σ ∈ (0, p− 1) that wp ∈ Ap−σ(J) and also wpα ∈ Ap−σ(J)
for arbitrary α, 0 < α < 1 (see, for example, [6]). Let now α = p−σ

p . Then

0 < α < 1 and wp−σ ∈ Ap−σ(J).
According to the assumption of the theorem, we have

‖Twf‖Lp(J) ≤M1‖f‖Lp(J).

Also,
‖Twf‖Lp−σ(J) ≤M2‖f‖Lp−σ(J).
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SINGULAR INTEGRALS AND STRONG MAXIMAL FUNCTIONS 267

For ε ∈ (0, σ), there exists tε ∈ (0, 1) such that

1

p− ε
=

tε
p
+

1− tε
p− σ

.

By the Riesz-Thorin interpolation theorem, the inequality

‖Twf‖Lp−ε(J) ≤M tε
1 M1−tε

2 ‖f‖Lp−ε(J)

is fulfilled for arbitrary ε ∈ (0, σ).
From the latter inequality it follows (3.1).
Further, it is clear that

‖Twf‖Lp),θ(J) = max{A,B}, (3.2)

where
A = sup

0<ε≤σ
ε

θ
p−ε ‖Twf‖Lp−ε(J)

and
B = sup

σ<ε≤p−1
ε

θ
p−ε ‖Twf‖Lp−ε(J).

Let us fix ε ∈ (σ, p− 1). Then

p− σ

p− ε
> 1

and also

0 <
ε− σ

(p− σ)(p− ε)
<

p− 1− σ

p− σ
.

Consequently, using Hölder’s inequality with respect to the exponent
(p− σ)/(p− ε) and observing that

(p− σ

p− ε

)′
=

p− σ

ε− σ
,

we find that

‖Twf‖Lp−ε ≤ ‖Twf‖Lp−σ(J)|J|
ε−σ

(p−ε)(p−σ) ≤ c‖Twf‖Lp−σ(J),

where c is a constant independent of ε and f .
Thus,

B ≤ c sup
σ<ε≤p−1

ε
θ

p−εσ−
θ

p−σ σ
θ

p−σ ‖Twf‖Lp−σ(J)

≤ cAmax
{
1, (p− 1)θσ−

θ
p−σ

}
.

Now, taking advantage of (3.1), we conclude

‖Twf‖Lp),θ(J) ≤ cmax
{
1, (p− 1)θσ−

θ
p−σ

}
‖f‖Lp),θ(J).

�
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268 VAKHTANG KOKILASHVILI

Corollary 2.1. The weighted operator

Caw : f �→ wCa
( f

w

)

is bounded in Lp),θ(J) for arbitrary p, 1 < p <∞, θ > 0 and wp ∈ Ap(J).

The similar proposition is true for weighted strong maximal function:

Mr,wf := wMr(f/w).

Remark 3.1. Theorem 3.1 remains valid if for given p, 1 < p < ∞, we
suppose that Tw is bounded in Lp(J) with wp ∈ Ap(J), and also it is bounded
in Lp−ε(J) with wp−ε ∈ Ap−ε(J) for some small ε > 0.

Finally, we notice that the boundedness criteria of power weighted Cauchy
singular integral operator in grand Lebesgue spaces is established in [9].
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