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Abstract

The aim of this paper is to describe the numerical results of numerical modelling of
steady flows of laminar incompressible viscous and viscoelastic fluids. The mathemat-
ical models are Newtonian and Oldroyd-B models. Both models can be generalized
by cross model in shear thinning meaning.

Numerical tests are performed on three dimensional geometry, a branched channel
with one entrance and two output parts. Numerical solution of the described mod-
els is based on cell-centered finite volume method using explicit Runge–Kutta time
integration. Steady state solution is achieved for t → ∞. In this case the artificial
compressibility method can be applied.

1. Introduction

The flows in the branching channel are encountered in technical sector as well
as in biomedical applications. It is to be in human body in the complex branching
system of blood vessels. Therefore the numerical modelling of generalized Newtonian
and generalized Oldroyd-B fluids flow is very important for medical science. For the
viscoelastic character of blood, the blood flows is numerically simulated by Oldroyd-B
mathematical model with generalizing by cross model.

Therefore this work is concerned with the numerical solution of generalized New-
tonian and generalized Oldroyd-B fluids flow in the branched channel with T-junction
with round cross-section.

2. Mathematical model

The fundamental system of equations is the system of generalized Navier–Stokes
equations for incompressible fluids. This system is based on the system of balance
laws of mass and momentum for incompressible fluids

div u = 0 (1)
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ρ
∂u

∂t
+ ρ(u.∇)u = −∇P + div T (2)

where P is the pressure, ρ is the constant density, u is the velocity vector. The
symbol T represents the stress tensor.

For the different choice of mathematical model the different definition of the
stress tensor is used. For viscous flows with the representative of Newtonian fluids
the Newtonian model is considered (see e.g. [1], [2])

T = 2µD (3)

where µ is the dynamic viscosity and tensor D is the symmetric part of the velocity
gradient.

In the case of viscoelastic fluids, the simplest viscoelastic model can be used.
This model is denoted as Maxwell model

T + λ1
δT

δt
= 2µD (4)

where λ1 is the relaxation time. The symbol δ
δt
represents upper convected derivative.

By combination of two mathematical models (Newtonian and Maxwell) the be-
haviour of mixture of viscous and viscoelastic fluids can be described. This model is
called Oldroyd-B model and it has the form

T+ λ1
δT

δt
= 2µ

(

D+ λ2
δD

δt

)

. (5)

where symbols λ1 is relaxation time and λ2 is the retardation time (with dimension
of time).

In the system of equations (1) and (2) is on the right hand side the stress ten-
sor T which can be decomposed to the Newtonian (viscous) part Ts and viscoelastic
part Te. The tensor Ts is defined by Newtonian model (3) and the viscoelastic
tensor Te is defined by Maxwell model (4)

Ts = 2µsD, Te + λ1
δTe

δt
= 2µeD, (6)

where

λ2

λ1
=

µs

µs + µe

, µ = µs + µe. (7)

The upper convected derivative δ
δt
used in the viscoelastic part of the stress tensor

is defined by the relation, for more details see [1]

δTe

δt
=

∂Te

∂t
+ (u.∇)Te − (WTe −TeW)− (DTe + TeD) (8)
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where D is symmetric part and W is antisymmetric part of the velocity gradient

D =
1

2
(∇u+∇u

T ) =
1

2





2ux uy + vx uz + wx

uy + vx 2vy vz + wy

wx + uz wy + vz 2wz



 (9)

and

W =
1

2
(∇u−∇u

T ) =
1

2





0 uy − vx uz − wx

vx − uy 0 vz − wy

wx − uz wy − vz 0



 . (10)

These mathematical models for the stress tensor could be generalized. For this
case the viscosity is considered as a viscosity function and it’s defined by shear-
thinning cross model (for more details see [7])

µ(γ̇) = µ
∞
+

µ0 − µ
∞

(1 + (λγ̇)b)a
, γ̇ = 2

√

1

2
tr D2 (11)

with special parameters µ0 = 1.6 · 10−1 Pa.s, µ
∞

= 3.6 · 10−3 Pa.s, a = 1.23, b = 0.64,
λ = 8.2 s.

3. Numerical solution

The system of equations (1),(2) is solved by the artificial compressibility method,
see [3, 4]). In its simplest form, only the continuity equation is modified by the first
term in the following equation

1

β2

∂p

∂t
+ div u = 0 (12)

where β is positive parameter. The inviscid part of modified Navier–Stokes equations
is now strongly hyperbolic and can therefore be solved by standard methods for
hyperbolic conservation laws. The system including the modified continuity equation
and the momentum equations can be written

R̃βWt + F c
x +Gc

y +Hc
z = F v

x +Gv
y +Hv

z + S, R̃β = diag(
1

β2
, 1, · · · , 1) (13)

where W is vector of unknowns, W = (p, u, v, w, te1, . . . , te6), F c, Gc, Hc and
F v, Gv, Hv are inviscid and viscous fluxes and S denotes the source term.

Eq. (13) is discretized in space by the finite volume method and the arising system
of ODEs is integrated in time by the explicit multistage Runge–Kutta scheme ([5, 6]).

The flow is modeled in a bounded computational domain where a boundary is
divided into three mutually disjoint parts: a solid wall, an outlet and an inlet. At the
inlet Dirichlet boundary condition for velocity vector is used and for a pressure and
the stress tensor Neumann boundary condition is used. At the outlet the pressure
value is given and for the velocity vector and the stress tensor Neumann boundary
condition is used. The homogeneous Dirichlet boundary condition for the velocity
vector is used on the wall. For the pressure and stress tensor Neumann boundary
condition is considered.
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4. Numerical results

This section deals with the comparison of the numerical results of generalized
Newtonian and generalized Oldroyd-B fluids flow. Numerical tests are performed
in an idealized branched channel with the circle cross-section. Fig. 1 (left) shows
the shape of the tested domain. The computational domain is discretized using
a structured, wall fitted mesh with hexahedral cells. The domain is divided to
19 blocks with 125 000 cells.
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Figure 1: Structure of the computed domain (left) and axial velocity profile for
steady fully developed flow of tested fluids (right)

As initial condition the following model parameters are used: µe = 0.0004Pa.s,
µs = 0.0036Pa.s, λ1 = 0.06 s, U0 = 0.0615m.s−1, L0 = 0.0031m, ρ = 1050 kg.m−3.
Using these data, fully developed Poiseuille velocity profile (for Newtonian fluid)
is prescribed at the inlet (Dirichlet condition). At the outlet homogeneous Neu-
mann conditions for the velocity components and a constant pressure are prescribed
(0.0005Pa (main channel) and 0.00025Pa (branch)). On the vessel walls no-slip
homogeneous Dirichlet conditions are prescribed for the velocity field. In the case
of the Oldroyd-B and generalized Oldroyd-B models, homogeneous Neumann condi-
tions are imposed for the components of the extra stress tensor at all boundaries. In
Fig. 1 (right) the axial velocity profile for fully developed flow close to the branching
is shown. The lines for Newtonian and Oldroyd-B fluids are similar to the parabolic
line, as was assumed. From this velocity profile is clear that the shear thinning fluids
attain lower maximum velocity in the central part of the channel (close to the axis
of symmetry) which is compensated by the increase of local velocity in the boundary
layer close to the wall. In Fig. 2 the velocity isolines and the cuts through the main
channel and the small branch for Newtonian fluids are shown.

The axial velocity isolines for all tested fluids are shown in the Figure 3. It can be
observed from Fig. 3 that the size of separation region for generalized Newtonian and
generalized Oldroyd-B fluids is smaller than for Newtonian and Oldroyd-B fluids.
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Figure 2: Velocity isolines of steady flows for Newtonian fluids
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Figure 3: Axial velocity isolines in the center-plane area

5. Conclusion

In this paper a finite volume solver for incompressible laminar viscous and vis-
coelastic flows in the branching channel with T-junction and circle cross section was
described. Newtonian and Oldroyd-B fluids models were generalized by the cross
model for numerical solution of generalized Newtonian and Oldroyd-B fluids flow.
The explicit Runge-Kutta method was considered for time integrating.
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The numerical results obtained by this method were presented and compared. In
the case of steady flow in this type of the 3D branching channel the numerical results
for Newtonian and Oldroyd-B fluids are similar. Future work will be devoted to an
extension of this numerical study to the unsteady simulation.
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