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Abstract

Discontinuous Galerkin (DG) methods are starting to be a very popular solver for
stiff ODEs. To be able to prove some more subtle properties of DG methods it can be
shown that the DG method is equivalent to a specific collocation method which is in
turn equivalent to an even more specific implicit Runge–Kutta (RK) method. These
equivalences provide us with another interesting view on the DG method and enable
us to employ well known techniques developed already for any of these methods.
Our aim will be proving the superconvergence property of the DG method in Radau
quadrature nodes.

1. Introduction

The Discontinuous Galerkin (DG) method, either as space or time discretization,
starts to play an important role in problems, where robust and highly efficient solvers
are needed. Such a method enables a user to fully exploit adaptivity with higher
order approximation and still it remains very robust.

The DG time discretizations are usually analyzed by similar means as the finite
element method, see e.g. [9]. In such a way we obtain L∞ estimates of order s for
s−1 degree polynomial approximation. But numerical experiments often show better
behaviour of the discrete solution in the nodes of Radau quadrature and especially
in the endpoints of intervals. This phenomenon is usually called superconvergence.

Our aim will be showing some ideas how the possible analysis of superconver-
gence can be carried out in this case. In our approach we will focus on the Radau
quadrature variant, where the integrals from the classical DG discretization are re-
placed by (right) Radau quadrature of suitable order, i.e. the quadrature preserves
linear terms. As a first step we will show generally that this Radau quadrature
variant of the DG method is equivalent to the well known Radau IIA Runge–Kutta
(RK) method in Radau quadrature nodes. Then it is possible to use classical results
developed for implicit RK methods to achieve superconvergence error estimates. In
this part we will be mainly focused on stiff, linear problems.
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2. ODE and discretizations

Let us assume the following ODE

y′(t) = f(t, y(t)), ∀t ∈ (0, T ), (1)

y(0) = α.

Let us assume tm = mτ be an equidistant partition of (0, T ) with time step τ . We
introduce several one–step methods:

Runge–Kutta methods: Let ai,j, bi, ci, i, j = 1, . . . , s be suitable coefficients.
Then we call the sequence ym satisfying y0 = α

gmi = ym−1 + τ

s∑
j=1

ai,jf(tm−1 + τcj , g
m
j ), ∀i = 1, . . . , s, (2)

ym = ym−1 + τ

s∑
i=1

bif(tm−1 + τci, g
m
i )

the RK solution of (1) approximating values y(tm).
Collocation methods: Let ci, i = 1, . . . , s be suitable coefficients. Let y0 = α.

In every step we construct polynomial p of degree at most s such that

p(tm−1) = ym−1, (3)

p′(tm−1 + τci) = f(tm−1 + τci, p(tm−1 + τci)), ∀i = 1, . . . , s.

Then we put ym = p(tm). We call the resulting sequence the collocation solution
of (1) approximating values y(tm).

Discontinuous Galerkin method: Let us denote Im = (tm−1, tm). Let us
define the space

Sτ = {v ∈ L2(0, T ) : v|Im ∈ P s−1}, (4)

where P s−1 is a space of polynomials of degree s − 1. Since the functions from Sτ

are discontinuous in general in nodes of the partition, we denote the limit at nodes
vm± = v(tm±) and the jump {v}m = vm+ − vm− . We call u ∈ Sτ the DG solution of (1)
if u0

− = α and∫
Im

u′(t)v(t)dt+ {u}m−1v
m−1
+ =

∫
Im

f(t, u(t))v(t)dt, ∀v ∈ Sτ , ∀m. (5)

For comparison with previous methods we focus mainly on endpoints of intervals:
um
− ≈ y(tm).
Radau discontinuous Galerkin method: Let r ∈ P s be the (right) Radau

polynomial, i.e. r(0) = 1, r(1) = 0, and for s ≥ 2 let r be orthogonal to the
polynomial space P s−2. We can define the (right) Radau quadrature by

∫ 1

0

F (t)dt ≈ Q[F (t)] =

s∑
i=1

wiF (xi), (6)
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where xi are roots of r and wi are chosen in such a way that the resulting quadrature is
accurate for polynomials P 2s−2. Similarly we can define the Radau quadrature Qm[.]
and Radau polynomial rm on Im. We can define the Radau DG solution of (1) by
replacing integrals by Radau quadratures in (5)

Qm[u
′(t)v(t)] + {u}m−1v

m−1
+ = Qm[f(t, u(t))v(t)], ∀v ∈ Sτ , ∀m. (7)

3. The Radau discontinuous Galerkin method is a Runge–Kutta method

In fact we want to show this in two steps. First, when the coefficients ci of the
collocation method are chosen as Radau quadrature nodes, then there is the following
relation between the collocation polynomial p and Radau DG solution u

p(t) = u(t)− {u}m−1rm(t). (8)

From this it follows that p(tm−1 + τci) = u(tm−1 + τci), since rm(tm−1 + τci) = 0.
Since cs = 1 we gain the correspondence of the collocation solution and the Radau
DG solution at tm, i.e. y

m = p(tm) = um
− .

Lemma 1. Let p ∈ P s be the collocation polynomial on Im associated to the collo-
cation method with coefficients ci chosen as Radau quadrature nodes, u ∈ P s−1 be
the Radau DG solution on Im and rm ∈ P s be the (right) Radau polynomial on Im.
Then (8) holds.

The proof follows the ideas from [7], where a similar case (continuous Galerkin
and Gauss quadrature) is considered.

Proof. Let u ∈ P s−1 be the Radau DG solution on Im. We need to verify (3).

p(tm−1) = u|Im(tm−1)− {u}m−1rm(tm−1) = um−1
+ − (um−1

+ − um−1
− ) = um−1

− . (9)

We denote ℓm,i the Lagrange interpolation basis function

ℓm,i(t) =
∏
j 6=i

t− tm−1 − τcj

τ(ci − cj)
. (10)

We can use ℓm,i as test functions in (7) and we obtain

wiu
′(tm−1 + τci) + {u}m−1ℓm,i(tm−1) = wif(tm−1 + τci, u(tm−1 + τci)). (11)

Now it is sufficient to show that wir
′
m(tm−1 + τci) = −ℓm,i(tm−1). Since the product

ℓm,ir
′
m ∈ P 2s−2, Radau quadrature for such a term is exact and we obtain

wir
′
m(tm−1 + τci) = Qm[ℓm,i(t)r

′
m(t)] =

∫
Im

ℓm,i(t)r
′
m(t)dt (12)

= ℓm,i(tm)rm(tm)− ℓm,i(tm−1)rm(tm−1)−

∫
Im

ℓ′m,i(t)rm(t)dt = −ℓm,i(tm−1),

since rm(tm) = 0, rm(tm−1) = 1 and rm is orthogonal to P s−2 on Im.
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The second step is that every collocation method is equivalent to a suitable RK
method.

Lemma 2. Let the RK coefficients be chosen in the following way

ai,j =

∫ ci

0

ℓj(t)dt, ∀i, j = 1, . . . , s, (13)

bi =

∫ 1

0

ℓi(t)dt, ∀i = 1, . . . , s, (14)

where ℓi is the Lagrange interpolation basis function

ℓi(t) =
∏
j 6=i

t− cj

ci − cj
. (15)

Then the values gmi , i = 1, . . . , s and ym produced by such a RK method are equal to
the values p(tm−1+ τci), i = 1, . . . , s and ym produced by the collocation method with
the same coefficients ci.

Proof. The proof can be found in [4] or [10].

Now from Lemma 1 and Lemma 2 we can see that the values produced by the
Radau DG method in Radau quadrature nodes are equal to the values produced by
a suitable RK method. Such a RK method is the well known Radau IIA RK method.

4. Analysis of the Radau IIA Runge–Kutta method

Now, we shall turn our focus on numerical analysis of linear problems

y′(t) = By(t) + f(t), ∀t ∈ (0, T ). (16)

To do so, we shall focus on Dalquist’s equation y′(t) = λy(t) with the exact solution
y(tm) = eτλy(tm−1). For the purpose of analysis we assume Reλ ≤ 0, i.e. stable
behaviour of the solution. Rewriting (2) in a vector–matrix formulation we obtain

gm = ym−11+ τλAgm, (17)

ym = ym−1 + τλbT gm, (18)

where vector 1 = (1, . . . , 1)T , matrix A and vectors b and gm are formed by entries
ai,j, bi and gmi . Eliminating inner stages gmi we obtain ym = R(τλ)ym−1, where

R(z) = 1 + zbT (I − zA)−11 =
det(I − zA + zbT1)

det(I − zA)
. (19)

Following [6, Theorem 3.11] we can see that R(z) is in the case of Radau IIA RK
method the ”subdiagonal” (s− 1, s)–Padé approximation satisfying

exp(z)−R(z) = O(z2s). (20)
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Moreover, following results from [6, Chapter IV.4] we can conclude that R(z) is also
A–stable, i.e. |R(z)| ≤ 1 for any Rez ≤ 0. We define the local error

ρm = y(tm)− R(τλ)y(tm−1) = (exp(τλ)− R(τλ))y(tm−1). (21)

From (20) we can see that |ρm| ≤ Cτ 2s max |y(2s)|. Then the error analysis follows
easily from the stability of R(z)

|em| = |y(tm)− ym| = |ρm +R(τλ)em−1| ≤ . . . (22)

. . . ≤ |R(τλ)|m|e0|+
m∑
i=1

|R(τλ)|m−i|ρi| ≤ |e0|+ T
1

τ
max

i
|ρi|.

Assuming e0 = 0 we gain global error estimate em = O(τ 2s−1).
This result can be extended to the multidimensional case y′(t) = By(t), where B

is a matrix (or operator on Banach spaces in general) satisfying Re 〈By, y〉 ≤ 0. The
extension remains almost the same as the scalar case with the only difficulty arising
from the question whether ‖R(τB)‖ ≤ 1. The answer to this question is positive.
The proof of the matrix case can be found in [6, Theorem 11.2]. The proof of the
general operator case can be found in [8].

Now, we shall come back to equation (16). Unfortunately, the extension of pre-
vious results is not straightforward. According to [1] it is necessary to assume an
additional assumption, otherwise the so-called order reduction phenomena occur.

Theorem 3. Let y be the exact solution of (16) with operator B satisfying
Re 〈Bv, v〉 ≤ 0. Let

y(k) ∈ Dom(B2s−k), ∀k = s+ 1, . . . , 2s. (23)

Then the Radau IIA RK solution ym converges with order 2s− 1,
i.e. ‖y(tm)− ym‖ = O(τ 2s−1).

Proof. The proof can be found in [1].

We should mention that in the previous case f = 0, the additional assump-
tion (23) was automatically satisfied for solutions with bounded derivatives, i.e. y(2s)

bounded. For ODEs coming from PDE discretizations in space assumption (23) can
be reformulated as some kind of regularity and compatibility conditions on data. In
usual context of weakly formulated PDEs these conditions are considered unnatural.
Assumption (23) is necessary to achieve order 2s, but it can be relaxed to obtain
reduced orders, still higher than s. For assumptions needed to obtain order s+1 see
e.g. [3].

Up to now we have analyzed the error in the nodes tm only. From [2] and [5]
follows the local error estimate for internal stages gmi of implicit RK methods. In
the case of Radau IIA RK method we obtain order s+1 there. Together with global
error estimates at tm at least of order s + 1 we get also global error estimates at
Radau quadrature nodes of order s+ 1.
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Reumes. Math. Nachrichten. 4 (1951), 258–281.

[9] Thomée, V.: Galerkin finite element methods for parabolic problems. 2nd revised
and expanded ed.. Springer Verlag, Berlin, 2006.

[10] Wright, K.: Some relationship between implicit Runge-Kutta collocation and
Lanczos τ methods and their stability properties. BIT 10 (1969), 217–227.

236


