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Abstract

A modification of the limited-memory variable metric BNS method for large scale
unconstrained optimization of the differentiable function f : RN → R is considered,
which consists in corrections (based on the idea of conjugate directions) of difference
vectors for better satisfaction of the previous quasi-Newton conditions. In comparison
with [11], more previous iterations can be utilized here. For quadratic objective
functions, the improvement of convergence is the best one in some sense, all stored
corrected difference vectors are conjugate and the quasi-Newton conditions with these
vectors are satisfied. The algorithm is globally convergent for convex sufficiently
smooth functions and our numerical experiments indicate its efficiency.

1. Introduction

The BNS method (see [3]) belongs to the variable metric (VM) or quasi-Newton
(QN) line search iterative methods, see [9], [10]. They start with an initial point
x0 ∈ RN and generate iterations xk+1 ∈ RN by the process xk+1 = xk+sk, sk = tkdk,
k ≥ 0, where usually the direction vector dk ∈ RN is dk = −Hkgk, matrix Hk is
symmetric positive definite and a stepsize tk > 0 is chosen in such a way that

fk+1 − fk ≤ ε1tkg
T
k dk, gTk+1dk ≥ ε2g

T
k dk, k ≥ 0 (1)

(the Wolfe line search conditions, see [10]), where 0<ε1<1/2, ε1<ε2 < 1, fk=f(xk),
gk=∇f(xk); typically H0 is a multiple of I and Hk+1 is obtained from Hk by a VM
update to satisfy the QN condition (see [9]) Hk+1yk=sk, yk= gk+1− gk, k≥0.

Among VM methods, the BFGS method, see [9], [10], belongs to the most ef-
ficient; it preserves positive definite VM matrices and can be easily modified for
large-scale optimization; the BNS and L-BFGS (see [5], [6] - subroutine PLIS) meth-
ods represent its well-known limited-memory adaptations. In every iteration, we
repeatedly update an initial approximation of the inverse Hessian matrix ζkI, ζk > 0,
by the BFGS method, using m̃+ 1 couples of vectors (sk−m̃, yk−m̃), . . . , (sk, yk) suc-
cessively (without forming approximations of the inverse Hessian matrix explicitly),
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where m̃=min(k,m−1) andm>1 is a given parameter. In the case of the BNS method,
the direction vector can be calculated without computing matrix H+, see [3], by

−H+g+ = −ζg+ − S
[

U−T
(

(D + ζY TY )U−1STg+ − ζY Tg+

)]

+ Y
[

ζU−1STg+

]

, (2)

(we often omit index k and replace indices k+1, k−1 by the symbols +, − for
simplification), where for k ≥ 0 we denote bk = sTk yk and Sk = [sk−m̃, . . . , sk], Yk =
[yk−m̃, . . . , yk], Dk =diag[bk−m̃, . . . , bk], (Uk)i,j =(ST

k Yk)i,j for i≤ j, (Uk)i,j =0 other-
wise (an upper triangular matrix).

The concept of conjugacy plays an important role in optimization methods based
on quadratic models, see e.g. [10]. We generalize the approach presented in [11],
using vectors from more previous iterations to correct vectors s, y. Unlike [11], we
use the BNS concept to calculate the direction vector, since then the increase in the
number of required arithmetic operations can be relatively small. We use corrected
quantities s̃k, ỹk, b̃k, H̃k, k≥0, defined by s̃0=s0, ỹ0=y0, b̃0=b0, H̃0=I and

s̃k = sk + Ŝ kσk, ỹk = yk + Ŷ kηk, b̃k = s̃Tk ỹk, k > 0, (3)

where matrices Ŝk, Ŷk contain some columns of S̃k=[s̃k−m̃, ... ,s̃k−1], Ỹ k=[ỹk−m̃, ... ,ỹk−1]
(we denote a set of indices i of these selected vectors s̃i, ỹi by Ik and Ik = Ik ∪ {k};
it can be Ik = ∅, in which case we set s̃k = sk, ỹk = yk, b̃k = bk) and σk, ηk are
chosen in such a way that b̃k > 0. Positive definite matrix H̃+ is obtained by analogy
to H+, using corrected difference vectors. Note that matrix H̃+ satisfies the QN
condition H̃+ỹ = s̃ and that the direction vector d̃+= −H̃+g+ (and consequently,
also an auxiliary vector Ỹ TH̃+g+) can be calculated by analogy to (2).

In Section 2 we investigate the BFGS update with corrected difference vectors

Ḧ+ = (1/b̃)s̃s̃T + Ṽ ḦṼ T , Ṽ = I − (1/b̃)s̃ỹT , (4)

where Ḧ is any symmetric positive definite matrix, and discuss the choice of pa-
rameters σ, η. In Section 3 we show properties of Ḧ+ and a role of unit stepsizes
for quadratic functions. Application to the corrected BNS method and the corre-
sponding algorithm are described in Section 4. Global convergence of the algorithm
is established in Section 5 and numerical results are reported in Section 6. We will
denote the Frobenius matrix norm by‖ · ‖F , the spectral matrix norm by‖ · ‖ and the
Euclidean vector norm by | · |. Details and proofs of assertions can be found in [13].

2. Derivation of the method

Assuming that set I is non-empty, we will investigate the influence of the correc-
tion parameters σ, η on properties of matrix Ḧ+, given by (4). For our purpose, the
satisfaction of the QN conditions Ḧ+Ŷ= Ŝ, Ŝ=[Ŝ, s̃], Ŷ=[Ŷ , ỹ], plays a crucial role.
We will suppose that the auxiliary QN conditions ḦŶ = Ŝ are satisfied (thus matrix

Ŝ
T
Ŷ = Ŷ

T
ḦŶ is symmetric) and give a technique which guarantees the satisfaction of

these conditions for a suitable matrix Ḧ . We denote B̈=Ḧ−1, B̈+=Ḧ−1
+ , ä= ỹTḦỹ.

238



The following lemma shows that, under some assumptions, conditions Ḧ+ỹi= s̃i
are equivalent to the conjugacy of vector s̃ with vectors s̃i with respect to B̈, B̈+, i.e.

s̃TB̈s̃i = s̃TB̈+s̃i = 0, i ∈ I, or Ŝ
T
ỹ = Ŷ

T
s̃ = 0; these equations can be easily solved.

Lemma 1. Let Ḧ be any symmetric positive definite matrix satisfying ḦŶ = Ŝ,
matrix Ḧ+ be given by (4) and let b̃ >0. Then Ḧ+ is symmetric positive definite. If

vectors s̃, Ḧỹ are linearly independent then Ḧ+Ŷ= Ŝ if and only if Ŝ
T
ỹ= Ŷ

T
s̃=0.

Lemma 2. Let matrix Ŝ
T
Ŷ be nonsingular. Then the unique solution (σ, η) to

Ŝ
T
ỹ= Ŷ

T
s̃=0 is (σ∗, η∗), where σ∗ = −

(

Ŷ
T
Ŝ
)−1

Ŷ
T
s, η∗ = −

(

Ŝ
T
Ŷ
)−1

Ŝ
T
y.

Theorem 1 shows the variational characterizations of the choice σ= σ∗, η = η∗

also for non-quadratic functions, see also Theorem 3. Assumptions of Theorem 2 give
our simple strategy for choosing matrices Ŝ, Ŷ , which guarantees the satisfaction of
the QN conditions H̃k+1Ŷk = Ŝk and the corresponding auxiliary QN conditions.

Theorem 1. Let b̃ > 0 for (σ, η) = (σ∗, η∗), matrix Ŝ
T
Ŷ be nonsingular, matri-

ces Ḧ, Ḧ+ satisfy the same assumptions as in Lemma 1 and define S(Ŝ, Ŷ )={(σ, η) :

Ŝ
T
ỹ= Ŷ

T
s̃ }. If we have any symmetric positive definite matrix G̈ such that G̈Ŝ= Ŷ

and G̈(s + Ŝσ̈) = y + Ŷ η̈ for some (σ̈, η̈) ∈ S(Ŝ, Ŷ ), then within (σ, η) ∈ S(Ŝ, Ŷ ),
values ‖G̈1/2Ḧ+G̈

1/2−I‖2F and b̃ are minimized by the choice σ= σ∗, η = η∗.

Theorem 2. Suppose that each set Ik, k > 0, is chosen in such a way that Ik ⊂ Ik−1,

b̃k > 0 and Ŝ
T

kỹk = Ŷ
T

ks̃k = 0 in case that Ik 6= ∅. Then for k > 0: s̃Ti ỹj = ỹTi s̃j = 0,

i ∈ Ik, i < j ≤ k, the QN conditions H̃k+1Ŷk = Ŝk are satisfied and the auxiliary
QN conditions ḦkŶ k = Ŝk are satisfied for Ik 6= ∅ with those matrices Ḧk by the
BFGS updating (4) of which we get matrices H̃k+1 = Ḧk+1.

The first assertion of the theorem implies that all matrices ŜT Ŷ are diagonal
and thus many results can be simplified. E.g. vectors σ∗, η∗ have components
−sTỹi/b̃i,−s̃Tiy/b̃i, i ∈ I, and a damage of the QN condition with non-corrected
vectors caused by our corrections and value b̃ for (σ, η) = (σ∗, η∗) can be written:

(Ḧ+y−s)TB̈+(Ḧ+y−s) = b
∑

i∈I
(s̃Tiy − sTỹi)

2/(bb̃i), b̃ = b−
∑

i∈I
sTỹi s̃

T
iy/b̃i. (5)

3. Results for quadratic functions

Here we suppose that f is a quadratic function with a symmetric positive definite
Hessian G and ηk = σk, k > 0, which yields ỹk =Gs̃k, as for non-corrected vectors.
The following lemma and theorem show that for the choice σ= σ∗, the improvement
of convergence is the best in some sense for linearly independent direction vectors.

Lemma 3. Let f be a quadratic function f(x) = 1
2
(x − x̄)TG(x − x̄), x̄ ∈ RN ,

with a symmetric positive definite matrix G and all columns of [S̃ , s] be linearly

independent. Then for any selection of Ŝ, Ŷ from S̃, Ỹ , matrix Ŝ
T
Ŷ is symmetric

positive definite, value σ∗ is well defined by Lemma 2 and b̃>0 for any σ = η.

239



Theorem 3. Let Ḧ be any symmetric positive definite matrix satisfying ḦŶ = Ŝ and
suppose that σ= η and that the assumptions of Lemma 3 are satisfied. Then b̃ > 0
and the choice σ=σ∗ implies Ḧ+y=s and minimizes values b̃ and ‖G1/2Ḧ+G

1/2−I‖F
as a function of σ, where matrix Ḧ+ is defined by update (4) of Ḧ.

Theorem 4 describes a situation when the case σ = σ∗ occurs in all iterations.
Comparing these results with those given in [11] (Theorem 3.2) for the unit stepsizes,
we see that they are similar. Theorem 5 gives an interesting explanation.

Theorem 4. Let the assumptions of Lemma 3 be satisfied with the columns of every
matrix [S̃k, sk] linearly independent and let always Ŝk= S̃k, Ŷ k= Ỹ k, σk=σ∗

k, k > 0.
Then all columns of S̃k are G - conjugate, i.e. matrices S̃T

k Ỹk are diagonal and all
QN conditions H̃k+1Ỹk= S̃k, ḦkỸ k= S̃k, are satisfied, with those matrices Ḧk by the
BFGS updating (4) of which we get matrices H̃k+1 = Ḧk+1, k>0.

Theorem 5. Let H̃, H̃+ be symmetric positive definite matrices satisfying H̃Ŷ = Ŝ,
H̃+Ŷ = Ŝ, d=−H̃g, d+=−H̃+g+, σ=η, t=1 and the assumptions of Lemma 3 be

satisfied. Then Ŝ
T
y+= Ŷ

T
s+=0, i.e. all columns of Ŝ are G - conjugate with s+.

4. Implementation

It is important to say that not all vectors s̃i, ỹi, i∈I, are suitable as correction
vectors. Principally, we do not use vectors s̃i, ỹi, k−m̃≤ i<k, k > 0, for the correction
process (i.e. we decide that i 6∈Ik) if b̃k≤0, if resultant values bk/b̃k, bk/äk, bk/s̃

T
kB̈ks̃k

or (s̃Ti yk − sTk ỹi)
2/(bk b̃i) (see (5)) are too great or if i 6∈Ik−1, see Theorem 2.

In order to prove global convergence, we also exclude index i from I if values
|s̃i|/|si|, |ỹi|/|yi| are too great. Note that these values were rarely greater than 50
in our numerical experiments with N =5000. Further, Theorem 5 indicates that an
influence of the second and further correction vectors can be small. Thus for i<k−1,
k>0, we should not correct if a benefit of corrections is negligible, see [13] for details.

Algorithm 1 (without indices elimination details and stopping criteria)

Data: A number m > 1 of VM updates per iteration, line search and correction
parameters and a maximum number of correction vectors n∈ [0, m−1].

Step 0: Initiation. Choose starting point x0 ∈ RN , define starting matrix H̃0 = I
and direction vector d0 = −g0 and initiate iteration counter k to zero.

Step 1: Line search. Set m̃=min(k,m−1). Compute xk+1=xk+tkdk, where tk satisfies
(1), gk+1=∇f(xk+1), sk= tkdk, yk=gk+1−gk, bk=sTk yk, ζk= bk/y

T
k yk. If k=0

set s̃k = sk, ỹk = yk, b̃k = s̃Tk ỹk, Ik = {0}, S̃k = [s̃k], Ỹk = [ỹk], S̃
T
k Ỹk = [s̃Tk ỹk],

Ỹ T
k Ỹk = [ỹTk ỹk], compute S̃T

k gk+1, Ỹ
T
k gk+1 and go to Step 5. Compute S̃

T

kgk+1,

Ỹ
T

kgk+1, Ỹ
T

ksk= −tkỸ
T

kH̃kgk, S̃
T

kyk= S̃
T

kgk+1−S̃
T

kgk and Ỹ
T

kyk= Ỹ
T

kgk+1−Ỹ
T

k gk.

Step 2: Elimination of indices. Set Ik={i∈Ik−1 : i≥k−n}. Eliminate non-suitable
indices from Ik. If Ik=∅ go to Step 4, otherwise form matrices Ŝk, Ŷ k.

Step 3: Correction. Compute (σk)i = −sTk ỹi/b̃i, (ηk)i=−s̃Ti yk/b̃i for i∈Ik and s̃k, ỹk, b̃k
by (3). Set Ik = Ik ∪ {k}.
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Step 4: Matrix updating. Similarly as in [3] form matrices S̃k, Ỹk, S̃
T
k Ỹk, Ỹ

T
k Ỹk.

Step 5: Direction vector. Compute dk+1 = −H̃k+1gk+1 by the BNS method with
vectors (s̃k−m̃, ỹk−m̃), . . . , (s̃k, ỹk) and an auxiliary vector ỸkH̃k+1gk+1, see Sec-
tion 1. Set k :=k+1. If k≥m delete the first column of S̃k−1, Ỹk−1 and the first

row and column of S̃T
k−1Ỹk−1, Ỹ

T
k−1Ỹk−1 to form matrices S̃k, Ỹ k, S̃

T

k Ỹ k, Ỹ
T

k Ỹ k.
Go to Step 1.

5. Global convergence

Assumption 1. The objective function f : RN → R is bounded from below and
uniformly convex with bounded second-order derivatives (i.e. 0 < G ≤ λ(G(x)) ≤
λ(G(x)) ≤ G < ∞, x ∈ RN , where λ(G(x)) and λ(G(x)) are the lowest and the
greatest eigenvalues of the Hessian matrix G(x)).

Theorem 6. If the objective function f satisfies Assumption 1, Algorithm4.1 gen-
erates a sequence {gk} that satisfies lim

k→∞
|gk|=0 or terminates with gk=0 for some k.

6. Numerical experiments

We demonstrate the influence of vector corrections on the number of evaluations
and computational time, using the following collections of test problems: Test 11 [8]
(55 modified problems from CUTE collection [2] with N = 1000 − 5000, computed
repeatedly ten times), test from [1], termed Test 12 here, 73 problems, N = 10000,
Test 25 [7] (68 problems), N = 10000. The source texts and the corresponding
reports can be downloaded from camo.ici.ro/neculai/ansoft.htm (Test 12) and
www.cs.cas.cz/luksan/test.html (Tests 11 and 25).

Table 1 contains the total number of function evaluations (NFV) and the total
computational time in seconds (Time) for the following limited-memory methods:
L-BFGS [5], method from [11] and new Algorithm1 for n=2, 4, all implemented in
the system UFO [12]. We have used m=5 and the final precision ‖g(x⋆)‖∞ ≤ 10−6.

Test 11 Test 12 Test 25
Method NFV Time NFV Time NFV Time
L-BFGS 80539 10.361 119338 50.88 502966 429.01

Alg. 4.1 in [11] 64395 9.614 67619 32.61 325441 318.71
Alg. 1, n=2 62770 8.795 67372 31.06 302908 302.62
Alg. 1, n=4 64127 8.977 66403 30.77 308847 298.05

Table 1: Comparison of the selected methods

For Test 25, we also compare these methods by using performance profiles [4].
Value ρM(0) is the percentage of the test problems for which method M is the
best and value ρM (τ) for τ large enough is the percentage of the problems that
method M can solve. Performance profiles show the relative efficiency and reliability
of the methods: the higher is the particular curve, the better is the corresponding
method.
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Figure 1: Comparison of ρM (τ) for Test 25 (68 problems) and various methods.
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