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ELEMENTS OF UNCERTAINTY MODELING*

Jan Chleboun

Abstract

The goal of this contribution is to introduce some approaches to uncertainty mod-
eling in a way accessible to non-specialists. Elements of the Monte Carlo method,
polynomial chaos method, Dempster-Shafer approach, fuzzy set theory, and the worst
(case) scenario method are presented.

1 Introductory comments on modeling and uncertain data

Where can uncertainty analysis be placed in computational modeling? Typi-
cally, uncertainty propagation analysis leads to solving “two level” problems. This
means that we can distinguish both an inner problem and an outer problem that
together constitute an uncertainty analysis problem. Such a structure is not un-
common; a PDE-constrained optimization also falls into this category, for instance.
Indeed, if a problem of this kind is solved by successive optimization steps, then the
inner PDE is repeatedly solved during the optimization process to deliver necessary
data to a constrained optimization algorithm keeping the optimized variables in an
admissible set.

In engineering-oriented problems, the inner problem, commonly known as the
state problem, represents the mathematical model of a physical phenomenon or design
(imagine a temperature field in a heated body or a mechanical stress distribution in
a loaded body, for example). Often, the inner problem is rather standard and even
easily solvable for given unique and crisp input values such as thermal conductivity
coefficients, heat capacity, intensity of heat sources, boundary condition parameters,
loading forces, Young modulus, etc.

The outer problem originates from the fact that the values of input parameters are
usually not known exactly. Then a question arises how uncertainty can be measured
in inputs, how it propagates through the state problem, and how it can be measured
in state problem outputs.

We can view uncertainty in modeling from yet another perspective. To see this,
let us recall the general layout of a modeling process.

(I) A situation (phenomenon) we wish to model to get an insight and to predict
the behavior we are interested in.

(IT) Available input information that we can use in our models. This step is
closely related to (III) next.

*This research was supported by grant No. P105/10/1682 of the Czech Science Foundation. The
author thanks Dr. Richard (Dick) Haas for hours of fruitful discussions.
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(III) A model chosen from a hierarchy of mathematical models. This step is
crucial because it determines the rest of the modeling sequence. Choosing an ade-
quate model can be a difficult task in which the model complexity and solvability as
well as the model adequacy to our needs have to be taken into account. Modeling
a beam-like body can be a good example. Models of different complexity are at
one’s disposal, take Bernoulli beam, Timoshenko beam, perhaps a 2D shell if one
dimension of the body is significantly smaller than the others, and a full 3D model.
We can, however, also consider a hierarchy of material models from linear models
to nonlinear ones. In choosing a model, a compromise has to be made to end up
with a model that is not too complex and computationally demanding, but can still
deliver information that we need.

(IV) Validation [16, 17]. It is a process of gaining trust in the mathematical
model. Roughly speaking, the mathematical formulation should be adequate to
both the phenomenon that we model and the questions we wish to answer through
the model. Although a theoretical analysis is always valuable and can significantly
contribute to the validation process, validation is unthinkable without computational
modeling, see (VI).

(V) Approximation. Once the mathematical model is defined, we find ourselves
in a situation similar to (III). We have to choose a numerical method to obtain
an approximate solution. Again, different or even contradictory factors should be
balanced.

(VI) Verification [16, 17]. It is a process of gaining trust in the numerical method,
its implementation, and its accuracy. This trust originates from various sources. At
least, it is necessary to solve benchmark problems and to numerically check theoreti-
cal convergence rates. Verification is a matter of mathematics and, unlike validation,
it is independent of the modeled object. On the other hand, only verified numerical
models allow us to put “hands on” the mathematical model through the numerical
solution that is believed! to be close to the exact solution of the mathematical model.

(VII) Model output and the desired information. The former may not be equal to
the latter, and a post-processing may be required. It is important to obtain outputs
that contain, though possibly hidden, the desired information. As a consequence,
(VII) is closely related to (III).

(VIII) Interpretation of results. This step can be more demanding than it ap-
pears to be at first glance. There is the danger of misinterpretation caused by our
expectations that might be seemingly confirmed by the obtained results.

The goal of modeling is to step out of the area of well-proved solutions, and
make a new prediction. Then the ultimate goal is a guaranteed prediction. That is,
the solution accompanied by the evaluation of the inaccuracy caused by the model
selection, by the approximation method, and by other effects. Among them, the
effect of uncertainties in input data is of great importance.

! This belief must not be a blind belief, it should be a well-founded belief. Unfortunately, we can
never be entirely sure that our (complex) software is correct.
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To close this section, let us recall two kinds of uncertainty; see [15], for example.

Epistemic uncertainty is caused by the lack of knowledge. In principle, it can
(often) be reduced through improving measuring instruments as well as data collect-
ing and mining.

Aleatory uncertainty is caused by the inherent variation associated with the mod-
eled system. Take, for example, the randomness of material parameters, or the
variability of the weather.

Consequently, our mathematical models are burdened with uncertainty in input
data.

1.1 Notation, basic setting

In the sequel, we will use U,gq to denote the set of values of input parameters.
For example, U,q is an interval if a scalar parameter is uncertain; U,q is a subset
of R™ if an n-tuple of real values is uncertain; U,q is a set of functions if a function
is uncertain.

Next, D(a)u = f(a) will stand for a state problem dependent on a € U,q where
the right-hand side f can also depend on a. Consequently, the state solution u = u(a)
also depends on a € U,y. Examples include a boundary value problem for an ordinary
or a partial differential equation dependent on a € U,y, an initial value problem
dependent on a € U,q, or a variational inequality dependent on a € U,y (then the
equality symbol is inappropriate).

Finally, the quantity of interest, ®(a,u(a)) € R, will be the third ingredient of
uncertainty modeling. The quantity of interest, also known as the criterion func-
tion (or criterion functional), evaluates the input data both directly and indirectly
(through u(a)). Displacement, temperature, local mechanical stress or stress invari-
ants, and concentration of chemicals can serve as examples.

We assume that D(a)u = f(a) is uniquely solvable for each a € U,q and that
U(a) = ®(a,u(a)), where a € Uag, is continuous and bounded. We did not specified
the set U,q but, generally speaking, we assume that U,q is a connected and compact
subset of a Banach space.

2 Stochastic approaches to uncertainty
2.1 Monte Carlo method

The idea of the Monte Carlo method is quite simple. Random samples of a taken
from U,qg are evaluated through W, the values ¥(a) are collected, and the collection is
then statistically analyzed to infer probabilistic characteristics of the model behavior;
see [14, 18, 21]. An advantageous feature is that the method easily allows evaluating
multiple samples in parallel to speed up collecting output data.

Figure 1 shows an example. Let us assume that we are to predict the tip dis-
placement of a loaded cantilever beam with a constant but uncertain thickness a.
It is further assumed that the thickness is random with a known probability distri-
bution. By using this distribution, we generate (pseudo)random samples (Figure 1,
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Fig. 1: Monte Carlo method. Histogram of input data (left). Histogram of output data
(right).

left) of the thickness and calculate the beam tip displacement ¥ (a) for each sample a.
Then an approximation of the probabilistic behavior of ¥(a) can be inferred from
the histogram of ¥(a) (Figure 1, right).

Although Monte Carlo simulation has proved fruitful and is commonly used in
the modeling of uncertainty propagation through a model, one should be aware of
some possible pitfalls.

The probability distribution of input data can be difficult to identify or its pa-
rameters can be uncertain.

Dependencies between input parameters are possible and, moreover, often uncer-
tain, which complicates both the sampling procedure and the credibility of results.

If N is the number of samples, then, in general, the convergence rate of estimated
probabilistic parameters is equal to O(N~'/2). Although sophisticated sampling
methods can be a partial remedy, the necessary number of state solutions can still
be prohibitive if the state problem is computationally demanding.

2.2 Polynomial chaos

Polynomial chaos is also known as the Wiener polynomial chaos or Hermite
chaos or, in a generalized form, the Askey chaos. In computational applications,
the method is also called stochastic finite elements; see [11, 12, 22].

Analogously to the Monte Carlo method, it is assumed that the state problem
input parameters can be represented by a random process; let us denote it by X (0).
The idea is to express or, in calculations, to approximate the random process through
separate spatial (or temporal) deterministic variables and independent random vari-
ables.

To give an example [22], let us consider a two-dimensional expansion Y .-, ¢;d;
using Hermite polynomials and &7, &, two independent Gaussian random variables
with zero mean and unit variance, that is,
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X(Q) =Co+ 0151 + 0252 + 03(§% - 1) + 04(5152) + 05(53 - 1) + ...

oo

= co+ c1P1 + Capo + C3P3 + Cas 505 - - = Z Ci®i,
i=0

where ¢; € R fort=0,1,....
Next, a weight w related to the used random variables is introduced to make the
system {¢;} w-orthogonal. For & = (§1,&;) where & and & are Gaussian random

variables, we take

1 2 2
— o (E+E5)/2

which simplifies the weighted inner product (-, -),, of ¢;, ¢;, i.e.,

<¢ia¢j>w = . ¢i(5)¢j(f)w(f) d§ = <¢ia¢j>w5ij (Kronecker 5)7

where S,, is the domain of w; it is S,, = R? for our choice of &.

A finite part of the expansion of random inputs is employed in the state problem
to obtain its approximate solution as a random process. Let us illustrate this through
an example taken from [22].

Let us consider the following initial value problem

y'(t) =—ky(t), v(0)=y. (1)
where k = k(0) is a random variable with probability density function f.

Remark: For (1) and a given k € R, the deterministic solution y(t) = y.e % al-
lows a direct probabilistic characterization of relevant quantities without the use of
a polynomial chaos expansion. Take, for instance, the mean of the stochastic solution
at ¢

y@>=y*zfr“f@»dh

where S is the support of f. For educational purposes, however, we will not use the
approach based on the deterministic solution but we will apply the polynomial chaos
expansion to (1). O

Let us assume that k is a Gaussian random variable. Then it is recommended to
expand the random variables into functions originating from Hermite polynomials
applied to Gaussian random variables &;,...,&, (n = 2 in our example). The solu-
tion y of (1) is a random process y(t,0) at any ¢t € R\ {0}. We approximate both
y(t,0) and k(@) by finite parts of their polynomial chaos expansions, i.e.,

P

y(t,0) #G(t,€) = D_yi(N8;(6), k(O) ~ k(€)= 3 kidn(€),

Jj=0
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where y; are unknown functions of ¢, k; € R are unknown constants, and ¢, are

known w-orthogonal functions. By inserting these finite sums into y'(t) = —ky(t),
we arrive at

P P P

S U)o = =D dibskiy;(t

i=0 i=0 j=0

After multiplying by ¢, (¢ = 0,1, ..., P), integrating with the weight w, and exploit-
ing the orthogonality, we obtain

P P
<¢g, qbg wyg Z Z e”gkzyj = 0, 1, RN 7P, (2)

=0 7=0

where e = [o 0i(§);(€)de(§)w(§) d§ and S, is the domain of w.

We observe that the original stochastic problem (1) is transformed into a system
of numerically solvable (deterministic) ordinary differential equations (2).

By having y(¢,0) =~ y(t,§) = Zf:o y;(t)¢;(§), the orthogonality, and ¢y = 1, we
can approximate the mean solution at ¢ by

P
P01 =506 = |32 0s)6,6)10(6) 46 = (6. doupolt)
w =
and the variance of the solution at t by

Var (y(t, & {( y(t, &) —ylt, 5)) }
-/ w (f;y — (0, do)uthlt >> w(€) d
_ / 3 Zym 3 (0)6:(€)65(€)w(€) dé

2(¢0, $0)wyo(l / Zy] )¢5 (§)w(€) A€ + (%o, bo) ¥ (t)

Z iy Di)wy (t) — 2{d0, P0) 2o (1) + (o, bo) ¥ (t)

<¢za ¢z>wyz (t).

ﬂMw H

Although the complexity of the method increases with the number of random
variables and, consequently, with the complexity of the expansion, the method can be
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102 x —10*x faster than the Monte Carlo method delivering the required probabilistic
characteristics with the same accuracy; see [22].
Other probability density functions can be considered in input parameters. Rele-
vant weights w and w-orthogonal polynomials are then used in the analysis; see [22].
The approximate stochastic solution 7 can be further evaluated by the criterion
functional whose probability characteristics are to be inferred.

2.3 Transformation to a deterministic problem; Karhunen-Loeve expan-
sion (KLE)

The underlying idea is identical to the idea presented in the previous subsec-
tion. However, unlike the polynomial chaos expansion, which is rather heuristic, the
Karhunen-Loeve expansion is mathematically more rigorous. More details on the
transformation can be found in [2, 3, 4, 5].

Let Q ¢ R? where d € {1,2,3}, be a domain. Let us consider g, a stochastic
function on €. Values g(s) and ¢(t), where s,t € Q and s # t, are random variables
that can be coupled to some extent. In the probability theory, such non-deterministic
couplings are characterized by the covariance function cov[g] : 2 x @ — R that is
defined as follows

covlg(s,t) = E[(g(s) — Elg(s)]) (9(t) — E[g())], s,t€Q,

where Fw] stands for the mean (expected value) of a random quantity w. We assume
that cov[g] is continuous and bounded on € x €.
We define an operator T, : L*(Q2) — L*(2) by

Tyu(-) = /Qcov[g](x,.)v(a:) dz Vv e L*(9Q).

It can be shown that the operator is compact, selfadjoint, and that its eigenvalues
are non-negative. Let {\;}32, be a non-increasing sequence of the eigenvalues of T,
and let {;}52, be a sequence of the corresponding L?(2)-orthonormal eigenfunctions,
i.e., Tgbz = )\sz

The stochastic function g(z, ), where z € , can be expressed by the Karhunen-
Loeve expansion from which, however, we take only the first N terms to approxi-
mate g by gy, that is,

gn(z,0) = Elg)(z) + Z VAbi(2)Y;(6), (3)

where the real random variables, {Y;},, are uncorrelated, have zero mean and unit
variance, i.e., E[Y;] = 0 and E[Y;Y;] = 6;;.

The amplitude of \; can provide guidance for choosing N (if \; is “small”, we
cut off the rest of the infinite expansion) and, analogously, for determining the size
of the polynomial chaos expansion introduced in Subsection 2.2.
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Let us illustrate the above ideas through a boundary value problem with stochas-
tic functions; see [5].

Let © C R? be a domain. We consider the following elliptic boundary value
problem

—div(a(z,0)Vu(z,0)) = f(x,0) in Q, ie, x €, (4)
u(z,0) =0 on 01, (5)

where a, f (and u) are stochastic functions.

We assume that
a) a(x,0) = a(x,Y1(0),...,Yn(0)), where Y; are the functions introduced in (3);
b) £(z,0) = £, Yi(0), .., Yn(0)):
c) Iy, the range of Y;, is a bounded interval in R for i =1,2,..., N;
d) the random variable Y; has a known density function p; : I'; = R* (nonnegative
real numbers) with p; € L>°(T;), where i = 1,2,..., N.

As a consequence, u(z,0) = u(x,Y1(0),...,Yn(0)).

Let p = p(y) : T' — R* be the joint probability density function of the random
vector Y = (Yi,...,Yy), where I' =[], I; € RV.

We also assume that quantities Y; are not only uncorrelated but mutually inde-
pendent. Consequently, p(y) = Hf\il pi(y;), where y = (y1,...,yn).

Like a deterministic boundary value problem, the stochastic problem (4)-(5) has
its stochastic variational counterpart, see [5]. Although it is omitted here, we intro-
duce its deterministic equivalent: Find u € Hg(2) ® L(T') such that

/pmm%vwmmwwy:/pgwhmﬁm o€ HY(Q) ® LAT),  (6)
r r

where V, indicates that only the partial derivatives with respect to the spatial vari-
ables are included into the gradient, H}(Q) stands for the Sobolev space of once
differentiable functions with traces vanishing on 0f2,

ﬁ@ﬁz{vlﬂﬁR|/) dy<+m}

and the tensor space Hy(Q)® L2(T') is a Hilbert space with the inner product defined
as follows

<u>v)H(}(Q)®L§(F) :/Fp(y)(u(‘vy)>v('>y))H1(Q) dy.

Problem (6) is purely deterministic because the stochastic features of (4) have
been transformed into the weight p. However, we pay for it by the increased number
of dimensions. In (6), functions a, f, u, and v are functions of d + N variables.

Let us confine ourselves to a few comments on solving multidimensional boundary
value problems though this subject would deserve a more detailed treatment.
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In Monte Carlo Galerkin finite element method (FEM) [5], samples of the state
solution u are obtained via realizations of a and f. For each realization, i.e.,
al,y1,--5yn), (01, ., yn), where (y1,...,yn) is fixed, the state solution is ob-
tained through a standard Galerkin FEM. The samples are weighted by their prob-
ability? and the expected value (i.e., mean) of the stochastic state solution can be
calculated, for example.

FEM methods for multidimensional BVPs have been designed. They use, for
instance, h-FEM basis functions in the spatial variable (d-tuple) x and p-FEM basis
functions in the probabilistic variable (n-tuple) y; special polynomials to approx-
imate the probabilistic part of u and compute its mean efficiently; a reduced set
of basis functions. It is said that problems exhibiting =~ 10 — 20 dimensions, or
~ 100 dimensions in special cases, are solvable by present means.

Although the KLE-based methods are anchored in a rigorous mathematical anal-
ysis and can deliver theoretical results as well as error estimates, one should be aware
that the KLE and p; identification are crucial and demanding prerequisites.

Remark: We omit a huge class of differential equations perturbed by (white) noise
(Brownian motion, Wiener process). They are known as stochastic differential equa-
tions and a special (Itd) calculus has been proposed for their analysis. [

We conclude the section on stochastic methods by the observation that these
methods can deliver extremely important and valuable assessments of uncertainty
and its propagation to model outputs. To perform well, however, they need input
data that is sometimes (if not even often) difficult to obtain in the required quality
and/or quantity.

3 Non-stochastic methods

Stochastic methods can also be viewed as methods where input values are weighted
(by their probability) and the goal is to infer the weights of model output values.
Since the weights have to fulfil rather strong assumptions (recall the requirements
placed on probability measures), it can be advantageous to have methods whose
assumptions about input data are relaxed.

We will present two such methods and one method where inputs are not weighted.

3.1 The worst (case) scenario method (WSM)

In this approach, input parameter values are considered equally possible and of
the same weight. The name of the method reflects a common goal in practice — to
find the particular value of a quantity of interest that is most unfavorable from an
application point of view; see [13].

Since maxima are often important (maximum temperature, maximum mechan-
ical stress, for example), to determine the “worst” scenario (also known as anti-
optimization [6, 10]), we maximize ¥ by searching for

2In Monte Carlo, it is common to divide the probability domain into subdomains of equal
probability and to take a representative sample from each subdomain.
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a’ = argmax ¥(a). (7)

a€Uyq

If also the “best” scenario

ap = argmin ¥(a) = argmax (—¥(a)) (8)
aeL{ad aeuad

is found, then the range of \If|uad is given by
Iy = [¥(ap), ¥(a")]. (9)

To obtain (7)-(9), we assume that U,q is a compact and convex set and that
U : U,g — R is a continuous map. In practice, non-convex U,y makes maximization
(minimization) of ¥ difficult.

Remark: The formulation of the worst scenario problem (7) (or its modification (8))
is identical to the formulation of other already established problems; take optimiza-
tion problems or parameter identification problems. Indeed, for the latter, where
a desirable output ugiven is known on a domain €2, the goal could be to minimize

¥(0) = [ (u(a) = tgun)?

over U,g, for instance. [

The method delivers the guaranteed range of \If|uad, which fits to the concept of
the guaranteed prediction, see Section 1. The WSM does not use weighted data,
which eliminates the difficulties associated with the determination of weights. On
the other hand, the method neglects the fact that the occurrence of extremal values
of ¥ is rare in many practical problems.

Remark: The worst scenario approach is also possible in stochastic problems. Take
U,qg representing a set of admissible cumulative distribution functions, for instance.
The extremal probabilistic features of W are then in the focus of the analysis; see [7].

3.2 Dempster-Shafer evidence theory

In this approach, the entire sets of input data are weighted. The weights, though
resembling probability measures, are defined less strictly, however.

Let us introduce the elements of the evidence theory; a more detailed treatment
can be found in [1, 6, 8, 20].

Let X be a universal set and Px be the power set of X. A map m : Px —
[0,1], called the basic probability assignment, is defined. It holds m(f) = 0 and

>> m(A) = 1. For simplicity, we assume that m(A;) > 0 only for a finite number
Ae Px
of sets A; € Px, where i = 1,2,...,k; these sets A; are called focal elements. We

can interpret m(A;) as the weight associated with A;; see Figure 2 (left).
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Fig. 2: Focal elements and their weights (left). Focal elements and a set A (right).

Next, two functions are defined on Py, namely belief and plausibility

Bel(A) = Y m(A;), PlA)= Y m(4), AcPy. (10)
A;CA ANA#£D

For the set A and the focal elements depicted in Figure 2, we obtain
Bel(A) =0.2+ 0.1 +0.05 =0.35, PI1(A4) =0.2+0.140.05+0.15+0.2=0.7.

Various interpretations of Bel and Pl can be found in [15]: P1(A) is the largest
probability for A that is consistent with all available evidence, Bel(A) is the smallest
probability for A that is consistent with all available evidence. Or, Pl is an upper
limit and Bel is a lower limit on the strength of evidence at hand.

The latter interpretation is close to our weight-oriented perspective. Indeed, we
can interpret P1(A) (Bel(A)) as an upper (lower) weight A can have, given the weights
of focal elements.

Our ultimate goal is to infer weights attributed to (at least) some sets of values
produced by the criterion functional W. In other words, we have to establish a set
of focal elements in the space of the quantity of interest. To achieve this goal, we
employ the worst scenario method.

Let A;, where ¢t = 1,..., N, be the focal elements of a probability assignment m
in the space of model inputs. Let us interpret each A; as an admissible set and
calculate the intervals W[, , where i =1,..., N; see (7)-(9).

These intervals can serve as focal elements, but we have to take into consideration
that more than one admissible set can be mapped to one interval. For the quantity
of interest, basic probability assignment my and its focal elements I} are defined as
follows (extension principle)

my(If)= Y mA), k=1, K, (11)

{i: I’g,:\p\Ai}

where K is the total number of different intervals |, .
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Once my, the basic probability assignment in the space of the quantity of interest,
is established, the relationship between the focal elements I% and various sets can
be assessed through Bel and Pl.

FExample: Let us imagine that some input parameters of a computational model
of a structure are not given as crisp numbers but they are known only through
inexact measurements performed by four groups of students. The measurements
have resulted in four data sets denoted by Ay, ..., A4. Since the groups do not share
the same level of experience, the credibility of their results is also different, which is
represented by weights m; that we attribute to A;, where ¢ = 1,2, 3, 4.

The range of a quantity of interest W is calculated for each A;; let

v, =106,75, W, =16 10] Vl,, = [6,10], W], =1[9.512] (12)

By applying (11) to (12), we obtain three focal elements and their probability as-
signment, i.e.,

I, = 05,75, IZ=[610, Ii=[9512; (13)
m\p(I&,) =ma, m\p([\%) = M9 + ms, m\p(I\?f,) = mMy. (14)
To get some insight into the behavior of the quantity of interest, we will use my

to calculate Bel and Pl for various intervals of length 3.
To this end, let us consider x € [1,13] and define two functions

fBel(x) = Bel([z,z + 3]), fpi(z) = Pl([z,z + 3]).

It is, for instance, fpi(4.9) = P1([4.9,7.9]) = mg(I}) + my(I2) = my + my + ma.

In Figure 3 (my = 0.2, my = 0.1, mg = 0.25, and my = 0.45), two clusters of
intervals attract our attention. We observe that intervals [z, + 3] determined by
x € [6.5,7.5] have plausibility equal to 1 but zero belief and that intervals [z, z+ 3]

1 - f
f—Bel
0.8r
_fPI
0.55+
0.45+ -
0.2+ _— —
2 4 6 8 10 12

Fig. 3: The graphs of fpe; and fp;.
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determined by z € [9,9.5] have plausibility 0.8 and their belief value is equal
to 0.45. The intervals from the former set can be in agreement with the quantity of
interest “hidden” in the intervals I, but no agreement is guaranteed. The intervals
from the latter set cannot comply with all I, but at least partial correspondence is
guaranteed. [

It is worth noting that the Dempster-Shafer theory includes rules of combination
that allow to combine two different probability assignments. In other words, differ-
ent opinions of different experts can be combined into one assessment; see [1, 19],
for instance. Although fruitful in uncertainty analysis, the combination fails if the
included opinions are too different [19].

3.3 Fuzzy set theory

A fuzzy set U C Z, where Z is a basic set, is identified through p;, the member-
ship function

Hu - Z — [071]7

where the real value in [0, 1] represents the degree to which z € Z belongs to the
set U. The higher the value, the stronger the membership. For the theory and
applications, see [1, 6, 9, 23].

For our purposes and in accordance with our weight-oriented standpoint, we
assume that an admissible set U,q is given together with its membership function
tat,, - Uaa — [0, 1] and that if 1y, () = 0, then & € OUag where OU,q is the boundary
of Us,q. As in the worst scenario section, it is advantageous to assume that Uyq is
a compact and convex subset of a Banach space. We assume, moreover, that py,, is
a continuous and concave function on U,y.

For a € [0, 1], a subset “U,g comprising all x € Uaq such that g, (r) > « is called
a-cut. Obviously Usg = Uag.

By knowing the a-cuts of a fuzzy set, we are able to restore its membership
function, which is the goal we want to achieve in the set Iy = {¥(a)| a € Uaq} that
is fuzzy due to the fuzziness of U,g.

To this end, we temporarily fix @ € [0, 1] and, by employing the best and the
worst scenario (see (7)-(9)), we determine

Ty = [¥(ao,a), ¥(a™)], (15)

where °Ty is the a-cut of Iy = Iy.
By computing (15) for all @ € [0,1], we can construct the membership func-
tion g, through

pr, (y) = max{a| y € Iy}, y € Iy,

to asses the fuzziness of ¥, the quantity of interest. In practice, of course, “Iy is
found only for a finite number of input a-cuts and only an approximation of py, is
obtained.
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4 Concluding remarks

Uncertainty propagation analysis fits into the framework of decision analysis. The
analyst has a variety of approaches at his or her disposal. Their applicability depends
on what is known about input data, what kind of uncertainty is most relevant to the
available data and to the problem under investigation.

In practice, the weights attributed to input data are often uncertain because
they originate from a limited number of (inaccurate) measurements, expert opinions,
hypotheses, and estimates. As a consequence, the validity of uncertainty analysis
results is a delicate matter.

Although ignored in this paper, sensitivity analysis is an important part of uncer-
tainty analysis. The goal of sensitivity analysis is to assess the influence of a (small)
change in inputs on the quantity of interest. It helps to identify input parameters
that have a weak influence on the value of the quantity of interest; these parameters
can be excluded from the uncertainty analysis. Sensitivity analysis is also beneficial
in algorithms searching for the minimum or maximum of a quantity of interest.

The worst scenario method can be used as a stand-alone method. It is also an
integral part of other methods as we observed in the sections on the Dempster-Shafer
theory and fuzzy set theory. Moreover, the WSM shares many features with optimal
shape design, PDE constrained optimization, and inverse problems, for instance. As
a consequence, various well-tried tools for theoretical as well as computational anal-
ysis are at our disposal. However, their tailoring for uncertain input data problems
is desirable.
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