PANM 15

Dalibor Frydrych
Usage of modular scissors in the implementation of FEM

In: Jan Chleboun and Petr Ptikryl and Karel Segeth and Jakub Sistek (eds.): Programs and Algorithms of Numerical
Mathematics, Proceedings of Seminar. Dolni Maxov, June 6-11, 2010. Institute of Mathematics AS CR, Prague,
2010. pp. 78-83.

Persistent URL: http://dml.cz/dmlcz/702742

Terms of use:

© Institute of Mathematics AS CR, 2010

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for
personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
\J http://dml.cz

http://dml.cz/dmlcz/702742
http://dml.cz

USAGE OF MODULAR SCISSORS
IN THE IMPLEMENTATION OF FEM*

Dalibor Frydrych

Abstract

Finite Element Method (FEM) is often perceived as a unique and compact pro-
gramming subject. Despite the fact that many FEM implementations mention the
Object Oriented Approach (OOA), this approach is used completely, only in minority
of cases in most real-life situations. For example, one of building stones of OOA, the
interface-based polymorphism, is used only rarely.

This article is focusing on the design reuse and at the same time it gives a complex
view on FEM. The article defines basic principles of OOA and their use in FEM im-
plementation. Using OOA FEM project is split in many smaller sub-projects which
are interlinked together. Links between sub-projects are one way only and non cir-
cular. Such a setting gives opportunity to use the modular scissors. In addition,
these individual sub-projects can be used directly, without additional adjustments, in
similar projects.

1 Introduction

Development of computer programs have undergone significant changes in recent
years. In the beginning, programming was seen as a kind of art. Programmers
worked alone and quality of their work depended on their individual skills. The
demand for computer programs increased significantly with rising use of computers.
At the same time expectation from these programs were growing too, in parallel
with the complexity of studied tasks. A new market was created and new companies
emerged to develop computer programs. Due to complexity of tasks programs were
usually written by several programmers. This brought along approach known, up
to that date, mainly in mass production: analysis and planning standardization,
quality assurance, process documentation, personal replaceability, labor efficiency
and management. Development of computer programs became a full scale industry.

Process of program development is structured like other projects. Development
is done by a development team. Team is managed by Project manager. A task is
initially analyzed, if necessary also in depth at customer side, by an analyst. Designer
is supposed to choose an appropriate software platform and language. Programmer
(SW designer) is often called a “coder” and is responsible solely to write machine
code using data input defined by analyst and designer.

*This work has been supported by Ministry of Education of the Czech Republic; under the
project “Advanced remedial technologies and processes”, code 1M0554.

78

Organizing the project development in different layers between different persons
improves productivity. Team member on given level is an expert in his job. Commu-
nication between the layers is standardized by using defined documents (equivalent
of technological procedures for example in industrial production). Definition of all
these steps ensures personal replaceability and makes team management easier. In
order to ensure that documentation is consistent in all levels it was necessary to
adjust general approach to problem solving. Nowadays, the ideal approach seem to
be Object Oriented Approach (OOA).

2 Object oriented approach

Common mistake committed by developers is, to use for solving of a problem the
object oriented programming language, and to believe that it is OOA. OOA is mainly
about giving a project right structure, than about using particular programming
language. For example, one of important features, by which OOA can be recognized
is the absence of circular associations.

A

Fig. 1: Class diagram of circular association.

Circular associations are often responsible for tangling of code. Figure 1 demon-
strates circular association between three classes A, B and C. Class diagram from
Unified Modeling Language (UML) [2] is used for explanation. Modeling of processes,
where classes are so heavily interlinked is very complicated as change in one class
causes changes in other classes. During implementation, many such conflicts arise
and what makes solving of problem even more difficult is the fact, that responsibility
of individual classes is not clearly defined.

Solution to this problem is to cut the circular association, for example between
class C and A, and make it linear. Then the responsibilities of classes are clearly
defined. Implementation of class C is the starting point. Because class C is not
dependent on any other class, its responsibility is clearly defined. Implementation is
quick and easy. Next step is implementation of class B. This class is using class C.
But class C is already implemented and tested, so it is ready to use. The same
situation repeats in implementing of class A.

However, decision how to cut circular association is a crucial step and has to be
done only after deep analysis of the whole system.

79

3 Analytical model of FEM

Now, it is time to describe FEM, very roughly and analytically, from system
design point of view. Domain of task €2 is divided in particular sets of elements.
Scalar products are calculated for each element. Values of individual scalar sets
members depend on initial conditions, respectively on results of previous time step.
Scalar products are placed in global matrix. Global matrix and the right hand side
of linear equations set are modified according to boundary conditions. Set of linear
equations is solved, and then interpreted as values of individual searched parameters.
Then the calculation is repeated for next time step.

From the above description it is clear, that the FEM is element-centric method.
In many implementations of FEM, the data structure defining an element is very

big.
class Element {

Node[] nodes;

MaterialParameters[] materialParameters;
DOF[] dofs;
Results[] results;

}
It contains information about initial conditions, material properties, boundary con-
ditions etc. Such a structure is too complicated and difficult to re-use. Defining too
big structures is very common design mistake.

3.1 Reduced model of mesh

The key point of efficient design is making the data structure, which defines the
element, smaller. The basic idea is the following: element defines only part of the
task domain 2, an element needs only association to nodes.

Analytical model of mesh is then very simple, as can be seen in Figure 2. Mesh
keeps only information about task domain 2, ensures the association to list of ele-

<<Interface> >

IElement
A
AbstractElement
< <Interface> >
T INode
| | i
Triangle Tetrahedron Node

Fig. 2: UML class diagram of mesh.

30

ments and list of nodes. An element is a typical abstract structure. Mechanism of
inheritance is used to specify concrete type of element (triangle, tetrahedron, ...).
A model defined in this way has a clearly defined functionality, which can be used in
future models with no need for additional modification - that is the idea of re-use.

3.2 Methodology DF?EM

Methodology DF?EM (Developers Fab Finite Element Method) [5] describes
individual particular models, their functionality and associations in between them,
see Figure 3.

The lowest level represented by model Tools is dealing with system functions. The
next level model Math is solving main mathematical parts. All these models work
only with basic sets of data (int and double), eventually define their own (Matrix).
On the next level there are three independent models:

e Model Mesh described above.

e Model Material implementing calculation with material parameters.

e Model Scenario solving definition of individual time steps for calculation of un-
steady processes.

Model Approx is a database of approximation functions. Model Local intercon-
nects, using association classes models Mesh, Material and Approximation and im-
plement calculations of local matrices. Model Formulation defines basis of mathe-
matics formulation of FEM (primal, mixed-hybrid, etc.). On the highest level there is
model Task. It ensures initial phases, start up and management of the whole cal-
culation. From Figure 3 it is clear that associations between individual models are
NOT circular. To re-use any individual model, it is possible to use modular scis-
sors. For example, to re-use model Local, it is necessary to take ONLY models on
which this model is dependent (Approx, Material, Mesh, etc.) NOT all the models
Methodology DF?EM .

4 Implementation

Programming language JAVA was used for implementation. Implementation
was named as Project DF?EM and was based on models created in Methodol-
ogy DF?EM. Interface-based polymorphism was exclusively used for implementa-
tion in order to ensure easy exchange of concrete implementation. JAVA language
ensures the possibility to insert concrete implementation even in run-time (similar
to principle of plug-in modules). User of Project DF?EM has therefore an option
to exchange any part of implementation by a different one without need to modify
the source texts Project DF?EM.

4.1 Testing

An important part of each software development project is its testing. For im-
plementation of Project DF?EM were used ideas of technology Test driven devel-
opment. Division of FEM into small logically defined parts, enabled their thorough

81

formulation

g
local
T v !
]] .
topology approx !
> v v v
1 =
mesh material
= Z g Vi -
E&— 5 £
M —
C o DI math
Yy v
=
tools

Fig. 3: Schema of DF?EM models.

testing. Framework JUnit [3] was used for testing. Thorough testing was possible
by using support tool Cobertura. In perimeter of JUnit it is possible to create test
file for each class. Then it is possible, within the class, to test all its methods. Tool
Cobertura analyzes how all individual tests were running. Checks track of all tests
passages through individual lines of source code and presents results in graphs and
reports. In this way it enables very detailed testing of all the functions of individual

classes.

82

N |

result

.
5
.

v

scenario

5 Conclusion

This article defined a unique system of OOA to FEM called Methodology DF*EM.
Basis is Methodology DF?EM detailed OOA of FEM. This OOA is independent
of used programming language. FEM is divided in small, logically defined mod-
ules - which are managing individual objects. Associations between modules were
reduced so between them and also inside of them circular associations were not cre-
ated. Avoidance of circular associations, allow as to separate individual modules for
re-use, by modular scissors. Such models can be re-used in other project without
additional corrections or adjustments.

Methodology DF?EM is not only a theoretical work with no practical use. Im-
plementation was done in language JAVA and is called Project DEF?EM. Project
DF?EM is used for implementation of several models based on FEM. Very good
results were reached in model ISERIT [6].

References

[1] Gamma, E., Helm, R., Johnson, R., and Vlissides, J.: Design patterns: ele-
ments of reusable object-oriented software. Addison Wesley Professional, 1994,
ISBN 978-0201633610.

[2] UML®Resource Page, http://www.uml.org
[3] JUnit.org: Resources for Test Driven Development, http://www.junit.org
[4] Cobertura, http://cobertura.sourceforge.net

[5] Frydrych, D. and Lisal, J.: Introduction to methodology DF?EM - framework for
efficient development of finite element based models. Proceedings of ICCSA’08.
San Francisco, USA, 2008.

[6] Frydrych, D. and Hokr, M.: Verification of coupled heat and mass transfer model
ISERIT by full-scale experiment. Proceedings of ICMSC’08. San Francisco, USA,
2008.

33

