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NUMERICAL MODELING OF NEUTRON TRANSPORT - FINITE
VOLUME METHOD, RESIDUAL DISTRIBUTION SCHEMES*

Martina Smitkova, Marek Brandner

1 Introduction

Thanks to nuclear renaissance, numerical modeling of reactor physics has become
an important field of study. This contribution deals with methods for numerical
solving of the neutron transport equation. For its angular discretization we use
the Py approximation, then we discuss two approaches to the spatial discretization
— the Finite Volume Method and the Residual Distribution Schemes. Finally we
present numerical results.

2 The neutron transport equation

Time-dependent transport of all neutral particles can be described by the one
energy group Boltzmann transport equation [1]

%% (x, 2, 8) + Q- Vi(x, 2, 1) + Dyb(x, Q1) =
_ s P(x, Q' 1)dQ + Q(x, 2, 1), (1)
4r 4m

where 1(x,€2,t) is the unknown function angular flux, x is the position, € is the
particle direction, t is time, X, is the isotropic scattering cross section, >; is the
total cross section (3; = 3, + X,, where X, is the absorption cross section), v is the
neutron speed, which we set to v = 1 for convenience, and () is the independent or
external source (@ = 0 in the sequel).

This formulation is basis for a time-dependent problem. We can either seek
for a time-dependent solution, or in some cases the basic goal is to find a steady
(stationary) solution and the time-dependent solution has just the role of an iterative
process.

The sought function is a function of spatial variables, angular variables and time
(function of 6 variables). We distinguish discretization of direction (for example:
Py, Sy approximation), space and time.

*This work was supported by the specific research project of UWB and MSM 4977751301.
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3 The Py approximation

This approximation is based on expanding the angular flux ¢(€2) as a linear com-
bination of the spherical harmonics as (x, Q,t) = S0, S0 4m(x, 1)Y™(Q) [1].
This expansion is exact, but in order to make practical use of it, the series must be
truncated. The Py approximation is based on the assumption that all ¢/* = 0 for
[ > N. Then we solve a system of partial differential equations for the moments ;.

The Py equations can be written in the matrix form, in two dimensions as

q: + A:(:qx + quy = Sq (2)

and in one dimension as
a: + Aq, = Sq, (3)

where q is vector of the unknown moments 1; and ;" respectively. MatricesA, A, A,
(for their particular form see [1]) are diagonalizable, thus we are dealing with non-
homogeneous linear hyperbolic systems of partial differential equations.

The basic goal is to construct an efficient solver applicable to both stationary
and time-dependent problems with arbitrary geometry.

4 Spatial discretization

Up-to-date numerical methods for solving hyperbolic partial differential equations
are various types of the finite volume method (FVM) — such as upwind methods,
central methods, based on many approximate Riemann solvers (Roe, HLL, HLLE...)
and different reconstruction methods (TVD, ENO, WENO), several limiter functions
etc. Next we have novel methods such as Residual Distribution Schemes (RDS),
Streamline Upwind Petrov-Galerkin method (SUPG) or Discontinuous Galerkin Fi-
nite Element Method (DGFEM).

We will discuss the Finite Volume Method and the Residual Distribution Schemes.

4.1 Finite volume method

We focus on analysing one-dimensional problems. Multidimensional problems
will be treated simply as multiple, independent, one-dimensional problems. But this
approach can cause problems and it means an important drawback of this method.

We begin by dividing the z axis into cells C; = (zi—1/2, Tit1/2) (see Fig. 1) with
uniform widths Az = ;419 — ;12 and edges at z;41/5. We introduce space-
averaged data in cell ¢ at time ¢ as

q;(t) = Aia: /zM/2 q(z, t)dz. (4)

Ti—-1/2

The following equation is a consequence of the more general integral form of (3):

_q+ +1/2 1/2 — Sq

ot Ax v (5)
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Fig. 1: Notation of cells, cell averages and fluxes on interfaces in FVM.

Here F;4/2 denote the numerical fluxes at the cell boundaries, which we express
using the Roe-type Riemann solver (the exact solution of the Riemann problem for
the related linear homogeneous problem) as

1 1
Fif0= §A<QI +q,) — §‘A’(q7‘ —q), (6)

where |[A| = Y, ri|A\g|lp (A are the eigenvalues of the matrix A from Eq. (3),
r; and 1l the right and left eigenvectors) and q;, q, is obtained using the values
of Q; “to the left” and “to the right” of the cell i (Q; ~ q;).

If we at the interface i + 1/2 naturally set q; = Q; a q, = Q;41, we get a method
that is first order accurate in space. To get a higher-order method we reconstruct
the approximate solution using linear interpolation within a cell to have a better
estimate of the solution at the cell boundary. We seek to prevent the introduction
of artificial oscillations into the solution, hence a nonlinear method must be used to
calculate the slope within a cell to achieve better than first order accuracy. This is
a statement of Godunov’s Theorem. For example, the Van Leer’s method and the
minmod method can be used [3].

As we already mentioned, the multidimensional finite volume method is based on
multiple one-dimensional problems, which brings some drawbacks, such as significant
numerical diffusion, inability to tackle the real multidimensionality (no physical rea-
soning), wide stencil of the higher order schemes, rectangular mesh — disadvantage
for problems with arbitrary geometry.

For the time integration we can use both the explicit and implicit Euler method,
in this contribution just the explicit method was used. Another option are the TVD
Runge-Kutta methods (suitable for computing the time-dependent solutions).

4.2 Residual distribution schemes

The residual distribution schemes have been developed on ideas borrowed from
both the finite volume and finite element approaches and have become an attrac-
tive alternative to either one. The compact discretization stencil allows for the
development of efficient implicit iterative solution strategies and for an easy paral-
lelisation [2].
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4.2.1 One—dimensional case

Consider scalar conservation law with source term ¢; + [f(¢)]. = s(q, z, t).

The solution is approximated by a continuous piecewise linear function ¢(x,t) ~
> ¢i(t)N;(z), where ¢;(t) is the value of ¢ at node ¢, and NN; the linear shape function
equal to unity at x; and equal to zero outside the interval (z; 1, z;11) (see Fig. 2).

Qi+1

| | |
Xi1 hi—1/2 Xi hi+1/2 Xis1

Fig. 2: Data representation for RDS, using P1 elements.

We define the cell residual as

Si + Sit1

A A s ! g

N|—=

The nodal equation for node ¢ is then formed by distributing the cell residual

to the two nodes of the cell. Gathering the contributions of the two elements at
i1 il

node ¢ we obtain for the steady state equation ﬁz ng’_% + BZJngb”% = 0 where

the distribution coefficients 5 sum to one for a given cell (conservativity condition),

il a1
5Z+2 + ﬁfif = 1. The coefficients 8 can be specified so as to satisfy certain properties
of monotonicity and accuracy in the solution, while maintaining the compact stencil.

i—1 - 1
We formally define the distributed residuals as ¢, > =, *¢' 2.

Time discretization For the higher order time-accurate time-dependent solution
it is mandatory to use the consistent time discretization (for details see [2]). For the
steady solution it is common to use the inconsistent time discretization (here using
the explicit Euler method)

)

nt1 At (52

1. ilil
@ =gt - (BT AT, (8)

where h; = %(hz;% +h, +%) is the volume of the median dual cell surrounding node .

4.2.2 Two—dimensional case for systems

Consider the system of conservation laws q;+V-F = 0 to be solved on an arbitrary
triangulation of the domain. The solution is approximated by a continuous function,
varying linearly over each triangle, q(z,y,t) = > . q;(t)Ni(z,y). The residual in

triangle T' is defined as
o7 = —// qtd:c:j{ F - driea. (9)
T or
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The Residual Distribution method consists of distributing fractions of this residual
to the surrounding nodes. Starting from the inconsistent formulation and an Euler
explicit time integration, we obtain the following update scheme

At
QT =ap - e =t - Y el (10)
v T

where S; is the area of the median dual cell around node i, i. e. 1/3 of the area of
all triangles meeting at node i (see Fig. 3). The residual ®7 is now a vector, while
the 37 have become distribution matrices.

Fig. 3: Node i and median dual cell S;, with surrounding cells and updates <I>ZT.

5 Results and conclusion

For clarity and brevity and regarding to the extent of this text, we used ¢q; +
0.5¢, + 0.5¢, = —0.1¢q (a “special case” of (2)) as a simple test equation with initial
condition a unit pulse in the center of the square domain. For the Py system the
results would be analogous.

The test domain consists of 49 x 49 cells, Ax = Ay = 0.32 (FVM), for the RDS
we used the Delaunay triangulation for the centres of the cells. The time interval is
T = 8 and the time step At = 0.25.

From the Residual Distribution Schemes we chose the N (Narrow) scheme with

oI = _Z]j;f >k (uf — u}) (monotone linear first order) and the LDA (Low

+
Diffusion A) scheme with P4 = Zki’ﬁ
ik

the inflow parameters, defined as k; = %X -11;, allows to distinguish between inflow and
outflow faces, and upstream and downstream nodes of the triangle. The vectors 7i;
are defined as the interior normals to the triangle, scaled by their respective lengths,
X is the vector of advection coefficients (see [2] for details).

At the figures 4 and 5 we can see results of the first-order Finite Volume Method
and of the N scheme and LDA scheme. According to their theoretical properties, the
LDA scheme gives most accurate results, however not keeping the solution positive.
The positivity requirement is satisfied by the N scheme.

(linear second order). The scalars k;, termed
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For the future work we want to focus on blending these two schemes together
to gain better accuracy in smooth regions while maintaining positivity in transient
areas. Another objective is to see the PDE as a whole, define a space-time residual

and introduce the space-time Residual Distribution Schemes.

2 4 6 8 10 12 14

Fig. 4: Result of the Finite Volume Method.
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Fig. 5: Result of the N (left) and LDA (right) scheme (RDS).
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