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NUMERICAL APPROXIMATION OF FLOW IN A SYMMETRIC
CHANNEL WITH VIBRATING WALLS∗

Petr Sváček, Jaromı́r Horáček

Abstract

In this paper the numerical solution of two dimensional fluid-structure interac-
tion problem is addressed. The fluid motion is modelled by the incompressible un-
steady Navier-Stokes equations. The spatial discretization by stabilized finite element
method is used. The motion of the computational domain is treated with the aid
of Arbitrary Lagrangian Eulerian (ALE) method. The time-space problem is solved
with the aid of multigrid method.

The method is applied onto a problem of interaction of channel flow with moving
walls, which models the air flow in the glottal region of the human vocal tract. The
pressure boundary conditions and the effects of the isotropic and anisotropic mesh
refinement are discussed. The numerical results are presented.

1 Introduction

This paper is concerned with numerical simulation of unsteady viscous incom-
pressible flow in a simplified model of the glottal region of the human vocal tract with
the aid of the finite element method (FEM). The main attention is paid to the efficient
computation of the flow field. For the robust and efficient solver both the advanced
stabilization (as streamline upwind/Petrov Galerkin stabilizations, cf. [6], [7]) and
solution methods (as multigrid and/or domain decomposition, cf. [19], [9], [10], [13])
have to be employed.

FEM is well known as a general discretization method for partial differential
equations. It can handle easily complex geometries and also boundary conditions
employing derivatives. However, straightforward application of FEM procedures of-
ten fails in the case of incompressible Navier-Stokes equations. The reason is that
momentum equations are of advection-diffusion type with dominating advection. The
Galerkin FEM leads to unphysical solutions if the grid is not fine enough in regions of
strong gradients (e.g. boundary layer). In order to obtain physically admissible cor-
rect solutions it is necessary to apply suitable mesh refinement (e.g. anisotropically
refine mesh, cf. [5]) combined with a stabilization technique, cf. [7], [3], [18], [16].

Furthermore, the time and space discretized linearized problem of the arising
large system of linear equations needs to be solved in fast and efficient manner. The
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application of direct solvers as UMFPACK (cf. [4]) leads to robust method, where
different stabilizations procedures can be easily applied even on anisotropically re-
fined grids. However, the application of direct solver for system of equations with
more than approximately 105 unknowns becomes unfeasible in many cases (depend-
ing on computer CPU and memory).

In that case the application of multigrid (cf. [19]) or domain decomposition meth-
ods is an option, cf. [13]. In this paper a simplified version of multigrid method is
shortly described together with a choice of finite elements and stabilization proce-
dures. Even when the method is simplified, it was found to be efficient and robust
enough.

The developed method is applied to the numerical solution of a channel flow
modelling the glottis region of the human vocal tract including the vibrating vocal
folds. The vibrations of the channel wall are prescribed, see [14]. Further, in or-
der to obtain physically relevant results the pressure drop boundary conditions are
employed, cf. [8].

First the mathematical model consisting of time dependent computational do-
main and incompressible flow model. Further, in Section 3 the time and space
discretization is described and Section 4 describes the application of a simple
multigrid version. Section 5 shows the numerical results.

2 Mathematical model

The model problem consists of flow model, which describes the fluid motion in
the time-dependent computational domain Ωt, i.e. in a channel with moving walls,
see Fig. 1. For the description and the approximation on moving meshes the Ar-
bitrary Lagrangian-Eulerian (ALE) method is employed, cf. [12]. The geometry of
the channel is chosen according [14], where a different distance between the moving
walls, i.e. the gap g(t), was considered. Further, on the outlet part of the channel
a modification of do-nothing boundary condition was applied in order to allow the
vortices flow smoothly out of the computational domain. On the inlet either the
Dirichlet boundary condition for velocity is prescribed or preferably we use the pres-
sure drop formulation, similarly as in cf. [8]. The presented mathematical model
(and also its numerical approximation) is a slight modification of the mathematical
model applied to the numerical simulation of flow induced airfoil vibrations in our
previous works, cf. [18].

2.1 Arbitrary Lagrangian Eulerian method

In order to treat the fluid flow on moving domains, the so-called Arbitrary La-
grangian Eulerian method is used. We assume that A = A(ξ, t) = At(ξ) is an
ALE mapping defined for all t ∈ (0, T ) and ξ ∈ Ω0, which is smooth enough and
continuously differentiable mapping of Ω0 onto Ωt. We define the domain velocity
wD :M→ R satisfies

wD(A(ξ, t), t) =
∂A
∂t

(ξ, t) for all ξ ∈ Ω0 and t ∈ (0, T ). (1)
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Fig. 1: Computational domain and boundary parts: The inlet part of the boundary ΓI
(number 7), the outlet part of the boundary ΓO (number 8), the fixed walls ΓD (num-
bers 1,4,3,6) and vibrating walls ΓWt (numbers 2, 5).

Furthermore the symbol DA/Dt denotes the ALE derivative, i.e. the time derivative
with respect to the reference configuration. The ALE derivative satisfies (cf. [18], [11])

DAf

Dt
(x, t) =

∂f

∂t
(x, t) + wD(x, t) · ∇f(x, t). (2)

In the present paper the ALE mapping can be analytically prescribed, but in the
future this mapping will be a part of solution similary as in cf. [18].

2.2 Flow model

Let us consider the following system of the incompressible Navier-Stokes equa-
tions in a bounded time-dependent domain Ωt ⊂ R2 written in ALE form

DAv

Dt
− ν4v + ((v −wD) · ∇)v +∇p = 0, in Ωt, (3)

∇ · v = 0, in Ωt,

where v = v(x, t) is the flow velocity, p = p(x, t) is the kinematic pressure (i.e. pres-
sure divided by the constant fluid density ρ∞) and ν is the kinematic viscosity.

The boundary of the computational domain ∂Ωt consists of mutually disjoint
parts ΓD (wall), ΓI (inlet), ΓO (outlet) and the moving part ΓWt (oscillating wall).
The following boundary conditions are prescribed

a) v(x, t) = 0 for x ∈ ΓD,
b) v(x, t) = wD(x, t) for x ∈ ΓWt,
c) −(p− poref )n + 1

2
(v · n)−v + ν ∂v

∂n
= 0, on ΓO,

d) −(p− piref )n + 1
2
(v · n)−v + ν ∂v

∂n
= 0, on ΓI ,

(4)

where n denotes the unit outward normal vector, the constants piref , p
o
ref denotes the

reference pressure values, and α− denotes the negative part of a real number α. In
computations the condition (4d) can be replaced by the condition
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e) v(x, t) = vD for x ∈ ΓI . (5)

Finally, we prescribe the initial condition

v(x, 0) = v0(x) for x ∈ Ω0.

3 Numerical approximation

In this section the numerical approximation of the mathematical model given in
Section 2 is shown. As already mentioned the presented numerical approximation
is a slight modification of our previous works, cf. [18], [17]. Nevertheless there are
several significant differences, which were found to be important for the numerical
approximation: boundary conditions used on the inlet/outlet part of the computa-
tional and its weak formulation, a modified Galerkin/Least-Squares (GLS) scheme
employed for stable pair of finite elements, and the choice of stabilizing parameters.
The space discretization and its stabilization is briefly desribed for the sake of clarity
and completeness.

3.1 Time discretization

We consider a partition 0 = t0 < t1 < · · · < T, tk = k∆t, with a time step ∆t > 0,
of the time interval (0, T ) and approximate the solution v(·, tn) and p(·, tn) (defined
in Ωtn) at time tn by vn and pn, respectively. For the time discretization we em-
ploy a second-order two-step scheme using the computed approximate solution vn−1

in Ωtn−1 and vn in Ωtn for the calculation of vn+1 in the domain Ωtn+1 = Ωn+1. We
write

∂v

∂t
(x, tn+1) ≈ 3vn+1 − 4v̂n + v̂n−1

2∆t
where x ∈ Ωn+1, (6)

where v̂n and v̂n−1 are the approximate solutions vn and vn−1 defined on Ωn and Ωn−1,
respectively, and transformed onto Ωn+1 with the aid of ALE mapping, i.e. v̂i(x) =
vi(Ati(ξ)) where x = Atn+1(ξ) ∈ Ωn+1. Further, we approximate the domain velocity
wD(x, tn+1) by wn+1

D , where

wn+1
D (x) =

3Atn+1(ξ)− 4Atn(ξ) +Atn−1(ξ)

2∆t
, x = Atn+1(ξ), x ∈ Ωn+1.

Then the time discretization leads to the following problem in domain Ωn+1

3vn+1 − 4v̂n + v̂n−1

2∆t
− ν4vn+1 +

(
(vn+1 −wn+1

D ) · ∇
)
vn+1 +∇pn+1 = 0, (7)

∇ · vn+1 = 0,

equipped with boundary conditions (4a-d) and the initial condition.
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3.2 Weak formulation

For solution of the problem by finite element method, the time-discretized prob-
lem (7) is reformulated in a weak sense. The following notation is used: By W =
H1(Ωn+1) the velocity space is defined, by X the space of test functions is denoted

X = {ϕ ∈ W : ϕ = 0 on ΓWtn+1 ∩ ΓD},

and by Q = L2(Ωn+1) the pressure space is denoted. Using the standard approach,
cf. [18], the solution v = vn+1 and p = pn+1 of problem (7) satisfies

a(U, V ) = f(V ), U = (v, p) (8)

for any V = (z, q) ∈ X ×Q, where

a(U, V ) =

(
3

2∆t
v, z

)
+ν (∇v,∇z) + B(v, z) + cn(v;v, z)−(p,∇ · z) +(∇ · v, q) ,

cn(w,v, z) =

∫
Ωn+1

(
1

2
(w · ∇v) · z− 1

2
(w · ∇z) · v

)
dx−

(
(wn+1

D · ∇)v, z
)
,

B(v, z) =

∫
ΓI∪ΓO

1

2
(v · n)+v · z dS, (9)

f(V ) =
1

2∆t

(
4v̂n − v̂n−1, z

)
−
∫

ΓI

pirefv · ndS −
∫

ΓO

porefv · ndS,

and by (·, ·) we denote the scalar product in the space L2(Ωn+1).

3.3 Spatial discretization

Further, the weak formulation (8) is approximated by the use of FEM: we restrict
the couple of spaces (X,M) to finite element spaces (Xh,Mh). First, the compu-
tational domain Ωt is assumed to be polygonal and approximated by an admissible
triangulation Th, cf. [2]. Based on the triangulation Th the Taylor-Hood finite ele-
ments are used, i.e.

Hh = {v ∈ C(Ωn+1); v|K ∈ P2(K) for each K ∈ Th},
Wh = [Hh]

2 , Xh =Wh ∩ X , (10)

Mh = {v ∈ C(Ωn+1); v|K ∈ P1(K) for each K ∈ Th}.

The couple (Xh,Mh) satisfy the Babuška-Brezzi inf-sup condition, which guarantees
the stability of a scheme, cf. [20].

Problem 1 (Galerkin approximations). Find Uh = (vh, ph) ∈ (Xh,Mh) such that
vh satisfy boundary conditions (4a,b) and

a(Uh, Vh) = f(Vh), (11)

for all zh ∈ Xh and qh ∈Mh.

The Galerkin approximations are unstable in the case of high Reynolds numbers,
when the convection dominates. In that case a stabilized method needs to be applied.
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3.4 Stabilization

In order to overcome the above mentioned instability of the scheme, modified
Galerkin Least Squares method is applied, cf. ([7]). We start with the definition of
the local element rezidual terms Ra

K and Rf
K defined on the element K ∈ Th by

Ra
K(w̃;v, p) =

3v

2∆t
−ν4v+(w̃ · ∇)v+∇p, Rf

K(v̂n, v̂n−1) =
4v̂n − v̂n−1

2∆t
. (12)

Further, the stabilizing terms are defined for U∗ = (v∗, p∗), U = (v, p), V = (z, q)
by

LGLS(U∗;U, V ) =
∑
K∈Th

δK

(
Ra
K(w̃;v, p), (w̃ · ∇) z +∇q

)
K
,

FGLS(Vh) =
∑
K∈Th

δK

(
Rf
K(v̂n, v̂n−1), (w̃ · ∇) z +∇q

)
K
, (13)

where the function w̃ stands for the transport velocity, i.e. w̃ = v∗ − wn+1
D . The

additional grad-div stabilization terms read

Ph(U, V ) =
∑
K∈Th

τK(∇ · v,∇ · z)K .

In the case of bounded convection velocity the choice of parameters according [7]
for BB stable pair of FE (reduced scheme) would be possible. However, in order to
obtain a fast and efficient multigrid method, the following choice of the parameters δK
and τK is used

τK = ν

(
1 +Reloc +

h2
K

ν ∆t

)
, δK =

h2
K

τK
,

where the local Reynolds number Reloc is defined as Reloc = h‖v‖K
2ν

.

Problem 2 (Galerkin Least Squares stabilized approximations). We define the dis-
crete problem to find an approximate solution Uh = (vh, ph) ∈ Wh × Qh such that
vh satisfies approximately conditions (4a,b) and the identity

a(Uh, Vh) + LGLS(Uh;Uh, Vh) + Ph(Uh, Vh) = f(Vh) + FGLS(Vh), (14)

for all Vh = (zh, qh) ∈ Xh ×Qh.

4 Multigrid solution of the linear system

The space-time discretized system (14) needs to be solved by some linearization
scheme, e.g. by Oseen linearization procedure described e.g. in [18] or [19]. The
solution of the linearized system (14) leads to the the solution of a modified saddle
point system

Sv +Bp = f, B̃Tv + Ãp = 0, (15)
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where v and p is the finite-dimensional representation of the finite element approx-
imations of velocity and pressure, respectively. Let us mention that for the non-
stabilized system (i.e. in the case of δK ≡ τK ≡ 0) we have Ã = 0 and B̃ = B.

From the system of equations (15) the pressure degrees of freedoms can be for-
mally eliminated by formally multiplying the first equation of (15) by B̃TS−1 from
the left, i.e. we get the system of equations(

B̃TS−1B − Ã
)
p = B̃TS−1f, (16)

or with notation Ap = B̃TS−1B − Ã and g = B̃TS−1f we have

App = g,

which can be solved by the Richardson iterative method

p(l+1) = p(l) + C−1(g − App(l)), (17)

where C is a suitable preconditioner, see e.g. [19]. Nevertheless the choice of the
preconditioner C is complicated in the case of convection dominated flows and the
convergence of the scheme (17) is in this case slow. Moreover the stabilizing terms
also badly influences the convergence rates.

In many cases and for small number of unknowns, the system can be solved with
the aid of a direct solver, which yields fast, efficient and robust scheme. We refer
to direct solver UMFPACK, cf. [4], which in the cases studied by the authors up to
now [18] was efficient for number of unknowns less then approximately 105. However,
with further increase of the number of unknowns the memory and CPU requirements
grows too fast, so that the fast and efficient solution becomes impossible. One
possibility is to use the parallel implementation of multi-frontal method, cf. [1].

Here, the solution of the system (15) is carried out by a simplified version of
multi-grid method. Only single mesh and two levels of solution (coarse and fine grid
levels) are used. The fine grid is represented by the used higher order finite elements
(here Taylor-Hood finite elements, i.e. P2/P1 approximations for velocity/pressure).
The coarse grid is considered as lower order finite elements (i.e. equal order P1/P1
approximations for velocity/pressure) The solution on the coarse grid can be obtained
with the aid of direct solver UMFPACK, which was found to be fast enough in the
studied cases. On the fine grid the multiplicative Vanka-type smoother is used,
cf. [9], [10]. This approach (i.e. the direct solver on coarse grid and Vanka-type
smoother on fine grid) resulted in an efficient and fast method, which can be easily
implemented. The performance of the multigrid method was found to be excellent for
the isotropic grids. In the case of anisotropic mesh refinement, the convergence rates
nevertheless become worse. The proper solution in this case is subject of a further
study.
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5 Numerical results

In this section the numerical results for air flow in a symmetric two-dimensional
channel are presented. The channel geometry described in [14] is employed here, see
also Fig. 1.

5.1 Stationary solution

First, we consider the non-moving computational domain Ω, where the influence
of isotropically and anisotropically refined meshes is studied, see Fig. 2.

The following constants were used in the computations: fluid density ρ∞ =
1.225 kg m−3 and kinematic viscosity ν = 1.5 × 10−5 m2/s, the width of the in-
let part of the channel is H = 0.0176 m, the total length of the channel L = 0.16 m,
and the constant gap width g ≡ 4.4 mm.

The boundary condition (4d) in the presented computations is replaced by the
condition (5), where the constant flow velocity is prescribed vD(x, t) = (U∞, 0)T at
the inlet part of boundary ΓI , and U∞ was chosen in the range [0.01, 0.05]m s−1.
The numerical results for stationary solution and different Reynolds numbers (Re =
1
8
LU∞/ν) are presented in Figs. 3-4, where the isolines of the magnitude of velocity

are shown. The results computed on both meshes for same Reynolds numbers show
that even for low Reynolds numbers several stationary symmetric and nonsymmetric
solutions exist. Fig. 3 (left) shows the symmetric solution obtained on both meshes
for Re = 20. For Re = 40 and Re = 50 in Figs. 3-4 on isotropic mesh the non-
symmetric solution was obtained , whereas on the anisotropical symmetric mesh the
solution remains symmetric. For higher Reynolds number Re > 50 both solutions
become non-symmetric.

Fig. 2: The employed grids: the isotropic non-symmetric mesh (upper part) with
12219 vertices and 23709 elements and approximately 8× 104 unknowns for flow problem,
and the anisotropic axisymmetric mesh (lower part) with 8241 vertices and 16000 elements
(resulting in 6× 104 unknowns).

190



Fig. 3: The isolines of flow velocity magnitudes for Reynolds number 20 (left) and
40 (right) on isotropic mesh(upper part) and anisotropic mesh (lower part).

Fig. 4: The isolines of flow velocity magnitudes for Reynolds number 50 (left) and
70 (right) on isotropic mesh(upper part) and anisotropic mesh (lower part).

Fig. 5: A detail of isotropic mesh used for multigrid solution with 42576 vertices and
84078 elements yielding approximately 4× 105 unknowns for the flow problem.
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Fig. 6: The isolines of velocity magnitude (left) and pressure (right) in a sequence of time
instance (from top to bottom, Part 1).

5.2 Flow in channel with vibrating vocal folds

The numerical results for flow in vibrating channel are presented for physically
relevant pressure drop, inlet flow velocity, frequency of vibrations and width of the
channel, which leads to the Reynolds numbers in the range Re = 1000− 3000.

The computations were carried out for the pressure drop of 400 Pa, i.e piref =
400 Pa and poref = 0 Pa. The initial condition was chosen as v0 ≡ 0 and the isotrop-
ically refined mesh was used, cf. Fig. 5. The gap oscillates harmonically around the
mean gap value g = 4.4 mm in the interval g(t) ∈ [3.2 mm, 5.6 mm] with frequency
f = 100 Hz .

The results are shown in Figs. 6-7 for the time instants marked in Fig. 8. The
sudden expansion in the modelled glottal region leads to the faster flow in the vibrat-
ing narrowest part of the computational domain and to complicated flow structures
in the outlet part of the channel. Similar effects were observed experimentally in [15].
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Fig. 7: The isolines of velocity magnitude (left) and pressure (right) in a sequence of time
instance (from top to bottom, Part 2).

The inlet flow velocity and the flow velocity at on the axis of symmetry at the nar-
rowest part of the channel are shown in Fig. 8. The both values oscillates with
a similar frequency as the prescribed motion of the wall. However, the graphs are
noisy partially due to the complicated flow structures downstream.

6 Conclusion

The paper presents the developed mathematical method and applied numerical
technique for solution of fluid-structure problems encountered in biomechanics of
voice production. The method consists of the advanced stabilization of the finite
element method applied considering the moving domain. In order to obtain fast
solution of the discretized problem a simplified multigrid method was applied, which
allowed solution of significantly larger system of equations compared to the previously
used approach, see e.g. [18].
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Fig. 8: The gap oscillations g(t) (upper graph), the computed flow velocity at the inlet
(middle), and the computed flow velocity in the glottal orifice (lower graph).

The influence of the isotropic and anisotropic meshes was studied and the multi-
grid technique was applied on a challenging problem of flow in symmetric channel
with vibrating walls. The numerical results were presented showing the Coanda ef-
fect and complicated structure of small vortices and large size eddies generated at
the glottal region by vibrating vocal fold. Similar vortex flow structures and Coanda
effects were identified experimentally in [15].
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