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NUMERICAL TREATMENT OF INITIAL VALUE PROBLEMS
FOR DELAY DIFFERENTIAL SYSTEMS

Pavol Chocholatý

Abstract

This paper deals with the numerical solution of the Cauchy problem for systems
of ordinary differential equations with time delay. One-step numerical methods and
appropriate interpolation operators are used. Numerical results for a system of three
differential equations are presented.

1. Introduction

Delay differential equations (DDE), also called functional differential equations
or time delay differential equations, are widely used for describing and mathematical
modelling of various processes and systems in various applied problems [1]. Theo-
retical aspects of the DDE theory are presented as the corresponding parts of the
ordinary differential equations (ODE) theory. However, unlike ODEs, even for linear
DDEs there are no general methods for finding solutions in explicit forms. Hence,
the development of numerical methods for DDEs is a very important problem. Var-
ious specific numerical methods have been constructed for solving specific DDEs [2].
Our approach is devoted to the numerical methods for systems with time-varying
and constant delays. One-step numerical methods and an interpolation operator are
used to solve the Cauchy problem for a system of three ODEs with delay numerically
in this paper.

2. Delay differential equations

We first consider a general DDE with bounded delay

y′(t) = f(t, y(t), z(.))

subject to the initial conditions

y(t0) = y0, y(t0 + s) = z0(s), −p ≤ s < 0,

where y0 ∈ R, z0(.) ∈ Q[−p, 0]. Here, Q[−p, 0] is the space of functions continuous
everywhere on [−p, 0] with the possible exception of a finite set of points of discon-
tinuity of the first kind, equipped with the usual sup-norm. The right-hand side of
the DDE is a mapping

f(t, y(t), z(.)) : [t0, t0 + T ]×R×Q[−p, 0] → R,

where T > 0 and p > 0 characterizes the delay interval.
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For y ∈ R, z(.) ∈ Q[−p, 0], and d > 0, we will denote by Ed[y, z(.)] the set of all
continuous continuations of {y, z(.)} on the interval [0, d], i.e., the set of functions
Z(s) : [−p, d] → R such that:

Z(0) = y,
Z(s) = z(s), −p ≤ s < 0,

Z(s) is continuous on [0, d].

To introduce the derivatives of the functional f(t, y, z(.)), let us consider the
function

Pz(e, i, k) = f(t + e, y + i, zk(.)),

where

e > 0, i ∈ R, k ∈ [0, d], zk(.) = {Z(k + s),−p ≤ s < 0} ∈ Q[−p, 0].

Further, we suppose that the mapping f satisfies the following assumptions:

A1. For any t ∈ [t0, t0 + T ] , y ∈ R, z(.) ∈ Q [−p, 0], there exists d > 0 such that for
every Z (.) ∈ Ed [y, z (.)] the corresponding function Pz = f (e, Z (e− t) , Ze−t (.)) is
continuous on [t, t + d].

A2. The mapping f is Lipschitz continuous with respect to y and z(.).

Then for some δ > 0 there exists a unique solution of our problem on [t0, t0 + δ].
The proof for systems can be found in [2].

As a test example, we will consider the equation

y′(t) = y(t− (e−t + 1)) + cos(t)− sin(t− 1− e−t)

for t ∈ (0,∞). If we take the initial pre-history as

y(s) = sin(s), s ∈ [−2, 0],

then by direct substitution one can check that the function y(t) = sin(t), t > 0, is
the solution of this initial value problem.

Further, we will use this example to demonstrate some problems in the numerical
solution of such IVPs for DDEs.

3. Numerical methods

Let us consider a uniform partition tn = t0 + nh, n = 0, 1, . . . , N , of the interval
[t0, t0 + T ], where h = T/N . For the sake of simplicity, we suppose that the ratio
p/h = m is a positive integer.

First, our aim is to demonstrate the basic idea of the approach on a simple
Euler-like numerical scheme

x0 = y0,
xn+1 = xn + hf(tn, xn, xtn(.)).
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The corresponding numerical scheme for our example with h = 1 is

x0 = y(0) = 0,
x1 = x0 + hf(0, x0, xt0(.)) = x0 + y(−2) + cos(0)− sin(−2)

= 0 + sin(−2) + cos(0)− sin(−2) = 1,
x2 = x1 + y(−e−1) + cos(1)− sin(−e−1) = 1 + sin(−e−1) + cos(1)− sin(−e−1)

= 1 + cos(1),

but to compute x3 at the point t = 3, it is necessary to make an interpolation (for
y(1− e−2)) of the approximate solution

x3 = x2+y(1−e−2)+cos(2)−sin(1−e−2) = 1+cos(1)+y(1−e−2)+cos(2)−sin(1−e−2).

Using simple piecewise constant interpolation we may write

[xtn(.) ≈] u(t) =

{
xi, t ∈ [ti, ti+1]

z0(t0 − t), t ∈ [−p, 0]

and continue with x3 = 1 + cos(1) + cos(2)− sin(1− e−2).
Our test example leads us thus to the following conclusion: To find the next

approximation xn+1 at time tn+1 by using Euler’s scheme, it is necessary to calcu-
late the right-part of the equation on the pre-history {xi, n − m ≤ i ≤ n}. At
time tn, the pre-history is a finite set xn−m, . . . , xn. Hence, to calculate a value of
the functional f on the pre-history, it is necessary to make an interpolation of the
approximate solution xn. To obtain more accurate methods, it is necessary to use
higher-order one-step methods with higher-order interpolational procedures. The
following mapping uses the piecewise linear interpolation as an example of an inter-
polation operator of the second order:

u(t) =

{
[(t− ti)xi+1 + (ti+1 − t)xi]/h, t ∈ [ti, ti+1]

z0(t0 − t), t ∈ [t0 − p, t0]
.

General interpolation operators can be constructed using splines of a given degree.
Some numerical methods for DDEs require to calculate xn+1 using the pre-history
also for t ∈ [tn, tn+1]. In this case, it is necessary to use an extrapolation operator
on [tn, tn + t].

4. Numerical example

Consider the system of nonlinear DDEs of the form

x′(t) = (2/π)[x(t) + y(t− π/2)]− x(t− π/2)− πy(t)/(2z(t)),
y′(t) = (2/π)[y(t)− x(t− π/2)]− y(t− π/2) + πx(t)/(2z(t)),

z′(t) =
√

x2(t− π/2) + y2(t− π/2)/z(t− π/2).

(1)
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If we take the initial functions as

x(π + s) = (π + s) cos(π + s),
y(π + s) = (π + s) sin(π + s),
z(π + s) = (π + s)

(2)

for −π/2 ≤ s ≤ 0, then the exact solution of this IVP for t ≥ π has the form

x(t) = t cos(t),
y(t) = t sin(t),
z(t) = t.

Let h < π/2 and some interpolation operator I be fixed. An explicit q-stage
Runge-Kutta-like method for the equation

y′(t) = f(t, y(t), z(.))

with the interpolation I is the following numerical scheme:

x0 = y0,

xn+1 = xn + h
q∑

i=1
ciki(xn, xtn(.)), n = 1, 2, . . . , N − 1,

where k1(xn, xtn(.)) = f(tn, xn, xtn(.)) and

ki(xn, xtn(.)) = f(tn + aih, xn + h
i−1∑

j=1

bijkj(xn, xtn(.)), xtn+aih(.))

for i > 1. The parameters ai, bij, ci given at the Butcher table

0
a2 b21

a3 b31 b32

... ...
aq bq1 bq2 ... bq,q−1

c1 c2 ... cq−1 cq

are called the coefficients of the method. Thus, for Heun’s method of the second
order we have q = 2, c1 = c2 = 1/2, a1 = 0, a2 = 1, b21 = 1. The Dormand–Prince
method (q = 6) of the fifth order has the coefficients in the following table:

0
1/5 1/5

3/10 3/40 9/40
4/5 44/45 -56/15 32/9
8/9 19372/6561 -25360/2187 64448/6561 -212/729

1 9017/3168 -355/33 46732/5247 49/176 -5103/18656
35/384 0 500/1113 125/192 -2187/6784 11/84
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For the method of Dormand and Prince, a 4-th order continuous extension is
possible even without an extra function evaluation. The solution, which for θ = 1
becomes the fifth order solution, is given by the following formulas:

c1(θ) = θ(1 + θ(−1337/480 + θ(1039/360 + θ(−1163/1152))))

c2(θ) = 0

c3(θ) = 100θ2(1054/9275 + θ(−4682/27825 + θ(379/5565)))/3

c4(θ) = −5θ2(27/40 + θ(−9/5 + θ(83/96)))/2

c5(θ) = 18225θ2(−3/250 + θ(22/375 + θ(−37/600)))/848

c6(θ) = −22θ2(−3/10 + θ(29/30 + θ(−17/24)))/7

x(ti + θh) = x(ti) + h
6∑

j=1

cj(θ)kj, 0 ≤ θ ≤ 1.

These formulas together with the coefficients ai, bij of the Butcher table for the
Dormand–Prince method provide means for an excellent treatment of the numerical
solution of DDEs as an interpolation (also extrapolation) operator.

Heun’s method of second order with a given interpolation operator of second
order (B), then the Dormand–Prince method of the fifth order with the same in-

t Exact value x abs.err. (A) abs.err. (B) abs.err. (C)
π + 1 -2.237712 0.029251 0.041258 5.23E-14
π + 3 6.080131 0.256435 0.039100 0.007798
π + 5 -2.309462 2.974648 0.284654 0.020482
π + 7 -7.645770 2.698746 0.407037 0.025842
π + 9 11.062572 5.953736 0.140169 0.002473

t Exact value y abs.err. (A) abs.err. (B) abs.err. (C)
π + 1 -3.485030 0.030911 0.028471 2.81E-14
π + 3 -0.866702 1.159457 0.125410 0.003816
π + 5 7.807171 2.292112 0.242516 0.017214
π + 7 -6.662890 4.340690 0.196576 0.002628
π + 9 -5.003775 2.937441 1.083522 0.104271

t Exact value z abs.err. (A) abs.err. (B) abs.err. (C)
π + 1 4.141593 0.010000 0.010000 2.15E-14
π + 3 6.141593 0.009898 0.007855 7.16E-05
π + 5 8.141593 0.012984 0.006108 0.001400
π + 7 10.141593 0.620172 0.042969 0.004394
π + 9 12.141593 1.034933 0.069802 0.006185

Tab. 1:
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terpolation operator (A) and finally the Dormand–Prince method with the above
given formulas for ci (C) have been used to the numerical solution of (1), (2) for
t ∈ [π, π + 10] with the step h = 0.1. Some results are summarized in the table 1.

This table shows the three components of the solution subsequently. One can
easily observe that a proper choice of a suitable order of the interpolation operator
to a given one-step method leads to improved accuracy of the numerical solution.
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