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NUMERICAL SOLUTION OF 2D AND 3D INCOMPRESSIBLE
LAMINAR FLOWS THROUGH A BRANCHING CHANNEL ∗

Radka Keslerová, Karel Kozel

Abstract
In this paper, we are concerned with the numerical solution of 2D/3D flows through

a branching channel where viscous incompressible laminar fluid flow is considered.
The mathematical model in this case can be described by the system of the incom-
pressible Navier-Stokes equations and the continuity equation. In order to obtain
the steady state solution the artificial compressibility method is applied. The finite
volume method is used for spatial discretization. The arising system of ordinary dif-
ferential equations (ODE) is solved by a multistage Runge-Kutta method. Numerical
results for both 2D and 3D cases are presented.

1. Mathematical model

The motivation for numerical solution of the fluid flow in branching channels
arises in many applications, e.g., in biomedicine, the solution of the blood flow in
cardiovascular system is of interest. The study of the blood flow in large and medium
arteries is a very complex task because of the heterogeneous nature of the problem
and the extreme complexity of blood and arterial wall dynamics. Mathematical
and numerical investigation of the blood circulatory system is one of the major
challenges of the coming decades. During the 1970s, in vitro experiments were the
main mode of cardiovascular investigations. Recently, the advances in computational
fluid dynamics have lead to a significant breakthrough in vascular research. Physical
quantities that are hard to measure in vivo can be computed for real geometries now
(for details see, e.g., [4])

In this paper the system of Navier-Stokes equations for incompressible laminar
flow is treated, which can be considered as a simplified mathematical model of the
blood flow in a cardiovascular problem. The system of 2D Navier-Stokes equations
and the continuity equation in two dimensional case written in the conservative form
reads

R̃Wt + Fx + Gy =
R̃

Re
∆W, R̃ = diag‖0, 1, 1‖, (1)

where

W = (p, u, v)T , F = (u, u2 + p, uv)T , G = (v, uv, v2 + p)T . (2)

The following notation is used:

∗This work was partly supported by grant No. 201/05/0005 and Research Plan
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Fig. 1: Considered forms of channel for 2D case.

(u, v)T - velocity vector for 2D in dimensionless form
p - kinetic pressure

Re - Reynolds number defined as Re = q∞l
ν

ν - the kinematic viscosity
l - the height of the entrance
q∞ - reference velocity value

At the inlet, the Dirichlet boundary condition for the velocity vector (u, v)T is pre-
scribed, at the outlet the pressure value is given. On the wall, the zero Dirichlet
boundary conditions for the components of velocity are used.

2. Numerical solution by the finite volume method

In what follows we are interested in steady state solutions. In such a case, the
artificial compressibility method can be applied for the solution of the system (1),
i.e.,

Wt + F̃x + G̃y = 0, (3)

where

F̃ = F − 1

Re
F v, G̃ = G− 1

Re
Gv,

and F, G are inviscid fluxes defined by (2), whereas F v, Gv are viscous fluxes,

F v = (0, ux, vx)
T , Gv = (0, uy, vy)

T .

Eq. (3) is integrated over Dij (Dij is a finite volume cell, µij =
∫∫
Dij

dxdy),

∫∫

Dij

Wtdxdy = −
∫∫

Dij

(
F̃x + G̃y

)
dxdy, (4)

the mean value theorem is applied to the left-hand side of (4), and Green’s theorem
on the right-hand side of (4), so that
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Wt |ij= − 1

µij

∮

∂Dij

F̃dy − G̃dx. (5)

Next, we numerically approximate the integrals on the right hand side of (5) by

Wt |ij= − 1

µij

4∑

k=1

F̃ij,k∆yk − G̃ij,k∆xk, (6)

where viscous fluxes in F̃ , G̃ are conjucted using dual volumes.
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Fig. 2: Finite volume cell.

The ODE system (6) is time-discretized with the aid of a multistage Runge-Kutta
method, i.e.,

W n
ij = W

(0)
ij

W
(r)
ij = W

(0)
ij − αr∆tRW

(r−1)
ij (7)

W n+1
ij = W

(m)
ij r = 1, . . . , m,

where m = 3, α1 = α2 = 0.5, α3 = 1, RW n
ij = RW n

ij −DW n
ij, and the steady

residual RWij is defined by

RWij =
1

µij

4∑

k=1

[(
F i

k −
1

Re
F v

k

)
∆yk −

(
Gi

k −
1

Re
Gv

k

)
∆xk

]
. (8)

The added artificial viscosity term DWij of Jameson’s type (for details see, e.g., [3])
is defined as

DWij = E [γi (Wi+1,j − 2Wij + Wi−1,j) + γj (Wi,j+1 − 2Wij + Wi,j−1)] (9)

E = diag‖0, ε1, ε2‖, ε1, ε2 ∈ <, γi = max(γi1, γi2), γj = max(γj1, γj2),
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γi1 =
| pi+1,j − 2pij + pi−1,j |
| pi+1,j + 2pij + pi−1,j | , γi2 =

| pij − 2pi−1,j + pi−2,j |
| pij + 2pi−1,j + pi−2,j | ,

γj1 =
| pi,j+1 − 2pij + pi,j−1 |
| pi,j+1 + 2pij + pi,j−1 | , γj2 =

| pij − 2pi,j−1 + pi,j−2 |
| pij + 2pi,j−1 + pi,j−2 | .

In order to satisfy the stability condition, the time step is chosen as (for details see,
e.g., [1]):

∆t = min
i,j,k

CFL µij

ρA∆yk + ρB∆xk + 2

Re

(
(∆xk)2+(∆yk)2

µij

) , (10)

ρA =| û | +
√

û2 + 1 ρB =| v̂ | +
√

v̂2 + 1,

and | û |, | v̂ | are the maximal values of the components of velocity inside the
computational domain; the definition of ∆xk, ∆yk is shown in Fig. 2.

The computation is performed until the value of the L2-norm of residual satisfies
Rez W n

ij ≤ εERR with εERR small enough (MN denotes the number of grid cells in
the computational domain), where

Rez W n
ij =

√√√√ 1

MN

∑
ij

(
W n+1

ij −W n
ij

∆t

)2

. (11)

3. Numerical results

In this paper we present the numerical results for channels with one entrance and
two exit parts. The computation of both two-dimensional and three-dimensional
cases was performed. First, in Figs. 3 and 4 the numerical results for the two-
dimensional case are shown. Fig. 3 shows the fluid velocity distribution for Reynold’s
number 1000 in the channel of the form of reverse T and the convergence of the resid-
uals of the vector W = (p, u, v)T . Fig. 4 shows the velocity isolines for Reynold’s
number 1500 for the symmetric branching channel of the form Y. By the symbol q,
the velocity magnitude is denoted, i.e. q =

√
u2 + v2.

Next, the computation for fully three-dimensional fluid flow in two distinct cases
was performed. Figs. 5, 6 show the velocity isolines in the cross-sections of the
branching channels for Reynold’s number 300. Figs. 7, 8 show the velocity iso-
lines in the cross-sections of the symmetric branching channel for Reynold’s num-
ber 300. In Fig. 7, the convergence of the residuals of the components of the vector
W = (p, u, v, w)T is shown. Symbol q denotes the velocity magnitude for the three-
dimensional case, i.e., q =

√
u2 + v2 + w2.
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Fig. 3: Velocity magnitude distribution in two dimensional channel of reverse T form
(Reynolds number Re = 1000).
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Fig. 4: Velocity magnitude distribution in two dimensional symmetric channel of Y form
(Reynolds number Re = 1500).
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Fig. 5: Velocity magnitude distribution in the central cut of the three dimensional channel
(Reynolds number Re = 300).
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Fig. 6: Velocity magnitude distribution in the cuts of the 3D channel from Figure 5.
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Fig. 7: Velocity magnitude distribution in the central cut of the three dimensional channel
(Reynolds number Re = 300).
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Fig. 8: Velocity magnitude distribution in the cuts of the 3D channel from Figure 7.

4. Conclusion

A numerical model for the simulation of fluid flow in a branching channel with
one entrance and two exit parts for two-dimensional and three-dimensional cases was
developed. However, the method was applied for several different types of channel
configurations. The presented results can be useful as a blood flow approximation but
several significant simplifications made in the model should be mentioned. First, the
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general blood flow can be characterized rather by the non-Newtonian fluid flow model
(see [4]) so that the use of the Newtonian fluid flow model is questionable. Second, the
vessel’s walls cannot be considered as fixed walls and thus the computational domain
deformations needs to be taken into account. This phenomenon can be treated, e.g.,
by the arbitrary Lagrangian-Eulerian (ALE) method (for ALE description see, e.g.,
[7], for practical applications see, e.g., [5], [6]). Moreover, the wall dynamics needs
to be modelled and coupled with the fluid flow model. However, the presented
results can be still used as an approximation of the problem, which can provide
useful information, e.g., the fluid flow character, the appearance of separation zones,
pressure distribution, etc. The applied method serves as a starting point and will
be further developed. From this point of view it is necessary to test the method
on some standard problems and compare the results with the other available data
(see e.g. [8]). Moreover, the presented method can be extended and applied to more
realistic blood flow model, which is the subject of our future work.
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[6] P. Sváček, M. Feistauer, J. Horáček. Numerical simulation of a flow induced
airfoil vibrations with large amplitudes. Preprint No. MATH-knm-2005/1, pp.
29, Faculty of Mathematics and Physics, Charles University Prague 2005.

[7] T. Nomura, T. J. R. Hughes. An arbitrary Lagrangian-Eulerian finite element
method for interaction of fluid and a rigid body. Computer Methods in Applied
Mechanics and Engineering 95, 1992, pp. 115–138

[8] K. Kozel, V. Prokop. Numerical Simulation of Some Cardiovascular Problems.
In Proceedings of Topical Problems of Fluid Mechanics, 2003, pp. 57-60.

101


