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CONTRIBUTION TO CONSTRUCTION OF GLOBAL CUBIC
C1 OR C2-SPLINE ON EQUIDISTANT KNOTSET ∗

Jǐŕı Kobza

1. Problem statement

Given the equidistant knotset {xi, i = 0 : n + 1} with prescribed function val-
ues (FV), we can find a quadratic interpolating C1-spline through computing its FV
in inserted points of interpolation ti = (xi + xi+1)/2 (see [1], [2]). Cubic C1 splines
based on Hermite interpolation with given function and derivative values in knots
have a local character (see e.g. [1], [2]). For cubic C2-splines with given function val-
ues in knots only we can use the B-spline technique or we have to compute the first
or second derivatives in knots to obtain C2-continuity in the local representation.
Such splines have a weak localizing property only (the influence of changes in some
knot decreases with growing distance).

The aim of this contribution is to discuss the construction of C1-cubic interpola-
tory splines based on inserting interval midpoints as additional points of interpolation
and to compute the unknown spline function values to obtain C1-continuity of spline
segments in original knots. For simplicity we will discuss the case of the equidistant
knotset only. We will also mention an approach with inserting two points of inter-
polation to obtain C2-continuity and the solutions which use the B-spline technique
(without inserted points).

2. Cubic spline knotset with inserted midpoints

On the four-point equidistant knotset {xi, i = 0 : 1 : 3} with the stepsize h
and given function values {yi} the cubic Lagrange interpolation polynomial and its
derivatives we can write with the local parameter q = (x − x0)/h and well-known
Lagrange interpolation coefficients li(q) as

L
(k)
3 (x0 + qh) =

3∑

i=0

l
(k)
i (q)yi, k = 0, 1, 2; li(q) =

∏

j 6=i

(q − j)/(i− j). (1)

Let us extend given equidistant knotset {xi, i = 0 : n + 1} with inserted midpoints
{ti = (xi+xi+1)/2, i = 0 : n} and denote {si = s(xi), i = 0 : n+1} the prescribed FV
on the original knotset, {ui = s(ti), i = 0 : n} the unknown FV of cubic interpolants
over different intervals containing knot xi and three neighbours on the extended
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knotset. We shall try to compute the values ui in such a way to obtain C1-continuity
of overlapping segments (one of them have to be defined over the whole interval
[xi, xi+1] or [xi−1, xi]) in the knot xi . There are several variants of configurations of

knots and intervals with common knot xi. Using the explicit expression for l
(k)
i (q)

with corresponding values of parameter q , we obtain after some simplifications the
C1, C2-continuity conditions (CC) in the knot xi as the recursions between unknown
values ui and prescribed values si written in the following table.

Overlapping intervals C1-continuity condition
q used C2-continuity condition
[ti−1, xi+1], [xi, ti+1] ui−1 + 6ui + ui+1 = 4(si + si+1)

1, 0 ui−1 + 6ui + ui+1 = 4(si + si+1)
[xi−1, ti], [xi, ti+1] 6ui−1 + 16ui + 2ui+1 = si−1 + 14si + 9si+1

2, 0 ui−1 + 6ui + ui+1 = 4(si + si+1)
[xi−1, ti], [ti−1, xi+1] 4(ui−1 + ui) = si−1 + 6si + si+1

2, 1 ui−1 − 2si + ui = ui−1 − 2si + ui+1

[ti−2, xi], [xi, ti+1] 2ui−2 + 18ui−1 + 18ui + 2ui+1 = 9si−1 + 22si + 9si+1

3, 0 −ui−2 − 5ui−1 + 5ui + ui+1 = −4si−1 + 4si

[ti−2, xi], [xi−1, ti] 2ui−2 + 16ui−1 + 6ui = 9si−1 + 14si + si+1

3, 1 ui−2 + 6ui−1 + ui = 4(si−1 + si)
[ti−2, xi], [xi−1, ti] ui−2 + 6ui−1 + ui = 4(si−1 + si)

3, 2 ui−2 + 6ui−1 + ui = 4(si−1 + si)

Tab. 1.

We can see that with q = [2, 1] the C2- CC is identically fulfilled and for
q = [1, 0], [3, 2] the conditions for C1, C2 -continuity are identical. We can also
consider the relevant problem with given values ui and free parameters si.

3. C1- continuity conditions for cubic splines

We can find various systems of overlapping intervals with four points of the
extended mesh such that each knot xi, i = 1 : n belongs just to two such intervals.
To obtain the cubic spline on the original knotset we need to have for each interval
[xj, xj+1] some cubic interpolant defined over the whole such interval. When we
then write down the corresponding C1-CC in all internal knots xi, we obtain system
of linear equations for unknown parameters ui. Then we choose for each interval
[xi, xi+1] the corresponding cubic polynomial and we obtain the interpolating cubic
C1-spline on the original knotset.

3.1. The intervals with q=[2,0] or q=[3,1] connected

When we use for the cubic interpolants the knots [xi, ti, xi+1, ti+1], i = 0 : n− 1,
then these interpolants have just the common knots xi, i = 1 : n with the C1- CC
from the case with q = [2, 0] (q = [2, 1] for the last couple). Using Table 1, we
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obtain so the system of n linear relations between parameters u = [u0, · · · , un] and
s = [s0, · · · , sn+1]

Auu = Ass (2)

with the tridiagonal matrices Au,As of the sizes (n, n+1), (n, n+2) and coefficients




6 16 2
6 16 2

. . . . . . . . .

6 16 2
4 4




,




1 14 9
1 14 9

. . . . . . . . .

1 14 9
1 6 1




. (3)

Both these matrices are of the full rank and with given values {si, i = 0 : n + 1}
we have one free parameter ui – our problem has the solution depending on one
parameter, which can be chosen or used for some optimization purposes. The cu-
bic C1-spline then consists of corresponding parts of the cubic interpolants. Let us
mention some most interesting cases in these variants.
1. We can choose arbitrary free parameter u0. The tridiagonal matrix of the reduced
system is then regular and diagonally dominant (exception - the last row) and we
obtain the unique solution for arbitrary values {u0; si, i = 0 : n}. The corresponding
spline will have the mentioned weak localising property.
2. For similar proper system of overlapping intervals for cubic interpolation cor-
responding to q = [2, 1], [3, 1], [3, 1], ... we obtain the C1-CC with slightly modified
matrices Au,As. With the choice of the free parameter un we obtain now uniquely
solvable system with weak localising property.
3. In both mentioned cases we can obtain the unique solution of the relevant prob-
lem with given parameters s0, sn+1; ui, i = 0 : n with diagonally dominant reduced
(n,n)-matrix Au.
4. To obtain the solution with minimal 2-norm we can use pseudoinverse for the
solution of the original system - but we obtain usually the solution with some oscil-
lations.

Example 1: For the data x = 0 : 1 : 9, y(x) = 1 − x ∗ cos(x)/2 we can see plot-
ted in Fig. 1 the original function and the values si of the corresponding C1-cubic
spline in midpoints, computed with pseudoinverse (circles) and with u0 = y(0.5)
from (2). The 2-norms of the vector u are here [5.69, 5.73]. When we use as free
parameter y(8.5), we obtain the oscillating solution with norm equal to 127.25 !

3.2. Another configurations

We can find also another possible variants with still worse properties.
1. In the configuration of two families of local intervals with repeating values of q =
[2, 1], [3, 1], [3, 1], [3, 0], ... we recognize from Table 1 the C2-continuity of overlapping
segments in knots x4k+1. The system of CC consists of (4,6)-blocks, some proper
choice of free parameter is un.
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x = 0 : 1 : 9 ,  y = 1−x*cos(x)/2   ...  full line

o  circles  ...  pinv used for FV in midpoints 

+  crosses ...  u(0)=[y(0)+y(1)]/2 chosen 

C1 − cubic interpolating spline 

bad choice − u(9)=[y(9)+y(10)]/2 

(oscillations on the left side) 

Fig. 1.

Similarly we find another union of two families of intervals - the first starting with
the knots x3k only, the second family of connected intervals starting with the inserted
knot t0 where the repeated triples of corresponding values of the local parameter q
for CC in internal knots xi are [2, 1], [3, 0], [2, 0] for i = 3k + 1, 3k + 2, 3k + 3 (with
possible changes in the last CC). The whole system of C1-CC we can write now again
using Table 1 as Auu = Ass with block diagonal matrices with (3,4),(3,5)-blocks




4 4
2 18 18 2

6 16 2


 ,




1 6 1
9 22 9

1 14 9


 (4)

and to choose un as free parameter. We find now also the C2-continuity of the
resulting cubic spline in knots x3k+1.
We have found in both such cases as the most proper free parameter un, the unique
solution and diagonal dominancy in some rows. But in rows with coefficients [4,4]
and [2,18,18,2] the diagonal dominancy is lost and we can find some oscillations
in the solution. The structure of the matrix Au shows that the choice of the free
parameter u0 will result in more oscillating solution. When we are interested to use
u0 as the free parameter, then we can use some more appropriate variant of two
families of covering intervals with q=[2,0],[2,1],3,0] and changes in row orderings in
blocks mentioned in (4).

2. When we try to use another possible variants with corresponding repeating values
q=[2,0],[2,1],[3,1],[3,0] or q=[2,1],[3,0], then the structure of the full rank matrix Au

shows the danger of strong oscillations of computed values ui with the choice of any
free parameter ui - as we can justify it in computations.

3. In all cases discussed till now we find for the relevant problem with given values
ui, i = 0 : n and parameters s0, sn the reduced matrix As to be diagonally dominant
– all such problems have the unique solution with weak localising property!
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4. The configurations with q=[1,0],[2,1],[3,2] or q=[1,0],[3,2] seem to result in C2-
cubic spline - but we have not unique cubic polynomials for each interval [xi, xi+1]
in such cases.

Statement 1: On the equidistant knot mesh {xi} with given function values {si}
we can find (with one free parameter) function values ui in each of interval midpoints
ti = (xi +xi+1)/2 such that the corresponding parts of the local cubic interpolants on
intervals [xi, xi+1] will form the cubic interpolating C1- spline with knots {xi} for the
original data {xi, si}. One free parameter we can use for optimization purposes, or to
choose u0, un (according to the structure of the matrix Au) to obtain weak localising
property of the spline.
The relevant problem with given values s0, sn; {ui, i = 0 : n} has in all cases discussed
above the unique solution with weak localising property.

4. Two inserted knots per interval for C2-continuity

Let us insert into each interval of the original equidistant knotset {xi, i = 0 :
n + 1} two uniformly situated knots xi < t1i < t2i < xi+1, i = 0 : n. We want try to
find function values in knots t1i , t

2
i to obtain C2-cubic spline on the original knotset.

We can write the C1, C2- CC in knots xi (q = [3, 0] used from Table 1) with the
notation ui = s(t1i ), vi = s(t2i ), si = s(xi) as

−9ui−1 + 18vi−1 + 18ui − 9vi = −2si−1 + 22si − 2si+1, (5)

−4ui−1 + 5vi−1 − 5ui + 4vi = −si−1 + si+1, i = 1 : n.

With n + 1 intervals [xi, xi+1], 2(n + 1) inserted knots t1i , t
2
i , i = 0 : n and given

values si = s(xi) we obtain so the system of 2n C1, C2- CC with the block structure
and full rank matrix. So we have two free parameters, similarly as for classical cubic
C2-splines. We again can use free parameters to various purposes.
1. We can solve the system of CC (5) with the pseudoinverse, to obtain the spline
with minimal norm of parameters [ui, vi].
2. We can choose the values u0, vn and compute the remaining parameters from the
regular reduced system (5).
3. We can prescribe boundary conditions for the spline computed - the first or second
derivatives as with classical cubic splines (details in [3]).
4. There are also solutions with free parameters u0, v0 or un, vn which can be com-
puted recursively. But in both such cases we obtain strongly oscillating solutions.

Statement 2: On the equidistant mesh with given function values in knots and two
inserted points of interpolation we can compute the function values in inserted points
to obtain cubic C2-spline. Two free parameters can be prescribed, used for boundary
conditions with the first (second) derivative or for optimization purposes.

In Fig. 2 we can see the FV in inserted knots computed with pseudoinverse
(circles) and from the system of CC extended with boundary conditions (natural
spline - zero values of the second derivative at boundaries).
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C2 − cubic spline with two inserted knots per interval 

x = 0:1:10,  y = 1−x*cos(x)  ... stars

circles  o  ...  pinv used 

squares   ...  natural spline 

Fig. 2.

Remarks:
1) We can use two inserted points per interval to find cubic C2-spline interpolating
the given mean values (see [3]).
2) We have to use B-splines with coinciding knots to find cubic C1-spline interpolating
in knots xi (several possible variants).
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