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A MODIFICATION OF A CLASS OF IAD METHODS ∗

Tomáš Kojecký, Petr Mayer

Abstract

We provide a short overview of algorithms useful for computing of stationary prob-
ability vectors of stochastic matrix. Some care is devoted to the problem of computing
of all extremal stationary probability vectors for the reducible stochastic matrices.
We present some modifications of standard Iterative Aggregation/Disaggregation al-
gorithm.

1. Introduction

Our aim is to provide (not complete) some overview of methods available for
computing stationary probability vectors of stochastic matrices. We do not suppose
any information about block structure of these matrices.

Definition 1 Matrix T ∈ <N×Nwith nonnegative elements such that the sum of all
elements in each column is equal to one is column stochastic matrix.

We solve the following problem: Find all solutions x ∈ <N of

Tx = x with conditions x ≥ 0 and
N∑

i=1

x(i) = 1 . (1)

For simplicity let us introduce the vector of all ones e(n) ∈ <n. Similarly by ei(n) ∈
<n we denote i-th vector of canonical base, i.e.

ei(n) =

(
0 . . . 0 1 0 . . . 0

i− th element

)
.

Furthermore we denote by I(n) the identity matrix and by E(n,m) ∈ <n×m the
matrix of all ones. When the dimension is clear from the context we omit the
indication of the dimension. By r(A) we denote spectral radius of the matrix A , by
σ(A) we denote its spectrum and elements of vectors we denote by upper indices in
brackets.

Definition 2 Any solution of the problem (1) is called stationary probability vector
(SPV).

∗This work was supported by the grants GAČR 201/02/0684, GAČR 201/02/0595 and MŠM
J13/98:113200007.
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From the Perron-Frobenius theorem (see [5]) we know that such solution always
exists, and this solution is unique when the matrix T is irreducible . General case is
solved by the following lemmas.

Lemma 1 For any stochastic matrix T , there exists a permutation matrix P such
that

P T TP =




F0 0 0 . . . 0
F1 G1 0 . . . 0
... 0

. . . . . .
...

...
...

. . . . . . 0
Fp 0 . . . 0 Gp




(2)

where F0 is zero convergent matrix, Fi, i > 0 are nonnegative matrices and G1, . . . , Gp

are irreducible stochastic matrices.

Definition 3 The matrix of the form (2) is called Romanovski canonical form of
the stochastic matrix T .

Let us note, that the number of the irreducible blocks in the Romanovski form
of a stochastic matrix is the number of linearly independent stationary probability
vectors. Moreover, if we wish to compute other significant characteristics of Markov
chain which is described by the stochastic matrix T , such as the probability of
reaching one state from another state, the mean time (in transition steps of Markov
chain) or the variance of the mean time, the knowledge of the Romanovski form gives
us the information of zero/nonzero structure of matrices we are looking for.

For computing such an information, we can use the Tarjan algorithm (see [1]).
Drawback of this method is that one needs a direct access to elements of matrix
studied. In many situations, for example if a matrix is given in a form of sum of
tensor products, it is impossible to find an effective way to obtain elements of T . The
other possibility is to exploit knowledge of existence of the Romanovski canonical
form, to compute the special base of stationary probability vectors and to decipher
the structure of the Romanovski form from it.

We show a simple lemma which gives a connection between the Romanovski
canonical form and the stationary probability vectors.

Lemma 2 Let T be stochastic matrix with the Romanovski form (2), then vector uk

of the form

uk = Pũk (3)

where
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ũk =




0
0
...
0
˜̃uk

0
...
0




and Gk
˜̃uk = ˜̃uk, eT ˜̃uk = 1 (4)

is a solution of the problem (1).

Definition 4 The eigenvectors defined by the Lemma 2 are called extremal station-
ary probability vectors.

Lemma 3 Let T be stochastic matrix, then any stationary probability vector (solu-
tion of the problem (1)) is a convex combination of extremal stationary probability
vectors.

Proof From the Romanovski canonical form we know that the eigenvalue one has
its algebraic multiplicity p and on the other hand we have p linearly independent
eigenvectors for the eigenvalue one defined by (3) and (4). ¤

For convenience we define M -matrix.

Definition 5 [6, Def. 3.22] A real n× n matrix A = (aij) with aij 6 0 for all i 6= j
and A−1 > 0 is an M-matrix.

The paper is organized as follows: The second section describes some possibil-
ity how to compute the Romanovski form utilizing SPV. Sections three to five give
partial overview of methods useful for computing SPV’s. Section three deals with
standard iterative methods based on regular splittings, section four describes stan-
dard IAD methods and shows possible overcome of necessity of irreducibility of the
transition matrix T . Section five is devoted to modification of IAD methods which
authors hope is promising. The sixth section contains some numerical examples and
the paper finish by conclusions.

2. The construction of Romanovski form from the SPV’s

A substantial part of constructing the Romanovski form is to find such index
sets in the original matrix which are mapped to separate blocks of the transformed
matrix. To determine behavior of the graph of the matrix T , we will use the following
lemma

Lemma 4 Let x0 = ei, let xk+1 = Txk for k = 0, . . . ,∞. If x
(j)
k > 0 for some k > 0,

then there is a path in the graph of matrix T connecting i and j.
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One possibility for the construction of the Romanovski form is the following
approach: denote Ik, k = 0, . . . , p the indices which belong to the k-th block, then
the steps 1.-14. follow:

1. set p := 0, I0 := ∅, I := {1, . . . , N}, i = 1

2. while I 6= ∅ do

3. set x0 = ei and find x = limk→∞ xk where xk+1 = 1
2
(I + T )xk

4. if x(i) 6= 0 then

( i is the element of some of the index set of irreducible matrices)

5. p := p + 1

6. Ip := {j ∈ I; x(j) 6= 0}

7. I := I − Ip

8. i := min{j ∈ I}

9. else

( i is the element of the index set of transient states)

10. I0 := I0 ∪ {i}

11. I := I − {i}

12. i := min{j ∈ I; x(j) > x(k), k ∈ I}

13. end if

14. end while

Note 1 We can increase the number of elements added in step 10., by taking in
account, that any index l for which x(l) is zero and x

(l)
k is nonzero in at least in one

iteration of the third step of the algorithm, i.e. if x
(l)
k > 0 for some k, then l is

element of I0, too.

Deeper analysis of computing of the Romanovski canonical form of a stochastic
matrix by use of stationary probability vectors can be found in Tanabe [2].

From previous observation we see, that quicker method which is able to compute
SPV for a reducible matrix with the same behavior concerning the zero/nonzero
structure as power method is needed.
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3. Methods based on regular splitting

The problem (1) is to solve the singular system of linear equations

(I − T )x = 0 with the condition eT x = 1 .

Let us consider a regular splitting M − W of the matrix I − T , where M is an
M -matrix and W is a nonnegative matrix. Then we will investigate two types of
iterative methods.

The first one computes directly the SPV:

Algorithm MW (input: T, M,W, xinit, ε; output: x)

1. set

A := M−1W and Ã :=
1

2
(I + A) (5)

x0 := xinit k := 0

2. while ‖Txk − xk‖ > ε do

3. xk+1 := Ãxk

4. k := k + 1

5. end while

6. x := xk

The second one computes transformed SPV and then transforms it back.

Algorithm WM (input: T, M,W, xinit, ε; output: x)

1. set

B := WM−1 and B̃ :=
1

2
(I + B) (6)

2. y0 := Mxinit

3. x0 := xinit

4. k := 0

5. while ‖Txk − xx ‖> ε do

6. xk := M−1yk

7. k := k + 1

8. yk := 1
2
(Wxk−1 + yk−1) (i.e. yk := B̃yk−1)
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9. end while

10. x := xk

Let us note, that the vectors xk generated by Algorithm MW and WM are identical.

Theorem 1 The iteration matrices A,B and Ã, B̃ defined by (5) and (6) used in
algorithms MW and WM are similar. Moreover, matrices B, B̃ are stochastic and
in the case of matrices Ã, B̃, the eigenvalue one is the only eigenvalue with absolute
value one.

Proof Because M is M-matrix, M is invertible, and we have similarity

M(M−1W )M−1 = WM−1

and

M

[
1

2
(I + M−1W )

]
M−1 =

1

2
(I + WM−1).

To show stochasticity we use the fact that matrices W,M−1 are both nonnegative
and since I − T = M −W we obtain

0 = eT (I − T )

0 = eT (M −W )

0 = eT M − eT W

eT M = eT W

eT = eT WM−1.

The last part of Theorem follows from (5) and (6). ¤
We note, that for any choice of M and a stopping residual ε sufficiently small,

the nonzero structure of the computed solution is the same as nonzero structure of
the vector x computed in step 3. of the algorithm for construction of Romanovski
form of the stochastic matrix T .

4. IAD methods

For introducing Iterative Aggregation/Dissaggregation methods, we have to de-
fine aggregation mapping

g : {1, . . . , N} −→ {1, . . . , n}, n ¿ N,

where n is the size of the coarse space.
The indices which are mapped to the same value of g define one aggregation

group. The optimal choice of mapping g is difficult and often depends on further
information about the solved problem. As we will see, the difference between two
choices of g for the same transition matrix can be substantial.
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By using the aggregation mapping we define restriction and prolongation matri-
ces. The restriction matrix R ∈ <n×N is defined by nonzero elements

Rg(i),i = 1,

i.e. (Rx)(j) =
∑N

i=1,g(i)=j x(i).

The prolongation matrix S(x) is parametrised by the vector x ∈ <N , the nonzero
elements of this matrix are

(S(x))i,g(i) =
x(i)

(Rx)(g(i))
,

it means that (S(x)z)(i) = z(g(i)) x(i)

(Rx)(g(i)) .

Let us denote the aggregated matrix defined by the vector x and by the aggre-
gation mapping g as A(x) = RTS(x) . Some properties of the matrix A(x) follow.

Lemma 5 Let T be a column stochastic matrix, let g be an aggregation mapping and
x ∈ <N such that x > 0 and Rx > 0. Then the aggregated matrix A(x) is column
stochastic. If the matrix T is irreducible and the vector x is strictly positive, then
A(x) is irreducible.

Proof To proof the stochasticity of A(x) we have to show non-negativity of A(x)
and the stochastic property e(n)T A(x) = e(n)T .

Non-negativity follows directly from the fact that all matrices R,S(x) and T are
nonnegative and their product is nonnegative, too.

To prove the second part we use e(n)T R = e(N)T and e(N)T S(x) = e(n)T for
any x > 0 which satisfies Rx > 0. Then simple computation gives eT (n)A(x) =
e(n)T RTS(x) = e(N)T TS(x) = e(N)T S(x) = e(n)T .

If T is irreducible, then there is no permutation matrix P , such that

P T TP =

(
T11 T12

0 T22

)
,

suppose that A(x) is reducible, then P T
1 A(x)P1 =

(
A11 A12

0 A22

)
for some permu-

tation P1. If x > 0 then any element of A(x) is a positive combination of the
corresponding elements of the matrix T . Then from the reducibility of A(x), it
follows the reducibility of T and this is the contradiction. ¤

Note 2 Let us note, that the strict positivity of x is essential. Let us consider the
irreducible matrix T and a nonnegative vector x as follows

T =




1
3

1
4

0 1
4

2
3

1
4

0 1
4

0 1
4

1
4

1
4

0 1
4

3
4

1
4


 , x =




1
2

0
1
2

0


 , g :

1 7→ 1
2 7→ 1
3 7→ 2
4 7→ 2

.

We get matrix A(x) =

(
1 0
0 1

)
which is reducible.
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With the previous knowledge we can define IAD algorithm for the irreducible
stochastic matrix T and for a positive initial approximation xinit.

Algorithm IAD (input: T, M, W, xinit, ε, g, s ; output: x)

1. k := 1, x1 := xinit

2. while ‖Txk − xk‖ > ε do

3. x̃ := (M−1W )sxk

4. A(x̃) := RTS(x̃)

5. solve A(x̃)z = z and eT z = 1

6. k := k + 1

7. xk = S(x̃)z

8. end while

The convergence theory for IAD can be found in [3]. We just state the main theorem:

Theorem 2 Let T be a column stochastic matrix, let x̂ be the solution of (1), then
there exist s0and a neighborhood of x̂ such that for any xinit from this neighborhood
and any s > s0 the Algorithm IAD is convergent.

In some practical problems we find that there are special cases, when the IAD
algorithm returns exact solution in one step.

Theorem 3 Let for splitting M,W be range(M−1W ) ⊆ range(S(x̂)), then Algo-
rithm IAD terminates after the first iteration.

Proof see [4]. ¤
The next example ilustrates Theorem 3:

Example 1 Let

T =




0.1 0.1 0.1 0.05 0.15 0.25
0.5 0.2 0 0.02 0.06 0.10
0.2 0.1 0.1 0.03 0.09 0.15
0.04 0.12 0.16 0.2 0.2 0.1
0.08 0.24 0.32 0.6 0.2 0.1
0.08 0.24 0.32 0.1 0.3 0.3




.
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The splitting is I − T = M −W , where

M =




0.9 −0.1 −0.1 0 0 0
−0.5 0.8 0 0 0 0
−0.2 −0.1 0.9 0 0 0

0 0 0 0.8 −0.2 −0.1
0 0 0 −0.6 0.8 −0.1
0 0 0 −0.1 −0.3 0.7




and

W =




0 0 0 0.05 0.15 0.25
0 0 0 0.02 0.06 0.10
0 0 0 0.03 0.09 0.15

0.04 0.12 0.16 0 0 0
0.08 0.24 0.32 0 0 0
0.08 0.24 0.32 0 0 0




.

Let the aggregation mapping is

g :

1 7→ 1
2 7→ 1
3 7→ 1
4 7→ 2
5 7→ 2
6 7→ 2

and the initial approximation is x0 = (1
6
, 1

6
, 1

6
, 1

6
, 1

6
, 1

6
)T , we get

x̃ = (0.1041237, 0.1025773, 0.0845361, 0.1829060, 0.3094017, 0.3111111)T .

The aggregated problem is A(x̃) =

(
0.4849558 0.3319149
0.5150442 0.6680851

)
and the aggregated

solution is z = (0.3918901, 0.6081099)T . We finish with

x1 = (0.1401094, 0.1380285, 0.1137522, 0.1384420, 0.2341870, 0.2354809)T

which is the exact

solution of Tx = x.

The main drawback of Algorithm IAD is that we need irreducibility of the tran-
sition matrix T and strict positivity of iterations xk. We can solve this problem
by modificating the prolongation operator S(x). We define the new prolongation
operator S̃(x) = limε→0 S(x + εe) i.e.

(
S̃(x)z

)(i)

=

{
(z(g(i))x(i))/((Rx)(g(i))) for (Rx)(g(i)) 6= 0 ,
1/(card {j : g(j) = g(i)}) for (Rx)(g(i)) = 0 .
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To make the solution of the aggregated problem unique, we change the definition of

the solution of the aggregated problem to z = liml→∞
[

1
2

(
I + RTS̃(x̃)

)]l

Rx̃. We

finish with a slightly modified algorithm

Algorithm IAD1 (input: T,M, W, xinit, ε, g, s output: x)

1. k := 1, x1 := xinit

2. while ‖Txk − xk‖ > ε do

3. x̃ := (M−1W )sxk

4. Ã(x̃) := RTS̃(x̃)

5. z = liml→∞
[

1
2

(
I + RTS̃(x̃)

)]l

Rx̃

6. k := k + 1

7. xk = S̃(x̃)z

8. end while

9. x := xk

The limit in step 5. is used just only for the definition of z to be unique. Algorithm
IAD1 can be used for any column stochastic matrix T and for any initial approxi-
mation xinit. It can be used for computing stationary vectors for general stochastic
matrices. But unfortunately, this method can fail on computing all extremal eigen-
vectors. The next example shows unability of IAD1 to keep the same zero/nonzero
structure as the power method. It shows that IAD1 cannot be used for computing
of all SPV’s.

Example 2 Let us consider the following transition matrix

T =




0.5 0 0.5 0 0 0
0.5 0.5 0 0 0 0
0 0.5 0.5 0 0 0
0 0 0 0.5 0 0.5
0 0 0 0.5 0.5 0
0 0 0 0 0.5 0.5




and the initial vector x0 = (1, 0, 0, 0, 0, 0)T . For the splitting M = I, W = T , the
aggregation mapping

g :

1 7→ 1
2 7→ 1
3 7→ 2
4 7→ 2
5 7→ 3
6 7→ 3
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after one smoothing iteration we have x̃ = (0.5, 0.5, 0, 0, 0, 0)T , the restriction matrix
is

R =




1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1




and the prolongation matrix is

S̃(x̃) =




0.5 0 0
0.5 0 0
0 0.5 0
0 0.5 0
0 0 0.5
0 0 0.5




.

Then we have the aggregated matrix

Ã(x̃) =




0.75 0.25 0
0.25 0.5 0.25
0 0.25 0.75




which is irreducible and in step 5 we have z = (1
3
, 1

3
, 1

3
)T . Then x1 = (1

6
, 1

6
, 1

6
, 1

6
, 1

6
, 1

6
)T .

And we are not able to compute the extremal stationary probability vector.

5. Modification of IAD

In this section we introduce a different modification of IAD algorithm. Our aim
is to make possible to use such algorithm for computing extremal eigenvectors and
to keep advantages of the acceleration of computations given by the aggregation
correction.

Algorithm MIAD (input: T,M,W, xinit, ε, g, s, q, p output: x)

1. x0 := xinit, k := 0

2. while ‖Txk − xk‖ > ε do

3. v0 := xk

4. for i = 1, . . . , s do

5. vi := (M−1Wvi−1 + vi−1)/2

6. end for

7. for i = 1, . . . , q do

8. for j = 1, . . . , p do
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9. define vector y(i−1)p+j by

(y(i−1)p+j)
(l) = (vs+1−i)

(l) if g(l) = j

(y(i−1)p+j)
(l) = 0 if g(l) 6= j

10. end for

11. end for

12. define a new iteration xk+1 ∈ span(y1, . . . , ypq) and eT xk+1 = 1 such that

‖Txk+1 − xk+1‖ = min
y ∈ span(y1, . . . , ypq)
eT y = 1

‖Ty − y‖ (7)

13. k := k + 1

14. end while

15. x := xk

Lemma 6 Let for nonzero vector y be (I − T )y = 0 and eT y = 0. Then vectors y+

and y− defined by y+
i = max(yi, 0) and y− = y+ − y, are both eigenvectors for the

eigenvalue 1. Moreover the matrix T is reducible.

Proof Since the transition matrix T is nonnegative and due to Perron-Frobenius
theorem, the spectral radius is equal to the largest eigenvalue. Moreover, when T is
irreducible, the corresponding eigenvector is strictly positive. From (I − T )y = 0 we
have Ty = y, the vector y is the eigenvector corresponding to the spectral radius
and as a consequence the matrix T could not be irreducible. Lemma 2 gives us the
basis for all eigenvectors of the reducible stochastic matrix. Then any stationary
probability vector is a linear combination of the extremal stationary vectors. From
their definition, the zero/nonzero structure of them is disjoint. Then both positive
and negative parts of y have to be a linear combination of the different extremal
stationary vectors. ¤

Note 3 Let us say, that neither y+ nor y− has to be the extremal stationary prob-
ability vector.

By the use of previous lemma we can stop MIAD algorithm either when the final
residual is small enough, and we finish with one stationary probability vector, or
with two stationary probability vectors y+/(eT y+) and y−/(eT y−) and additional
information on reducibility of the transition matrix T .
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Theorem 4 For any stochastic matrix T there exists s0 such that for any s > s0,
any q 6 s, any number of blocks p and any initial approximation xinit the MIAD is
convergent.

Proof We know that the matrix WM−1 is stochastic with the same stationary
probability vectors. The same is valid for (WM−1 + I)/2. Then we have

(WM−1 + I)/2 = Q + Z,QZ = ZQ = O, r(Z) < 1, Q2 = Q.

For the smoothing iteration matrix

(M−1W + I)/2 = M−1[(WM−1 + I)/2]M

and for the smoothed residual

‖Tvs − vs‖ =
∥∥(T − I)[(M−1W + I)/2]sxk

∥∥
=

∥∥(T − I)[M−1(WM−1 + I)M/2]sxk

∥∥
=

∥∥(T − I)M−1[(WM−1 + I)/2]sMxk

∥∥
=

∥∥(W −M)M−1 (Q + Zs) Mxk

∥∥
=

∥∥(WM−1 − I) (Q + Zs) Mxk

∥∥
= ‖2(Q + Z − I)(Q + Zs)Mxk‖
= ‖2Zs(Z − I)Mxk‖
= ‖Zs2(Q + Z − I)Mxk‖ .

For the original residual we have

‖Txk − xk‖ = ‖(T − I)xk‖
= ‖(W −M)xk‖
=

∥∥(WM−1 − I)Mxk

∥∥
= ‖2(Q + Z − I)Mxk‖ .

Then we finish with

‖Tvs − vs‖ 6 ‖Zs‖ ‖Txk − xk‖ .

Since xk+1 is the solution of the minimalization problem (7), we have ‖Txk+1 − xk+1‖
6 ‖Tvs − vs‖ 6 ‖Zs‖ ‖Txk − xk‖ and r(Z) < 1. Then we can choose s0 such, that
for any s > s0 is ‖Zs‖ < 1− δ for some positive δ. Then we have

‖Txk − xk‖ < (1− δ)k ‖Tx0 − x0‖ .

¤
We finish with a generalization of Theorem 3.
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Definition 6 The matrix of the block form

A =




∑k
i=1 u1iv

T
1i

...∑k
i=1 upiv

T
pi




is called k-dyadic.

Theorem 5 Let for splitting M − W of the matrix I − T be the matrix M−1W
k-dyadic. If g conserves the same block structure as M−1W and q > pk + p then
MIAD algorithm is convergent in finite number of iterations.

Proof Since the SPV belongs to Rng(A), the comdition

Rng(A) ⊂⊂ Span(y1, . . . , ypq) (8)

is sufficient for the aggregation correction to compute the exact solution. The con-
dition (8) is fulfilled if the condition Rng(A) ⊂⊂ Span(vs+1−q, . . . , vs) is valid. This
condition is a consequence of the fact that the vectors vs+1−i, . . . , vs generate the
Krylov space K(M−1W, vs+1−i). Since the rank of the matrix M−1W is less or equal
to kp, the dimension of the Krylov space K(M−1W, vs+1−i) cannot be larger.

¤
Let us note, that obviously the minimal q is just k + 1.

6. Numerical example

Consider matrix

T =




0.0094 0.0268 0.0288 0.0593 0.0954 0.7434 0.2903 0.1678
0.0280 0.0357 0.0504 0.0763 0.1908 0.0930 0.0683 0.1420
0.0280 0.0357 0.0360 0.0678 0.4770 0.0465 0.1025 0.3292

0 0.0089 0.1655 0.0339 0.1908 0.0465 0.0512 0.1356
0.7477 0 0 0 0.0065 0.0106 0.1055 0.0364
0.0935 0 0.3597 0.1695 0.0103 0.0173 0.1447 0.0578
0.0467 0 0 0 0.0086 0.0148 0.1276 0.0500
0.0467 0.8929 0.3597 0.5932 0.0206 0.0282 0.1099 0.0812




,

and

g :

1 → 1
2 → 1
3 → 1
4 → 1
5 → 2
6 → 2
7 → 2
8 → 2

.
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We use

M =




0.9906 −0.0268 −0.0288 −0.0593 0 0 0 0
−0.0280 0.9643 −0.0504 −0.0763 0 0 0 0
−0.0280 −0.0357 0.9640 −0.0678 0 0 0 0

0 −0.0089 −0.1655 0.9661 0 0 0 0
−0.7477 0 0 0 0.9935 −0.0106 −0.1055 −0.0364
−0.0935 0 −0.3597 −0.1695 −0.0103 0.9827 −0.1447 −0.0578
−0.0467 0 0 0 −0.0086 −0.0148 0.8724 −0.0500
−0.0467 −0.8929 −0.3597 −0.5932 −0.0206 −0.0282 −0.1099 0.9188




,

and initial approximation xinit = (1
8
, 1

8
, 1

8
, 1

8
, 1

8
, 1

8
, 1

8
, 1

8
). With such setting IAD method

needs 20 iterations to reach the residual less then 10−14 .
But the matrix M−1W is 2-dyadic and Modified IAD method gives for q = 3 the

exact solution after the first iteration.

7. Conclusions

We can use a wide range of methods for computing SPV. From the efficiency point
of view we prefer using iterative aggregation/disaggregation methods. For standard
IAD methods it is necessary to ensure irreducibility of the transition matrix T . It
can be achieved by using of Tarjan’s algorithm, but such approach needs access to
elements of the matrix T . In many practical situations we can only compute product
of a matrix and a vector. On the other side we can use knowledge of extremal SPV’s
to construct Romanovski canonical form. For such computations we can effectively
use the presented modification of IAD methods.
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