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NUMERICAL SOLUTION OF STEADY
AND UNSTEADY BYPASS FLOW∗

Vladimı́r Prokop, Karel Kozel†

Abstract

This paper deals with a problem of numerical solution of laminar viscous in-
compressible stationary and nonstationary flows through a vessel with bypass. One
could describe these problems by using model of the Navier-Stokes equations and find
a steady solution of an unsteady system by using a multistage Runge-Kutta method
together with a time dependent artificial compressibility method. Nonstationary solu-
tion is achieved from initial stationary solution by prescribing of nonstationary outlet
conditions. Some results of numerical solution of cardiovascular problems are pre-
sented: stationary and nonstationary 2D flows in a vessel and a bypass.

1. Mathematical model

In the cardiovascular system we could find many different types of vessels like
large arteries, vessels of medium size and capillaries. They differ in diameter and
in thickness and composition of the wall. In larger vessels the blood flow can be
assumed to behave as an incompressible continuum. One can describe this type of
flow using the system of momentum and continuity equation written in conservation
form:

ρ
D~w

Dt
−∇ · τ = ρ~f (1)

∇ · ~w = 0 (2)

where D~w
Dt

= ∂ ~w
∂t

+ wi
∂ ~w
∂xi

, τ is the stress tensor of the fluid, ~w is the velocity vector

and ~f is the vector of external forces, which is later not taken into account. The
density of the fluid, ρ, is supposed to be constant in physiological conditions, although
it depends on the red cells concentration. Important feature of the blood flow is
pulsatility caused by the periodic motion of the heart. It is also known [4] that
there is scarcely any turbulence in vessels except some special cases. The walls of
a tube which is the model of a vessel are supposed to be rigid and the velocity
vector ~w is null on them. The blood flow can be assumed to be laminar [4]. Indeed,
in physiological conditions, the values of speed involved are low enough. Morover,
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generally, the periodicity of the flow, together with short length of vascular districts,
do not give rise to fully developed turbulence. The Reynolds number Re = dw∗

ν
is an

important feature of the flow behaviour. The quantity w∗ is characteristic velocity
(the speed of upstream flows), ν = µ/ρ is kinematic viscosity (µ is dynamic viscosity)
and d is a lenght scale (the width of a channel). In large and medium human vessels,
the Reynolds number ranges from 400 up to 10000. Elasticity of vessel tubes is not
considered. The flow could be then described as viscous, incompressible, laminar
and non-stationary in 2D by the system of the Navier-Stokes equations without
influence of exterior forces and heat exchange. The system is written in conservative
non-dimensional vector form rewritten from (1), (2)

R̃Wt + Fx + Gy = R̃
1

Re
(Wxx + Wyy) , (3)

where W = (p, u, v)T is the vector of solution, R̃ = diag‖0, 1, 1‖ and F = (u, u2 +
p, uv)T , G = (v, uv, v2 + p)T denote inviscid fluxes, (u, v) is the velocity vector, p de-
notes the pressure. For upstream boundary conditions we use the velocity vector
(u, v), along the walls the vector of velocity is equal to zero because of the viscos-
ity of the fluid and impenetrability of the wall, downstream boundary condition is
p = p2, which should ensure the pressure gradient.

2. Numerical model

Solution of the system (3) is obtained using the method of artificial compressibil-
ity, then the equation of continuity is completed with the term 1

a2 pt, where a2 ∈ R+.
The system (4) that is numerically solved, is the folloving

Wt + Fx + Gy = R̃
1

Re
(Wxx + Wyy) , (4)

where W = ( p
a2 , u, v)T . Finding solution one could solve unsteady system (4) by

finite volume method and by time dependent method. System of equations (4) is
solved by a three stage Runge-Kutta method and given boundary conditions. At the
inlet an extrapolation of the pressure is used. At the outlet the value of the pressure
is prescribed by the sinus function p2 = p20(1 + α sin 2πωt), where ω is a frequency
and α is an amplitude. The multistage Runge-Kutta method is stabilized by the
artificial viscosity term (Jameson’s type):

W n
i,j = W

(0)
i,j (5)

W
(r)
i,j = W

(0)
i,j − αr∆tRW

(r−1)
i,j , (r = 1, . . . ,m) (6)

W n+1
i,j = W

(m)
i,j ,m = 3, (7)

where
RW

(r−1)
i,j = RW

(r−1)
i,j −DW

(r−1)
i,j (8)
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and the coefficients α1 = 0.5, α2 = 0.5, α3 = 1.0, so the numerical method is of the
second order in time and space. The form of the residual RW n

i,j depends on the
method used for solving of the space derivatives:

RWi,j =
1

µij

4∑

k=1

[(
F i

k −
1

Re
F v

k

)
∆yk −

(
Gi

k −
1

Re
Gv

k

)
∆xk

]
, (9)

where µij is the volume of the finite volume, F i = F, Gi = G are the inviscid fluxes
and F v = (0, ux, vx)

T , Gv = (0, uy, vy)
T are the viscous fluxes, the index k is corre-

sponding to the side of a finite volume. The artificial viscosity term DW n
i,j depends

in this case on the second derivatives of the pressure and is used for improving the
stability of the solution.

3. Some numerical results

In this section we present steady numerical results achieved by using the nu-
merical methods described above. The first figure shows results of a steady flow for
Re = 2000. The other figures show an unsteady flow for Re = 1000. We start from
the steady solution for a specific Reynolds number and using the same method as for
the steady computation only changing the outlet pressure condition by the formula
p2 = p20(1 + α sin 2πωt), where the value of ω is equal 0.25, p20 = 0.3 and α = 0.3,
we recieve the results for an unsteady flow. In both, steady and unsteady, cases one
could see zones of separation in the bypass after bifurcation and also in the domain
after a contraction of a vessel. Results presented here are for 20 percent contraction
of the vessel and for the bypasses which are about 40 or 30 percent of the diameter
of the vessel. For an unsteady solution it is necessary to use a →∞ or computation
in dual (artifitial) time.

Re=2000

Fig. 1: The figure shows the behaviour of the flow in the bypass for Re=2000: velocity
vector field.
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Re=2000

Fig. 2: The figure shows the behaviour of the flow in the bypass for Re=2000: velocity
isolines.

Re=1000, t=100,0,s=4

Re = 1000,t=101.6,p=4

Re=1000,t=103.2,p=4
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Re=1000,t=104.8,p=4

Re=1000,t=106.4,p=4

Fig. 3: The above figures show the behaviour of the unsteady flow during two periods for
Re=1000: velocity isolines.
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