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FINITE VOLUME WLSQR SCHEME AND ITS APPLICATIONS
TO TRANSONIC FLOWS∗

Jǐŕı Fürst

Abstract

This article describes the development of a high order numerical method for the
solution of compressible transonic flows. The discretisation in space is based on the
standard finite volume method of Godunov’s type. A higher order of accuracy is
achieved by a piecewise polynomial interpolation similar to the ENO or weighted
ENO methods (see e.g. [8]).

1. Introduction

The weighted least square reconstruction (WLSQR) of pointwise data at the cell
faces from given cell averages is developed with the aim to simplify the implementa-
tion of the standard ENO procedure especially for the case of unstructured meshes.
The reconstruction procedure uses single stencil and computes an interpolation poly-
nomial by minimizing the weighted interpolation error over the cells in this stencil.

The complete finite volume scheme equipped with the piecewise linear recon-
struction was successfully used for the solution many transonic flow problems (see
e.g. [4, 5]). This article presents the basic analytical results as well as some new
numerical experiments with the WLSQR scheme especially for the case of inviscid
3D flows and turbulent flows in 2D. The WLSQR reconstruction has been used for
the conservative variables as well as for the model of turbulence.

The flow is described by the set of the Euler or the Navier-Stokes equations in
conservative form

Wt + F (W )x + G(W )y = F v(W )x + Gv(W )y + S(W ), (1)

where W = [ρ, ρu, ρv, e]T is the vector of conservative variables, F (W ) and G(W )
are the inviscid fluxes, F v(W ) and Gv(W ) are the viscous fluxes (F v = Gv = 0 for
the case of the Euler equations) and S(W ) is a source term, for more details see [2].

The equations equipped with proper boundary conditions are solved numerically
using an unstructured mesh and a finite volume scheme with all unknowns located
at cell centers. The fluxes through the cell interfaces are approximated by the Gauss
quadrature with the physical fluxes replaced by the numerical ones

∫

Ci∩Cj

(F (W ), G(W )) · d~S ≈
J∑

q=1

ωqF
AUSMPW+(WL

ijq,W
R
ijq,

~Sijq). (2)
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Here WL
ijq and WR

ijq denotes the values of the vector of unknowns interpolated to
the Gauss point q of the interface Ci ∩ Cj from the left cell or from the right cell,
respectively. FAUSMPW+ denotes the numerical flux described in [9] and ωq are the
weights of the Gauss quadrature. The resulting finite volume scheme for inviscid
case can be then written in semi-discrete form

|Ci|dWi

dt
= − ∑

j∈Ni

J∑

q=1

ωqF
AUSMPW+(WL

ijq,W
R
ijq, ~Sijq). (3)

Here Ci is the i-th cell, Wi =
∫
Ci

W (~x, t)d~x, and Ni = {j : dim(Ci ∩ Cj) = 1}.
The basic first order scheme can be obtained by setting J = 1, WL

ijq = Wi, and
WR

ijq = Wj.

2. The WLSQR interpolation

However the basic first order scheme posses very good mathematical properties,
it is well known, that it is very diffusive. Therefore a use of higher order schemes is
preferred, especially for the viscous flow calculations. The higher order scheme can
be constructed within this framework simply by improving the interpolation of WL

and WR. There exist several methods for the construction of a stable interpola-
tion, the most known are the limited least squares of Barth [1], the ENO/WENO
schemes [8], or the TVD schemes [7].

The use of limiters as in the TVD or the Barth’s schemes usually cut the order
of accuracy near extrema and may also hamper the convergence to a steady state.
On the other hand, the implementation of ENO/WENO schemes is relatively com-
plicated for unstructured meshes. Therefore a novel reconstruction procedure was
introduced in [5]. Denote by φ a component of W . Then the interpolation polyno-
mial Pi(~x; φ) for the cell Ci is constructed by minimizing the weighted interpolation
error 1

err :=
∑

j∈Mi

[
wij

(∫

Cj

P̃ (~x; φ) d~x− |Cj|φj

)]2

(4)

with respect to the conservativity constraint

∫

Cj

Pi(~x; φ) d~x = |Cj|φj. (5)

The weights wij are chosen in such a way, that the magnitude of w is big whenever
the solution is smooth and w is close to zero when the solution is discontinuous,
see formula (6). The single stencil Mi is selected according to the order of the
polynomial P .

1Herefrom comes the name of the method - the Weighted Least Square Reconstruction.
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2.1. The second order scheme

The formally second order scheme can be obtained by using linear polynomials Pi.
For this case, the choice of Mi := M1

i = {j : Ci ∩ Cj 6= ∅} (i.e. cells touching Ci at
least by a vertex) has been tested together with the weights

wij =

√√√√ h−r

∣∣∣φi−φj

h

∣∣∣
p
+ hq

, j ∈Mi, (6)

with h being the distance between cell centers of Ci and Cj and p = 4, q = −3, and
r = 3. The analysis of simplified cases has been carried out in [4] showing a stability
of WLSQR interpolation for special discontinuous data.

2.2. The third order scheme

This approach can be extended to a scheme which has formally third order of
accuracy by using quadratic polynomials Pi. It is also necessary to enlarge the stencil
to Mi := M2

i = M1
i ∪ {j : Cj ∩M1

i 6= ∅} (i.e. the stencil is extended by the cells
touching M1

i ). Although there are no analytical results for quadratic reconstruction,
the same definition of wij, j ∈M2

i has been used successfully.

2.3. Analysis of weights in WLSQR interpolation

The complete analysis of this three-parametric family of weights is very difficult
task, therefore we investigate here only effects of p and q. The value of r was kept
constant r = 3 in this work.

In [3] the theoretical analysis of 1D piecewise linear reconstruction using regular
mesh has been developed with the following results:

Lemma 2.1 Assume a sufficiently smooth function u(x) having cell averages ui and
weights w 6= 0. Then the piecewise linear WLSQR interpolation polynomial approx-
imates u(x) with second order of accuracy, i.e.

P (x; u) = u(x) +O(h2). (7)

In the case of discontinuous data the total variation of the interpolant for u(x) defined
as u(x) = 1 for x < xshock and u(x) = 0 for x ≥ xshock has been analyzed and the
following TV-estimate has been proven

TV (P (x; u)) ≤ TV (u) + 6h1+q/p. (8)

Several numerical experiments for piecewise linear WLSQR method in [3] have
shown, that the choices p, q, r = 4,−2, 3 or 4,−3, 3 are appropriate at least for
inviscid transonic flows in test channel. Therefore we chose here p, q, r = 4,−2, 3
also for the piecewise quadratic WLSQR method.
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2.4. Numerical experiments with the WLSQR scheme

The numerical analysis of the order of accuracy of an upwind scheme with
WLSQR interpolation has been done in [3] for the case of linear advection in 2D
and for the non-linear Burgers equation in 2D. The numerical experiments proved,
that the order of accuracy corresponds well to the order of the reconstruction for the
case of smooth data i.e. the scheme without reconstruction has order of accuracy
almost 1, the scheme with piecewise linear reconstruction almost 2, and finally the
scheme with quadratic reconstruction almost 3. On the other hand, the order of
accuracy drops to one as soon as there are moving discontinuities.

3. Applications in turbomachinery

The above mentioned numerical method has been applied to the solution of tran-
sonic flows in 2D turbine cascades. The compressible viscous flow is described by the
set of the Euler equations or the Favre averaged Navier-Stokes equations (RANS)
coupled with the TNT k−ω model of turbulence (see [10]). The turbulent transonic
flow through a 2D turbine cascade was solved using a hybrid mesh with quadrilater-
als around the profile, in the mixing region behind the outlet edge and at the outlet
part of boundary. The remaining part of the domain was filled up with triangles.
The total number of elements was 24087 with y+

1 < 1 (here y+
1 is the size of the first

cell near the wall in normal direction in wall coordinates, see [11]).
Figure 1 shows the isolines of the Mach number the detail of isolines of entropy

Fig. 1: Isolines of Mach number (above) and entropy (below) in 2D turbine cascade, second
(left) and third (right) order solution.
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Fig. 2: Isolines of Mach number for inviscid flow through a 3D turbine stator, WLSQR
method on the left (coarser mesh), TVD MC scheme on the right (finer mesh).

near the outlet edge obtained with the help of the second and the third order method
for the flow characterized by the outlet Mach number M2i = 0.906 and Reynolds
number Re = 848000. The isolines of entropy document clearly the difference be-
tween those two results - the second order scheme gives stationary solution whereas
the wake is unsteady for the third order solution.

Last example is the inviscid transonic flow through 3D turbine cascade. We
assume that the flow is periodic from blade to blade and therefore it is possible to
solve the flow field just in one period. The domain is discretized using a structured
mesh with hexahedral cells. The inflow and outflow conditions depend on the radius.
Figure 2 compares the distribution of Mach number obtained with the piecewise
linear WLSQR method with AUSM flux using a structured mesh with 100 × 20 ×
20 cell. It can be seen, that the solution is comparable to the reference solution
obtained with TVD MacCormack scheme with finer mesh having 200× 40× 40 cells.
Similar results were also obtained by J. Halama [6] using cell vertex Ni’s scheme with
Jameson’s artificial viscosity.

4. Conclusion

The article describes briefly the weighted least-square reconstruction procedure.
The proposed WLSQR reconstruction posses good stability even for the case of
transonic turbulent flows and is easily extensible to 3D case as well as to third order
of accuracy. The difference between second and third order scheme was demonstrated
for the case of 2D flows through a turbine. The third order scheme uses less numerical
dissipation and produces an unsteady solution in this case.
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