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BENCHMARK CALCULATIONS OF THE VARIABLE-DENSITY
FLOW IN POROUS MEDIA∗

Milan Hokr

1. Introduction

Variable-density (or density-driven, density-dependent) porous media flow prob-
lem is a coupled problem of water flow and solute transport: the water velocity as
a result of the flow problem is a parameter in the solute transport problem (standard
case) and the solution density as a parameter in the flow problem is dependent on
concentration, a result of the transport problem (specific for variable-density flow) [1].

Several standard benchmark problems are used for tests of numerical schemes and
simulation codes [2, 1]; they are mostly derived from real-world problems of seawater
intrusion and salt deposits. We propose a new benchmark problem, with a config-
uration derived from a case-study of groundwater flow and contaminant transport
in the former uranium leaching site Stráž pod Ralskem in the north of the Czech
Republic. The improvement is in parametrization of the intensity of the density
coupling, allowing to study the efficiency of numerical schemes in dependence on
physical parameters and also to find the limits for using simpler numerical schemes
for the variable-density flow problem.

2. Governing equations

The groundwater porous media flow with the Boussinesque approximation [2] is
governed by the Darcy’s law and the mass-balance (continuity) equation

u = (K(∇h + %r∇z)), κ
∂h

∂t
−∇ · u = q , (1)

where h is the pressure head, %r is the relative solution density (with respect to the
fresh water density), u is the Darcy velocity, q is the source/sink rate, K is the
hydraulic conductivity tensor, κ is the storativity coefficient, and z is the vertical
coordinate. The solute transport is governed by the advection-diffusion equation

∂ (nc)

∂t
+∇ · (uc)−∇ · (nD∇c) = qc0 , (2)

∗This work was supported with the subvention from the Grant Agency of the Czech Republic,
project code 102/05/P284.
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where c is the solute concentration, c0 is a concentration in the source/sink, D is the
hydrodynamic dispersion tensor [2], and n is the porosity.

The flow and transport equations are coupled through the Darcy velocity u =
K(∇h + %r∇z) and through the relative density, which is a function of the concen-
tration, in the simplest case %r(c) = 1 + c/%0, where %0 is the fresh water density.

3. Numerical schemes

We use two schemes (MHFEM and CVFEM) denoted by the name of the method
used for the flow problem. In both schemes, the advective transport problem is solved
by principally same upwind finite volumes (the only difference is the position of the
control volume – primal or dual mesh, see below). The hydrodynamic dispersion
term is not evaluated in neither of the schemes. The main motivation for the choice
of these numerical methods is the consistent discrete representation of velocity in
both the flow and transport schemes, preserving the local mass balance. Both the
methods use a discretization with trilateral prisms, which allow to use simpler mesh
topology with the horizontal triangulation and the prisms ordered to layers and
columns.

We use the computer codes (different for each method) developed before for
general groundwater problems, with the variable-density term recently added. The
codes have been successfully tested in several model and real-world problems.

3.1. Mixed-hybrid finite-element scheme

The MHFEM scheme is based on the weak formulation of the system of equa-
tions (1) on a system of elements e ∈ Eh with the additional constraint condition
of mass balance expressed by Lagrange multipliers [5]. Thus, there are three un-
known functions approximated with the following discrete spaces: the pressure head
h by piecewise constant functions (in elements), the Lagrange multipliers (physically
“pressure on inter-element interfaces”) by piecewise constant functions on sides, and
the velocity u by piecewise linear vector functions (lowest-order Raviart-Thomas
space). The exact formulation for the specific case of trilateral prismatic elements is
given in [5].

The approximation of the variable-density term results directly in the right-hand
side of the weak formulation of the first equation of (1), i.e.

∑
e∈Eh

{(Aue, ve)0,e − (pe,∇ · ve)0,e + 〈λe,νe · ve〉∂e∩Γh
} =

∑
e∈Eh

{〈pD, νe · ve〉∂e∩∂ΩD
+ 〈%rz, v

e · νe〉∂e − (%rz,∇ · ve)0,e}, (3)

where A = K−1, v are test functions from the same Raviart-Thomas space as u,
ν is the outward normal vector, (·, ·)0,e and 〈·, ·〉∂e are the L2 scalar products on
the element volume and the element boundary respectively, ∂ΩD is the Dirichlet
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boundary, and pD is the boundary value of p. In the discrete form, the last two
terms on the right-hand side are evaluated as a difference between the z coordinates
of the mass centre of the element and the mass centre of the particular side. The
time discretisation is implicit Euler, but in the calculations below we use a sequence
of steady states with variable parameters, which corresponds to a very large value of
the storativity κ.

The finite volume scheme for the transport problem is described in [3]; the cells
are geometrically identical with the elements of MHFEM flow problem solution, we
use the cell-centred approximation, the upwind weighting of the advective flux, and
the explicit time discretisation. The MHFEM discrete unknowns of the velocity
approximation are the fluxes through element sides, conservative with respect to the
element volumes, which are directly the input value for the discrete advection term.

3.2. Control-volume finite-element scheme

The CVFEM scheme is based on a combination of two ideas: understanding the
basic piecewise linear finite element solution with the triangular mesh as a finite
volume scheme on the dual mesh (control volumes around the mesh nodes) and
combining the FE scheme for 2D horizontal triangulation with the finite differences
for the vertical discretization. This technique including the variable-density term in
a mass-balance form is derived in [4].

The weak formulation, semidiscrete in the vertical direction, for a layer k is

(Kxy∇xyhk,∇xyφk)Ωk
−

(
1

∆zk

[
Kz

k+ 1
2

hk+1 − hk

∆zk+ 1
2

−Kz
k− 1

2

hk − hk−1

∆zk− 1
2

]
, φk

)

Ωk

= (qk, φk)Ωk
,

(4)
where Kxy and Kz are components of K in the x, y directions and z direction respec-
tively, ∇xy is the ∇ operator in the xy direction, ∆zk+ 1

2
is the vertical discretisation

step between the layers k and k + 1, (·, ·)Ωk
is the L2 scalar product in the layer k

(horizontal projection of problem domain Ω), φk is a piecewise linear test function.
The pressures and the concentrations are evaluated in the mesh nodes, the ve-

locity is represented as fluxes along mesh edges, the flux between nodes i and j is
uij = Aij(hi − hj), where A is the global stifness matrix, and hi, hj are the nodal
values of pressure head.

3.3. Variable-density coupling

The model uses the explicit time stepping, i.e. in each time step, the flow problem
is solved with the density distribution from the previous time step and then the
transport problem is solved with the updated velocity field. This approach requires
a small time step. The benchmark below is sensitive to change of the coupling
time step in the beginning of the time interval, but the sufficient time step is still
10 times larger than the stability condition given by the upwind scheme for the solute
transport. In the calculations, the time step is 40 days for the transport scheme and
360 days for the coupling iterations.
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Fig. 1: Configuration of the benchmark problem, position of boundary and initial condi-
tions.

Layer code Kx, Ky Kz n dz c
(10)
ini c

(30)
ini c

(50)
ini

m/day m/day 1 m g/l g/l g/l
TT4 – TT1 6 – 10 6 – 10 0.07 10–15 0 0 0
TM2 – TM1 0.4 0.1 0.07 12.5 0 0 0
LS2 – LS1 1e-4 4e-4 0.05 30 0 0 0
CF4 – CF3 0.5 0.25 0.08 12.5 10 25 40
CF2 0.05 0.025 0.04 7.5 10 20 30
CF1 0.5 0.25 0.08 7.5 10 25 40
CR2 – CR1 2 – 4 2 0.1 8–12 10 30 50

Tab. 1: Discretization and material parameters in the benchmark: horizontal and vertical
conductivity, porosity, layer thickness, and three variants of initial concentration. Some
lines represent multiple layers with slightly variable parameters.

4. Benchmark structure

4.1. Discretization and material parameters

The benchmark problem is built as geometrically simple domain representing the
most of the character of the real groundwater system in Stráž pod Ralskem. The
domain is 2000 m long (left–right), 190 m high and 40m wide (front–back), discretized
with prisms coupled in hexahedrons, each of the size 40 × 40 × dz (the thickness
varies). The vertical discretisation is by 14 layers with thickness dz according to the
real geological structure (Fig. 1, Tab. 1). We use the codes originated from the rock
names: “T” the top permeable part (aquifer), “L” the semi-isolator, “C” the bottom
part (aquifer).

4.2. Boundary conditions

The boundary conditions are Dirichlet (prescribed pressure head h) and homo-
geneous Neumann (zero flux u · ν = 0) for the flow problem (Fig. 1). The pressure
head difference between the bottom and the top part is a parameter dh, representing
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the intensity of the hydraulic force in comparison with the gravity force on denser
liquid (larger dh means less density-dependent coupling), dh = 1 m, 3m, and 10m.
For the solute advection problem, zero Dirichlet at the inflow boundary is prescribed
(fresh water c = 0), no boundary condition is prescribed at the outflow boundary,
and the position of zero flux boundaries is the same as for the flow problem.

4.3. Initial conditions

The initial distribution of head and velocity (flow problem) is given by the bound-
ary conditions above (constant-density steady state). As the initial distribution of
concentration (transport problem), we use a simple representation of a contamination
plum in the bottom aquifer, with zero concentration elsewhere (Fig. 1).

The contamination plum is defined by constant concentration for each layer, with
horizontal dimension (length) 280 m and position 200m from the left, with vertical
inhomogeneity given by field measurements. We use three variants (referred by the
most bottom value) in Tab.1. They are the second parameter of density-coupling
(the higher is the concentration, the more is the density influence).

5. Results

We observe the behaviour of the system in the time interval of 200 years. During
this interval the contamination in the most permeable layers leaves the domain, but
the slowly moving contamination in the less permeable layers moves to the central
and the right part of the domain and the transfer upwards is well visible (Fig. 2).

The objective of the numerical benchmark study is to compare two different ap-
proximations (equations coupled/uncoupled), two different numerical schemes, and
mesh refinement. The results are expressed by integral values of concentration over
each layer of the discretization (total mass in a layer). This technique is kept from
previous use of the benchmark for hydrogeological parametric studies.

5.1. Basic study of parameter influence

Table 2 compares the total transfer to the top aquifer for the combinations of the
three values of the piezometric head difference dh and the three variants of initial
contamination, calculated with MHFEM scheme. For each combination, we also
compare the variable-density and the constant-density model formulation.

For the head difference dh = 1 m, the hydraulic force is small and the gravity force
and the density-driven process dominate, so much that the mass transfer upwards
partly decreases with rising concentration. For the head difference dh = 3 m and
dh = 10 m, the hydraulic force becomes more significant but the density effect keeps
important. The smallest influence and the weakest coupling is as expected for dh =
10 m and c = 10 g/l. The basic analysis in Tab. 2 documents the necessity of the
variable-density model and a good sensitivity on the density approximation required
for variable-density benchmarks.
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Initial dh = 1 dh = 3 dh = 10
conc. var.dens. const.dens. var.dens. const.dens. var.dens. const.dens.

g/l ton ton ton ton ton ton
10 0.165 0.568 5.07 11.897 67.883 100.643
30 0.105 1.419 6.181 29.578 116.717 251.165
50 0.117 2.269 7.058 47.26 156.037 401.688

Tab. 2: Evaluation of the parameter influence and comparison of the variable-density
versus the constant-density approximation, by means of a single value of the total mass
transfer to the upper aquifer (subdomain).

dh = 1 c = 50 dh = 3 c = 30 dh = 10 c = 10
orig ref1 ref2 orig ref1 ref2 orig ref1 ref2

top 0.828 0.028 1E-04 6.645 1.091 0.184 75.55 66.72 48.11
isolator 33.46 14.13 3.579 62.04 31.01 13.58 105.2 138.7 88.78
bottom 167.1 141.2 57.82 120.4 125.1 56.9 24.58 52.45 54.23

Tab. 3: Study of the mesh refinement in z direction, results expressed by three values of
the total mass in the bottom, middle, and top part of the domain.

5.2. Mesh refinement

We narrow the study to the following three combinations representing the weak-
est, medium and the strongest density coupling respectively: (a) dh = 10 m, c =
10 g/l, (b) dh = 3 m, c = 30 g/l, and (c) dh = 1 m, c = 50 g/l. The mesh is refined in
the z direction, i.e. each layer in Tab. 1 is divided into two equal.

The results of CVFEM calculation1 expressed as mass sums in each of the three
parts are in Tab. 3. The density influence is similar in all the original and the refined
meshes, but there is no visible convergence. Generally, finer mesh lead to smaller
transfer to upper layers, which can be caused by smaller numerical diffusion. On the
other hand, the overall trend visualised by concentration field is similar for all dis-
cretizations (Fig. 2). The difficulty for comparing the MHFEM and CVFEM schemes
is in the different position of unknowns with respect to the material parameters in
the layers. As examples of secondary importance, the three corresponding values in
Tabs. 2 and 3 are less different than with respect to the mesh refinement.

6. Conclusion

The results confirm the great enough sensitivity of the defined benchmark on the
variable-density coupling. Moreover, the chosen parameters well cover the interval
between the weak and strong coupling.

1The refinements for MHFEM were not evaluated, because the code uses external solver of the
system of linear algebraic equations, which leads to very slow calculation in the iterations. We
currently work on a more efficient implementation.
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Fig. 2: Isolines of concentration in the final time 200 years for the smallest (dh = 10m,
c = 10 g/l, left) and the largest (dh = 1m, c = 50 g/l, right) density influence. The isoline
values are (from outside) 0.1, 0.5, 1, and 2 g/l.

On the other hand, the problem configuration and the used schemes do not
allow to obtain mesh independent results. The reason can be that the influence of
inhomogeneity inside the three subdomains and the changes of the numerical diffusion
related to the mesh refinements amplify each other. The use of integral values also
complicates the interpretation: in the bottom subdomain, there is a strong influence
by escape of the mass from the domain (different in each layer of the mesh) and in the
top subdomain, the value is inappropriately sensitive to the numerical approximation
because it is a very small fraction of the original mass (large error relative to the
local value, but smaller relative to the maximum or average value in the domain),
e.g. in the case of the top layer value for dh = 1 m and c = 50 g/l).

Here the solutions and evaluation criteria sufficient for the hydrogeological studies
are not enough accurate for more exact statements on the numerical properties. We
assume that an identical configuration without the internal material inhomogeneity
and finer meshes in both the vertical and the horizontal directions, planned for future
work, would give a better understanding of the solution behaviour.
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