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ON SOLVING NON-SYMMETRIC SADDLE-POINT SYSTEMS
ARISING FROM FICTITIOUS DOMAIN APPROACHES∗

Radek Kučera, Tomáš Kozubek, Jaroslav Haslinger

1. Introduction

We propose a fast method for finding a pair (u, λ) ∈ Rn×Rm that solves a linear
system of algebraic equations called the (generalized) saddle-point system :

(
A B>

1

B2 0

) (
u
λ

)
=

(
f
g

)
, (1)

where the diagonal block A is an (n×n) matrix, the off-diagonal blocks B1 and B2 are
(m× n) matrices with full row-rank and vectors f , g are of order n, m, respectively.

Our contribution is inspired by a class of saddle-point systems arising from ficti-
tious domain formulations of PDEs [3, 4]. Therefore we will be interested especially
in systems (1) with n large, A singular and B1, B2 sparse. Moreover, we will assume
that m is much smaller than n and that the defect l of A, i.e. l = n − rank A, is
much smaller than m.

There are several basic approaches used for solving (1); see e.g. [1]. Due to the
structure of our matrices, we pay our attention to the class of methods that are based
on the Schur complement reduction. Their key idea consists in eliminating the first
unknown u. This leads, in the case of non-singular A, to the reduced system for the
second unknown λ. The matrix of this system is the (negative) Schur complement
−S = B2A

−1B>
1 . If this system is solved by an iterative method, we do not need to

form S explicitly since only the matrix-vector products with S are needed.
The situation is not so easy if A is singular. In this case, the first unknown u

can not be completely eliminated from (1). The Schur complement reduction leads
now to another saddle-point system for λ and a new unknown, say α, that corre-
sponds to the null-space of A. Fortunately after applying orthogonal projectors, we
obtain an equation only in terms of λ. As our original saddle-point system (1) is
non-symmetric, this equation can be solved by a projected Krylov method for non-
symmetric matrices. In our numerical tests, we will use the projected variant of the
BiCGSTAB algorithm.

∗Supported by the National Program of Research ”Information Society” under project
1ET400300415 and by the grant IAA1075402 of the Grant Agency of the Czech Academy of Sci-
ences.
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The presented method generalizes ideas used in the algebraic description of FETI
domain decomposition methods [2], in which A is symmetric, positive semidefinite
and B1 = B2.

2. A new variant of the fictitious domain method

Let Ω be a bounded domain in Rd, d = 2, 3 with the Lipschitz boundary ∂Ω, which
is split into three non-overlapping parts ΓD, ΓN and ΓG (see Figure 1). We will be
concerned with the following abstract class of mixed boundary value problems:

Lu = f in Ω,

u = gD on ΓD,

∂u

∂νL
= gN on ΓN ,

∂u

∂νL
+ βu = gG on ΓG,





(P)

where L is an elliptic operator of the second order, f ∈ L2(Ω), gD ∈ H1/2(ΓD),
gN ∈ L2(ΓN), gG ∈ L2(ΓG), β is a constant and ∂

∂νL
denotes the normal derivative

on ∂Ω. We assume that (P) has a unique solution u.

Any fictitious domain (FD) formulation of PDEs transforms the original problem
defined in a domain Ω to a new one solved in a simple shaped domain Ω̂ (e.g. a box),
which contains Ω. Its solution will be denoted by û. The standard boundary La-
grange multiplier FD approach (see [3]) gives rise to a singularity of û located on the
boundary ∂Ω. This fact can result in an intrinsic error of the computed solution.
Therefore we recommend to move this singularity further of ∂Ω, i.e. to enforce the
prescribed boundary conditions by new control variables defined not on ∂Ω but on an

Fig. 1: Geometry. Fig. 2: Auxiliary boundary ∂Ω̃.
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auxiliary boundary ∂Ω̃ = Γ̃D
⋃

Γ̃N
⋃

Γ̃G obtained by shifting the Bezièr approxima-
tion of ∂Ω = ΓD

⋃
ΓN

⋃
ΓG in the outer normal direction with a step δ (see Fig. 2).

This approach improves significantly the error of the computed FD solution and the
rates of convergence.

Let us introduce boundary control variables λ̃D ∈ Λ̃D := H−1/2(Γ̃D), λ̃N ∈ Λ̃N :=
H−1/2(Γ̃N) and λ̃G ∈ Λ̃G := H−1/2(Γ̃G) defined on Γ̃D, Γ̃N and Γ̃G, respectively.
Instead of (P), we will solve the following problem:

Find (û, λ̃D, λ̃N , λ̃G) ∈ V × Λ̃D × Λ̃N × Λ̃G such that

a(û, v̂) + b̃D(λ̃D, τ̃Dv̂) + b̃N(λ̃N , τ̃N v̂) + b̃G(λ̃G, τ̃Gv̂) = (f̂ , v̂)0,Ω̂ ∀v̂ ∈ V,

bD(µD, τDû) = bD(µD, gD) ∀µD ∈ ΛD,

bN(µN , ∂û
∂νL

) = bN(µN , gN) ∀µN ∈ ΛN ,

bG(µG, ∂û
∂νL

+ βτGû) = bG(µG, gG) ∀µG ∈ ΛG,





(P̂)

where a : V × V → R1 is a continuous, coercive bilinear form resulting from the
weak formulation of the first equation in (P), f̂ is an extension of f from Ω to Ω̂,
τD : V 7→ H1/2(ΓD), τG : V 7→ H1/2(ΓG), τ̃D : V 7→ H1/2(Γ̃D), τ̃N : V 7→ H1/2(Γ̃N)
and τ̃G : V 7→ H1/2(Γ̃G) stand for the trace mappings, respectively, and the bi-
linear forms bD, bN , bG and b̃D, b̃N , b̃G denote the corresponding duality pairings.
Finally, ΛD := H−1/2(ΓD), ΛN := H1/2(ΓN), ΛG := H1/2(ΓG) and V is a closed
subspace of H1(Ω̂). Typical choices for V are: H1(Ω̂), H1

0 (Ω̂), or H1
P (Ω̂) = {v|v ∈

H1(Ω̂), v is periodic on ∂Ω̂} if Ω̂ is a cartesian product of intervals.
A discretization of (P̂) based on a mixed finite element method leads to a saddle-

point system (1). One can use fairly structured meshes in Ω̂ ensuring favorable
properties of the stiffness matrix A. Therefore actions of a generalized inverse A† (or
inverse A−1) are cheaply computable and, in addition, the null-space of A and A>

can be easily identified [6]. The geometry of ∂Ω together with the type of boundary
conditions are characterized by B1, B2, which are highly sparse.

3. Algorithms

Denote N(B|V) the null-space and R(B|V) the range-space of an (m×n) matrix B
in a subspace V ⊂ Rn. If V = Rn, we simply write N(B) := N(B|Rn) and R(B) :=
R(B|Rn). The system (1) has a unique solution iff [5]

N(A) ∩ N(B2) = {0}, (2)

R(A|N(B2)) ∩ R(B>
1 ) = {0}. (3)

Suppose that A is singular with the defect l = dimN(A), l ≥ 1 and consider
(n × l) matrices N and M whose columns span the null-space N(A) and N(A>),
respectively. Finally, denote by A† a generalized inverse to A. In what follows we
will consider an arbitrary but fixed selections of A†, N and M .
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The generalized Schur complement of A in (1) is defined by

S =

(
−B2A

†B>
1 B2N

M>B>
1 0

)
.

Notice that S is invertible provided that (2), (3) are satisfied. The following theorem
describes the Schur complement reduction.

Theorem 3.1 [5] Assume that both B1, B2 have full row-ranks and that (2), (3) are
satisfied. Then the second component λ of a solution to (1) is the first component of
a solution to (

F G>
1

G2 0

) (
λ
α

)
=

(
d
e

)
, (4)

where F := B2A
†B>

1 , G1 := −N>B>
2 , G2 := −M>B>

1 , d := B2A
†f − g and e :=

−M>f. The first component u of a solution to (1) is given by the formulae

u = A†(f −B>
1 λ) + Nα.

Let us point out that (4) is formally the same saddle-point system as (1), but its
size is considerably smaller. We will modify the new system (4) by two orthogonal
projectors

P1 := I −G>
1 (G1G

>
1 )−1G1, P2 := I −G>

2 (G2G
>
2 )−1G2,

on N(G1), N(G2), respectively. Our method is based on the following results.

Lemma 3.1 [5] The linear operator P1F : N(G2) 7→ N(G1) is invertible.

Theorem 3.2 [5] Let λN ∈ N(G2), λR ∈ R(G>
2 ). Then λ = λN + λR is the first

component of a solution to (4) iff

λR = G>
2 (G2G

>
2 )−1e

and
P1FλN = P1(d− FλR).

The second component α is given by

α = (G1G
>
1 )−1G1(d− Fλ).

Let us summarize the previous results in the algorithm scheme. It turns out to
be reasonable to form and store the (l×m) matrices G1, G2 and the (l× l) matrices
H1 := (G1G

>
1 )−1, H2 := (G2G

>
2 )−1 because l is small. On the other hand, the

(m×m) matrices F , P1 and P2 are not assembled explicitly.
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Algorithm: Projected Schur Complement Method (PSCM)

Step 1.a: Assemble G1 = −N>B>
2 , G2 = −M>B>

1 , d = B2A
†f − g and e = −M>f .

Step 1.b: Assemble H1 = (G1G
>
1 )−1 and H2 = (G2G

>
2 )−1.

Step 1.c: Assemble λR = G>
2 H2e.

Step 1.d: Assemble d̃ = P1(d− FλR).

Step 1.e: Solve the equation P1FλN = d̃ on N(G2).
Step 1.f: Compute λ = λN + λR.
Step 2: Compute α = H1G1(d− Fλ).
Step 3: Compute u = A†(f −B>

1 λ) + Nα.

The heart of the algorithm consists in Step 1.e. Its solution can be computed by
a projected Krylov subspace method. The projected BiCGSTAB algorithm [5] can
be derived from the non-projected one [7] by choosing an initial iterate λ0

N in N(G2),
projecting the initial residual in N(G2) and replacing the operator P1F by its pro-
jected version P2P1F . Finally, let us point out that convergence of the projected
BiCGSTAB algorithm can be accelerated by a reorthogonalization procedure or by
a multigrid technique.

4. Numerical experiments

We illustrate the efficiency of the presented method on a model problem (P).
Let L = −∆, Ω = {(x, y) ∈ R2| (x− 0.5)2/0.42 + (y − 0.5)2/0.22 < 1} and consider
the mixed Dirichlet-Neumann boundary conditions with ΓD and ΓN corresponding
to the upper and lower half-part of the ellipse ∂Ω, respectively. Let us choose the
right hand-sides f , gD and gN in (P) appropriately to the exact solution uex(x, y) =
100 ((x− 0.5)3 − (y − 0.5)3). In the FD formulation (P̂), we take Ω̂ ≡ (0, 1)× (0, 1)
and V = H1

P (Ω̂). This space is approximated by piecewise bilinear functions defined
on a rectangulation of Ω̂ with a stepsize h. The spaces ΛD, ΛN and their tilded
counterparts are approximated by piecewise constant functions defined on partitions
of polygonal approximations of ∂Ω and ∂Ω̃.

In tables below, we report the errors of the approximate solution uh with respect
to the stepsize h in the indicated norms together with the number of primal (n) and
control (m) variables, the number of BiCGSTAB iterations and the computational
time.

Tables 1 and 2 summarize results obtained by a classical FD method with bound-
ary Lagrange multipliers on ∂Ω. The BiCGSTAB iterations are accelerated by
biorthogonalization, when B2 in (1) is replaced by (B2B1)

−1B2.
From Tables 3 and 4 one can see that the errors are significantly smaller, when

the auxiliary boundary ∂Ω̃ (with δ = 8h) is used. Here the BiCGSTAB iterations
are accelerated by a multigrid strategy.
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Step h n/m Iters. C.time[s] δL2(Ω) δH1(Ω) δL2(∂Ω)

1/128 16641/40 15 0.188 2.3637e-002 2.1633e+000 9.0989e-002
1/256 66049/70 24 1.36 1.2831e-002 1.4736e+000 4.9341e-002
1/512 263169/124 32 14.24 7.1820e-003 9.9318e-001 2.7571e-002
1/1024 1050625/220 46 93.11 3.9157e-003 7.1732e-001 1.5345e-002

Tab. 1: Convergence without ∂Ω̃.

Step h n/m Iters. C.time[s] δL2(Ω) δH1(Ω) δL2(∂Ω)

1/128 16641/40 9 0.11 2.3386e-002 2.1550e+000 8.9462e-002
1/256 66049/70 12 0.735 1.2808e-002 1.4734e+000 4.9238e-002
1/512 263169/124 22 10.03 7.1183e-003 9.9261e-001 2.7336e-002
1/1024 1050625/220 30 60.23 3.8315e-003 7.1694e-001 1.5064e-002

Tab. 2: Convergence without ∂Ω̃, biorthogonalization.

Step h n/m Iters. C.time[s] δL2(Ω) δH1(Ω) δL2(∂Ω)

1/128 16641/40 25 0.281 5.3431e-004 2.4639e-002 1.8577e-003
1/256 66049/70 39 2.218 1.4133e-004 1.2407e-002 5.7929e-004
1/512 263169/124 99 42.22 4.3848e-005 7.0675e-003 2.2314e-004
1/1024 1050625/220 200 371.5 1.2541e-005 3.6767e-003 6.9726e-005

Tab. 3: Convergence with ∂Ω̃.

Step h n/m Iters. C.time[s] δL2(Ω) δH1(Ω) δL2(∂Ω)

1/128 16641/40 16 0.266 7.3218e-004 2.8843e-002 2.3947e-003
1/256 66049/68 20 1.39 1.3533e-004 1.1927e-002 5.0063e-004
1/512 263169/124 33 16.37 3.3349e-005 5.9480e-003 1.4539e-004
1/1024 1050625/220 38 94.25 1.3469e-005 3.7054e-003 5.2209e-005

Tab. 4: Convergence with ∂Ω̃, multigrid.
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