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RESONANCE BEHAVIOUR OF THE SPHERICAL
PENDULUM DAMPER∗

Cyril Fischer, Jǐŕı Náprstek

Abstract

The pendulum damper modelled as a two degree of freedom strongly non-linear
auto-parametric system is investigated using two approximate differential systems.
Uni-directional harmonic external excitation at the suspension point is considered.
Semi-trivial solutions and their stability are analyzed. The thorough analysis of the
non-linear system using less simplification than it is used in the paper [2] is performed.
Both approaches are compared and conclusions are drawn.

1. Introduction

Many structures encountered in the civil and me-
chanical engineering are equipped with various devices
for reducing dynamic response component due to ex-
ternal excitations. Among other low cost passive sys-
tems the pendulum dampers are still very popular for
their reliability and simple maintenance, see e.g. [1].
However the dynamic behaviour of such a pendulum
is significantly more complex than it is supposed by
a widely used simple linear SDOF model working in
the (xz) vertical plane only, see Figure 1. The conven-
tional linear model is satisfactory only if the kinematic
excitation a(t) introduced at the suspension point is
very small in amplitude and if its frequency remains
outside a resonance frequency domain.

2. Mechanical energy balance

Fig. 1: Sketch of the pendu-
lum and coordinate systems
used.

Let us consider the kinematic excitation a(t) at the suspension point in the x di-
rection only. The natural choice of the coordinate system suitable for description
of the movement of the pendulum would be the spherical coordinate system de-
scribed by the angles θ (in the xz plane), ϕ (diversion from the xz plane) and radius
r = const (see Fig. 1). However, such a choice does not allow to consider the angle
ϕ as a perturbation of the pure planar motion described by θ, r only. Indeed, even
for a small transversal motion (in the y direction), the full range ϕ ∈ 〈0, 2π) occurs.
Thus the mechanical energy balance has to be written in the Cartesian coordinates
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(ξ(t) = ξ, ζ(t) = ζ, η(t) = η). The kinetic and potential energies T, V are described
by: T = m(ξ̇2 + ζ̇2 + η̇2 + 2ȧξ̇ + ȧ2)/2, (1)

V = mgη (2)

and the geometric constraint of the suspension is expressed as:

ξ2 + ζ2 + (1− η)2 = r2, (3)

where m, r - mass and suspension length of the pendulum
a = a(t) - kinematic excitation at the suspension point

From the relation between the spherical and Cartesian coordinates and the geometric
constraint (3) it follows:

η = r(1− cos θ) ; η̇2 = r2θ̇2 sin2 θ ; sin θ =
%

r
, where %2 = ξ2 + ζ2. (4)

A hypothesis that the amplitude of θ(t) is small makes acceptable an approximation:

θ = arcsin
%

r
≈ %

r
+

1

6

%3

r3
⇒ θ̇2 =

%̇2

r2

(
1 +

%2

2r2

)2

. (5)

The equations of the motion follows from the Lagrangian principle:

∂t(∂χ̇T )− ∂χT + ∂χV = 0 , for χ ∈ {ξ, ϕ}. (6)

Using (1), (2), (4), (5) and (6) an approximate Lagrangian system in the x, y coordi-
nates for the components ξ, ζ on the level O(ε6); ε2 = (ξ2 + ζ2)/r2 can be obtained.
The approximate linear damping with the relative scale ωb equivalent in both com-
ponents ξ, ζ will be included, giving the differential system:

ξ̈ + 2ωbξ̇ + ξ

(
1 +

ξ2 + ζ2

2r2

) 
ω2

0 +
((ξ2 + ζ2)

q
)
2

4r4
+

(
1 + ξ2+ζ2

2r2

)
(ξ2 + ζ2)

q q

2r2


=−ä,

ζ̈ + 2ωbζ̇ + ζ

(
1 +

ξ2 + ζ2

2r2

) 
ω2

0 +
((ξ2 + ζ2)

q
)
2

4r4
+

(
1 + ξ2+ζ2

2r2

)
(ξ2 + ζ2)

q q

2r2


= 0,

(7)

where ω2
0 = g/r. Taking into account the additional simplification,

(
1 +

(ξ2 + ζ2)

2r2

)2

≈ 1,
χ

r4

(
1 +

(ξ2 + ζ2)

2r2

) (
(ξ2 + ζ2)

q )2 ≈ 0 for χ ∈ {ξ, ζ}, (8)

the simplified form of the differential system can be obtained (see [2]):

ξ̈ +
1

2r2
ξ(ξ2 + ζ2)

q q
+ 2ωbξ̇ + ω2

0(ξ +
1

2r2
ξ(ξ2 + ζ2)) = −ä,

ζ̈ +
1

2r2
ζ(ξ2 + ζ2)

q q
+ 2ωbζ̇ + ω2

0(ζ +
1

2r2
ζ(ξ2 + ζ2)) = 0.

(9)

In both simplified and complete systems, neglecting the non-linear terms will
result in two independent equations. Each of the components ξ, ζ can be considered
as arbitrarily small and independently and continuously limited to zero. Therefore
the system is auto-parametric and respective procedures can be applied [4].

78



3. Semi-trivial solution

To investigate the semi-trivial solution let us substitute ζ = 0 into Eqs (7), (9)
and specify the excitation to be harmonic (see [3] for details): a(t) = a0 sin ωt.

The semi-trivial solution of Eqs (7) or (9) should be searched in the form:

ξ0 = ac cos ωt + as sin ωt ; ζ0 = 0. (10)

The coefficients ac, as in general should be considered as functions of time: ac =
ac(t), as = as(t). If a stationary solution exists for a given excitation frequency ω,
then ac, as should converge to constants for increasing t → ∞. In such a case the
coefficients ac, as can be considered constant. Let us substitute (10) into Eq. (7)
and (9), multiply them by sin(ωt) or cos(ωt) and integrate the resulting expressions
over the interval t ∈ (0, 2π/ω). The described operation (so called harmonic balance
operation) results for each of the equations (7) or (9) in an algebraic system consisting
of two equations. For the simplified case of Eq. (9) it is:

ac

(
(ω2

0 − ω2) +
1

2r2

(
3

4
ω2

0 − ω2
)

(a2
c + a2

s)
)

+ 2ωωb · as = 0,

as

(
(ω2

0 − ω2) +
1

2r2

(
3

4
ω2

0 − ω2
)

(a2
c + a2

s)
)
− 2ωωb · ac = a0 · ω2.

(11)

If both equations are raised to the second power and summed together, then, finally,
the equation for the amplitude of the response arises (R2

0 = a2
c + a2

s):

R2
0


4ω2ω2

b +

(
(ω2 − ω2

0) +
R2

0

2r2

(
ω2 − 3

4
ω2

0

))2

− 4ω4a2

0 = 0. (12)

Applying the same procedure to the original system (7), one can get a similar equa-
tion for the amplitude:

R2
0


4ω2ω2

b +

(
(ω2 − ω2

0) +
R2

0

2r2

(
ω2 − 3

4
ω2

0

)
+ ω2 R4

0

8r4

(
3 +

5R2
0

8r2

))2

− ω4a2

0 = 0.

(13)
The Eqs (12) and (13) are known as resonance curves. They express the depen-

dence of the amplitude R2
0 of the solution (response) on the excitation frequency.

Both curves are demonstrated in Figure 2. Depending on the parameters a0, ωb

and ω, this relations can lose their unique character in some intervals of ω.

4. Perturbation of the semi-trivial solution

To assess the stability of the semi-trivial solution we will endow the semi-trivial
solution (10) with small (in the meaning of a norm) perturbations u, v in both coor-
dinates:

ξ = ξ0 + u, u = u(t) = uc cos ωt + us sin ωt.
ζ = 0 + v, v = v(t) = vc cos ωt + vs sin ωt.

(14)
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Fig. 2: Resonance curves (thick lines a, a′) and stability limits (thin lines b, b′, c, c′) of the
semi-trivial solution computed using the original (solid lines a, b, c) and simplified (dashed
lines a′, b′, c′) equations.
Curves (b, b′): in (xz) plane – ξ stability limit, Eqs (16), (18).
Curves (c, c′): out of (xz) plane – ζ stability limit, Eqs (17), (19).
Interval i corresponds to the non-stability interval of the original formulas (16–17).
Interval i’ corresponds to the non-stability interval of the simplified formulas (18–19).
Values used: r = 1, g = 9.81, ωb = 0.075, a0 = 0.05.

As the perturbations are expected to be small, only the first powers of u, v and
their derivatives are kept after inserting expressions (14) into Eqs (7) and (9). After
the harmonic balance operation and some algebra one obtains two linear algebraic
systems for uc, us and vc, vs. For the simplified case (9) it reads:

(
w1 w2

w3 w1

) (
uc

us

)
= 0 ;

(
z1 z2

z3 z1

) (
vc

vs

)
= 0 ; (15)

where it has been denoted:

w1 =
[
2ωωb + 1

4r2 Ω1acas

]
; w2 =

[
2ωωb + 1

4r2 Ω1acas

]
; w3 =

[
1

4r2 Ω1acas − 2ωωb

]

z1 =
[
Ω2 + 1

8r2 (Ω1a
2
c + Ω3a

2
s)

]
; z2 =

[
1

4r2 Ω4acas + 2ωωb

]
; z3 =

[
1

4r2 Ω4acas − 2ωωb

]

Ω1 = 3ω2
0 − 4ω2; Ω2 = ω2

0 − ω2; Ω3 = ω2
0 + 4ω2; Ω4 = ω2

0 − 4ω2.

The both systems (15) are homogeneous and independent of excitation amplitude.
Consequently to receive a non-trivial solution for uc, us or vc, vs, the determinant of
the systems (15) must equal zero. This rationale leads to two independent equations:

1

2r2
Ω1R

2
0

(
Ω2 +

3

32r2
Ω1R

2
0

)
+ Ω2

2 + 4ω2ω2
b = 0, (16)

1

2r2
R2

0

(
ω0Ω2 +

1

32r2
Ω1Ω3R

2
0

)
+ Ω2

2 + 4ω2ω2
b = 0. (17)
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Similar equations can also be formulated for the original system (7)

175ω4R12
0

4096r12
+

45ω4R10
0

128r10
+

5ω2 (56ω2 − 15ω2
0) R8

0

256r8
+

ω2 (17ω2 − 14ω2
0) R6

0

8r6
+

+
3

(
−3ω2Ω2 + (1

4
Ω1)

2
)
R4

0

4r4
+

Ω2Ω1R
2
0

2r2
+ Ω2

2 + 4ω2ω2
b = 0,

(18)

− 5ω4R12
0

4096r12
− ω4R10

0

64r10
− ω2 (24ω2 + ω2

0) R8
0

256r8
− ω2 (3ω2 + ω2

0) R6
0

16r6
+

+
ω2

0 (3ω2
0 − 8ω2) R4

0

64r4
+

ω2
0Ω2R

2
0

2r2
+ Ω2

2 + 4ω2ω2
b = 0.

(19)

Eqs (16)–(17) and (18)–(19) can be interpreted as limits dividing the plane (R2
0, ω)

into the stable and unstable domains. For given parameters r, ωb, a0 the unstable
interval of excitation frequency is defined by the position of the intersections of the
resonance curve with the corresponding stability limits (points E, F in Figure 2).

5. Post-critical response in the resonance domain

Let us try to assume a more general expressions as the basic solution:

ξ(t) = ac(t) cos ωt + as(t) sin ωt ; ζ(t) = bc(t) cos ωt + bs(t) sin ωt. (20)

Increasing the number of unknown functions to four, one can exploit a possibility
to formulate two arbitrarily selectable additional conditions. Then the following
expressions for the first derivatives of the general solution (20) can be stated:

ξ̇(t) = −acω sin ωt + asω cos ωt ; ζ̇(t) = −bcω sin ωt + bsω cos ωt, (21)

where ac = ac(t), as = as(t), bc = bc(t), bs = bs(t). Let us insert expressions (20), (21)
in the simplified differential system (9) and apply the operation of the harmonic
balance once again. After dull routine work one obtain the differential system for
amplitudes ac, as, bc, bs, whose system matrix A depends only on ac, as, bc, bs, ω:

A




ȧc

ȧs

ḃc

ḃs



=−1

2




ac(8Ω2r
2 + R2

AΩ1) + 2bsS
2
AΩ4 + 4asωbωr2

as(8Ω2r
2 + R2

AΩ1) + 2bcS
2
AΩ4 + 4acωbωr2 +8ω2a0r

2

bc(8Ω2r
2 + R2

AΩ1) + 2asS
2
AΩ4 + 4bsωbωr2

bs(8Ω2r
2 + R2

AΩ1) + 2acS
2
AΩ4 + 4bcωbωr2


 , (22)

where it has been denoted

R2
A = a2

c + a2
s + b2

c + b2
s ; S2

A = asbc − acbs. (23)

The explicit solution of Eqs (22) is generally not possible in the resonance interval.
However, from the numerical analysis can be seen that at least part of the resonance
interval can be described by a steady state solution. The other part of the resonance
interval, where the transient solution takes place, will not be discussed here.
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The steady state response is characterized by constant amplitudes (for t → ∞).
This means that the time derivatives ȧc, ȧs, ḃc, ḃs vanish for large t. The left-hand
side of Eq. (22) vanishes and Eq. (22) reduces itself into the algebraic system. After
tedious work, the relation between R2

A, S2
A and ω can be deduced from Eq. (22),

where the left hand side was substituted by the zero vector:

R2
A

(
(8Ω2r

2 + R2
AΩ1)

2
+ 4 (4ω2ω2

br
4 + S4

AΩ2
4)

)
− 8S4

A (8Ω2r
2 + R2

AΩ1) Ω4 = 64r4a2
0ω

4,

S2
A

(
2R2

A (8Ω2r
2 + R2

AΩ1) Ω4 − (8Ω2r
2 + R2

AΩ1)
2 − 16ω2ω2

br
4 − 4S4

AΩ2
4

)
= 0.

(24)

Parameter R2
A can be interpreted as a generalized total or effective amplitude includ-

ing both components (20). As regards the S2
A, it represents a certain characteristics

of their phase shift. If S2
A = 0 the vectors [ac, as], [bc, bs] are co-linear. It represents

the motion in the vertical plane. Indeed, putting S2
A = 0 into the first equation

of (24) one obtains the formula for the semi-trivial resonance curve (12). The case
S2

A 6= 0 implies motion out of the vertical plane. For this case, an analysis of the
system (24) was carried out, but it is beyond the scope of this contribution.

Using the procedure described above, a similar relation was also derived for the
original system (7). The resulting formulas are rather complicated which fact makes
an analysis of the individual components hardly feasible. On the other hand, it
brings no new qualitative results comparing to the simplified version (24).

6. Conclusion

Analytical and numerical investigations have shown that the widely used linear
model of the damping pendulum is acceptable only in a very limited extent of para-
meters concerning pendulum characteristics and excitation properties. In the case of
a harmonic kinematic external excitation at the suspension point, it is necessary to
thoroughly investigate the dynamic stability limits and post-critical behaviour. To
investigate the stability of the semi-trivial solution, it is necessary to use the approx-
imate equations in the Cartesian coordinates. Using the harmonic balance method
the resonance curves of a planar stationary response as well as the stability lim-
its of the semi-trivial solution in both response components have been determined.
Omitting the simplification (8) results in very complicated formulas and brings only
quantitative specification.
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