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DISCONTINUOUS GALERKIN METHOD FOR THE SIMULATION
OF 3D VISCOUS COMPRESSIBLE FLOWS∗

Martin Hoĺık, Vı́t Doleǰśı

1. Introduction

Our goal is to solve an unsteady viscous compressible flow which is described
by the system of the Navier-Stokes equations. Our aim is to develop a sufficiently
efficient, robust and accurate numerical method.

It is promising to use the discontinuous Galerkin method (DGM), which is based
on a piecewise polynomial but discontinuous approximation, which is suitable for
problems with discontinuities. We prefer the discontinuous Galerkin finite element
(DGFE) method with symmetric, nonsymmetric and/or incomplete variant of stabi-
lization and interior and boundary penalty terms. These schemes are usually denoted
as SIPG, NIPG and IIPG, respectively.

The most usual approach for the time discretization is method of lines. Explicit
methods such as the Runge-Kutta methods are very popular for their simplicity and
a high order of accuracy. However, they suffer from strong time step restrictions.
Fully implicit schemes lead to a system of highly nonlinear algebraic equations at
each time step whose solution is complicated. To avoid this disadvantage we employ
a semi-implicit method for the time discretization, which is based on a suitable
linearization of the fluxes. The linear terms are treated implicitly and the nonlinear
ones explicitly.

2. Compressible flow problem

For the description of motion of a viscous compressible flow we use the system of
Navier-Stokes equations.

Let Ω ⊂ IR3 be a bounded domain and T > 0. We set QT = Ω×(0, T ) and by ∂Ω
we denote the boundary of Ω which consists of several disjoint parts. We distinguish
inlet ΓI , outlet ΓO and impermeable walls ΓW on ∂Ω. Using the Fourier law and
some relations from physics, we can write these equations in the dimensionless form

∂w

∂t
+∇ · ~f(w) =

3∑

s=1

∂

∂xs

(
3∑

k=1

Ksk(w)
∂w

∂xk

)
in QT , (1)

∗This work is a part of the research project MSM 0021620839 financed by the Ministry of
Education of the Czech Republic and was partly supported by grant No. 316/2006/B-MAT/MFF
of the Grant Agency of the Charles University Prague.
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where
w = (w1, . . . , w5)

T = (ρ, ρv1, ρv2, ρv3, e)T (2)

is the so-called state vector, ~f = (f 1,f 2, f 3),

f s(w) = (f (1)
s (w), . . . , f (5)

s (w))T (3)

= (ρvs, ρvsv1 + δs1p, ρvsv2 + δs2p, ρvsv3 + δs3p, (e + p) vs)
T, s = 1, 2, 3,

are the so-called inviscid (Euler) fluxes, where ρ, p, and e stand for the density,
the pressure, and the total energy, respectively, and δ is the Kronecker’s delta. For
description of the matrix Ksk(w) : IR5 → IR5 × IR5, s, k = 1, 2, 3 see [6].

In order to close the system we use the following thermodynamical relations: the
state equation for perfect gas and the relation for the total energy. The system is of
hyperbolic-parabolic type. It is equipped with initial and boundary conditions. For
more details see [1].

2.1. Properties of inviscid fluxes

From the expression of the Euler fluxes f s, s = 1, 2, 3 we find that f s can be
written (see [1]) in the form

f s(w) = As(w)w, s = 1, 2, 3, (4)

where As(w) are the Jacobi matrices of the mappings f s.

3. Discretization

For discretization we employ the discontinuous Galerkin finite element method
(DGFEM), which takes advantages from finite element method as well as from finite
volume method. DGFEM is based on piecewise polynomial approximation without
any requirement on interelement continuity what is suitable for problems where shock
waves and contact discontinuities appear.

Let Th (h > 0) be a partition of the domain Ω into a finite number of open three-
dimensional mutually disjoint simplexes and/or parallelograms K i.e., Ω =

⋃
K∈Th

K.
We call Th a triangulation of Ω and do not require the conforming properties from
the finite element method. We define the set of faces Fh, FD

h , F ID
h and a unit normal

vector nΓ, as can be seen in [7].
Over the triangulation Th we define the broken Sobolev space

Hk(Ω, Th) = {v; v|K ∈ Hk(K) ∀K ∈ Th}, (5)

where Hk(K) = W k,2(K) denotes the (classical) Sobolev space on element K.
We introduce the following notation v|Γ, 〈v〉Γ and [v]Γ for trace, mean value and

jump, respectively, of function v over the edge Γ, see [2].
There are several variant of DGFEM. A particular role is played by the symmetric

and nonsymmetric interior penalty Galerkin variant, denoted by SIPG and NIPG,
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respectively. The main idea of SIPG and NIPG is to append artificial integral to
each boundary integral

∫

Γ
〈∇u · ~n〉[ϕ] dS, ∇u ∈ [L2(Γ)]3, ϕ ∈ L2(Γ), (6)

arising from the use of Green’s theorem in the case of linear diffusion simply by
formal exchange of u and ϕ. We can see that this integrals vanish in case of regular
solution. In our case we use the linearization formed by the terms Ksk, see [6], or
employ the so-called incomplete interior penalty Galerkin (IIPG) method, see [7].

Similarly, as in [3] for w,ϕ ∈ [H2(Ω, Th)]
5
, we define the forms:

ãh(w, ϕ) =
∑

K∈Th

∫

K

3∑

s=1

(
3∑

k=1

(
Ksk(w)

∂w

∂xk

)
∂ϕ

∂xs

)
dx

− ∑

Γ∈FID
h

∫

Γ

3∑

s=1

(
〈

3∑

k=1

Ksk(w)
∂w

∂xk

〉Γns

)
· [ϕ]Γ dS

− Θ
∑

Γ∈FID
h

∫

Γ

3∑

s=1

(
〈

3∑

k=1

Ksk(w)
∂ϕ

∂xk

〉Γns

)
· [w]Γ dS (7)

+ Θ
∑

Γ∈FD
h

∫

Γ

3∑

s=1

(
(

3∑

k=1

Ksk(w)
∂ϕ

∂xk

)ns

)
·wB(t) dS,

b̄h(w, ϕ) = − ∑

K∈Th

∫

K

3∑

s=1

f s(w) · ∂ϕ

∂xs

dx

+
∑

Γ∈Fh

∫

Γ
H

(
w|(p)

Γ ,w|(n)
Γ , ~nΓ

)
[ϕ]Γ dS, (8)

Jσ
h (w, ϕ) =

∑

Γ∈FID
h

∫

Γ
σ[w]Γ · [ϕ]Γ dS − ∑

Γ∈FD
h

∫

Γ
σ wB(t) ·ϕ dS, (9)

where Θ is +1 in SIPG, -1 in NIPG and 0 in IIPG case and σ is a suitable coercive
parameter and wB(t) is the solution on the boundary, where Dirichlet condition is

prescribed. H
(
w|(p)

Γ ,w|(n)
Γ , ~nΓ

)
is the so-called numerical flux, well-known in the

finite volume method (see, e.g., [1, Section 3.2])
Now we can introduce the semidiscrete problem. The approximate solution of

problem (1) with initial and boundary condition is sought at each instant time t
in the space of discontinuous piecewise polynomial functions Sh defined by Sh ≡
[Sh]

5, Sh ≡ {v; v|K ∈ P p(K) ∀K ∈ Th}, where p is a positive integer and P p(K)
denotes the space of all polynomials on K of degree at most p.

In order to avoid the time step restriction and nonlinearity of the discretized
problem, we carry out a linearization of the nonlinear forms ãh and b̄h.

For w̄h,wh,ϕh ∈ Sh we define a new form bh(w̄h,wh,ϕh) using (4) and (8),
which is linear with respect to the second and the third variable and consistent
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with b̄h(·, ·) by b̄h(wh, ϕh) = bh(wh,wh,ϕh) ∀ wh,ϕh ∈ Sh. For more details see,
e.g. [3].

In a similar way, as in the case of the form b̄h, we define a new form ah(w̄h, wh,ϕh)
for w̄h,wh,ϕh ∈ Sh using properties of the forms Ksk and (7), which is also linear
with respect to its second and third variable. Moreover, it is consistent with ãh(·, ·)
by ãh(wh,ϕh) = ah(wh,wh,ϕh) ∀ wh,ϕh ∈ Sh. The definition of ah(·, ·, ·) can be
found in [3].

Now we introduce the full space-time discrete problem. The main idea of the
semi-implicit discretization is to treat the linear parts of forms ah and bh implic-
itly and their nonlinear parts explicitly. In order to obtain a sufficiently accurate
approximation with respect to the time coordinate we use the so-called backward dif-
ference formula (BDF) for the solution of the ODE semidiscrete problem. Moreover,
a suitable explicit higher order extrapolation is used in the nonlinear parts of ah

and bh.
Let 0 = t0 < t1 < . . . < tr = T be a partition of the interval (0, T ) and let

τk ≡ tk+1 − tk, k = 0, 1, . . . , r − 1, be the time steps.

Definition 1 Functions wk+1
h , k = 0, . . . , r − 1 are an approximate solution of

problem (1) with some suitable initial and boundary conditions satisfying

(a) wk+1
h ∈ Sh,

(b)
1

τk

(
n∑

l=0

αlw
k+1−l
h ,ϕh

)
+ ah

(
n∑

l=1

βlw
k+1−l
h ,wk+1

h ,ϕh

)

+bh

(
n∑

l=1

βlw
k+1−l
h , wk+1

h ,ϕh

)
+ Jh

(
wk+1

h ,ϕh

)
= 0 (10)

∀ϕh ∈ Sh, k = n− 1, . . . , r − 1,

(c) w0
h is an Sh approximation of initial condition w0,

(d) wl
h ∈ Sh, l = 1, . . . , n− 1 are given by a suitable one-step method,

where n ≥ 1 is the degree of the BDF scheme, the coefficients αl, l = 0, . . . , n, and
βl, l = 1, . . . , n, depend on time steps τk−l, l = 0, . . . , n.

The problem (10), (a)–(d) represents a system of linear algebraic equations for each
k = n− 1, . . . , r − 1, which is solved by a suitable iterative solver (e.g. GMRES).

4. Stabilization

Application of this numerical scheme to transsonic flow leads to spurious over-
shoots and undershoots in computed quantities near shock waves. We use the stabi-
lization of the scheme similar to [5]. For each Ki ∈ Th we define quantity gKi

(wh),
what measures the interelement jump of the function ρh, what is piecewise polyno-
mial approximation of ρ. Moreover, we define the forms dh and Jh which represent
artificial viscosity and interior penalty, respectively. Both terms vanish in region
where wh is smooth. In [5], the stabilization for 2D problems is derived. The choice
of exponents and another changes in forms dh and Jh for 3D is in development.
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5. Adaptive time step

In order to achieve a steady-state solution in an efficient way it is necessary to
adapt the time step during the computational process. In [4], an adaptive choice of
the time step based on a comparison of two BDF formulae was presented. However,
this approach does not seem to be very efficient for viscous compressible flow sim-
ulations. Therefore, we employ an heuristic choice of the time step which is based
on a idea to increase the time step when the “steady-state residuum” is decreasing.
Hence we put: τk =

√
const

||wk−wk−1|| , where const is a suitable constant (e.g. 10−6).

6. Implementation

The subject of this research is a part of the project ADIGMA supported by the
European Commission. This project holds in the period 2006–2009 and is devoted to
development, application and verification of higher order schemes for the simulation
of viscous compressible flow.

The presented numerical method is now being implemented within the object
oriented platform COOLFluid, developed at the Von Karman Institute in Brussel,
see [8]. The main advantage of object oriented programing is in dynamic creation

Fig. 1: Distribution of density.
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of the object. There are templates of methods for discretization in time and space,
for solving the system of equations, for any type of elements in 2D and 3D. But in
the process of computation there are created only objects which are really needed
for computation. It takes some time at the beginning for creation and initialization
of objects, but the computer code is then shorter and simpler to write.

7. Example – Wedge 3D

Wedge 3D is one of COOLFluiD test cases. It is supersonic flow (MACH = 2.0)
in channel forward facing oblique step. The initial condition is constant with values
ρ = 1.0, v = (2.366431913, 0.0, 0.0), e = 5.3.

8. Conclusion

We described a numerical solution of the compressible Navier-Stokes equations by
a combination of DGFEM and BDF. We presented SIPG, NIPG and IIPG variants of
DGFEM. These schemes are theoretically unconditionally stable, have a high order of
approximation with respect to space and time and lead to a linear algebraic systems
at each time step.
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