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NUMERICAL SOLUTION OF BOUNDARY VALUE PROBLEMS BY
MEANS OF B-SPLINES

Vratislava Mošová

Galerkin method is often used for solving boundary value problems. The most
favorite method for solving problems from engineering practice, the finite element
method (FEM), corresponds to the Galerkin method, where in particular continuous
functions with small support form a basis. By Céa’s lemma (see [5]), the error
of the Galerkin approximation is bounded by means of the minimal error in the
space of test functions. It means that success of the Galerkin method depends on
the choice of basis functions. If we focus our attention on approximation theory,
then B-splines represent a successful tool for approximation of functions. B-splines
are piecewise polynomial functions with compact support that can be computed by
means of simple schemes. Their differentiation and integration can be algorithmized.
They are closely connected to computational geometry (see [5], [4]).

In this article, we deal with solution of boundary value problems using the
Galerkin method, where weighted B-splines form the basis. These splines and their
properties are described in the first section. Examples of solutions of 1D boundary
value problems using B-spline basis are given in the second section.

1. B-splines and their properties

Definition 1 Let b0(x) be the characteristic function of the interval [0, 1] and

bn(x) =

∫ x

x−1

bn−1(ξ) dξ, n = 1, 2, . . . . (1)

For integer h > 0 and number k ∈ Z, the function

bn
k,h(x) = bn(x/h− k) (2)

is the B-spline of order n on the grid of width h.
Remark 1 B-splines bn

k,h(x) have the following useful properties:

• B-spline bn
k,h(x) is positive on the interval (kh, (k+n+1)h) and vanishes outside

this interval.

• B-splines bn
k,h(x) are polynomials of order n on each interval (kh, (k + 1)h),

k = 0, . . . , n.

157



• Recursive formulas enable to compute the derivatives

dbn
k,h(x)

dx
=

1

h

(
bn−1
k,h (x)− bn−1

k+1,h(x)
)

(3)

and the scalar products

sn
k−l =

∫

R
bn
k,h(x)bn

l,h(x) dx = hb2n+1(n + 1 + k − l), (4)

∫

R
(bn

k,h(x))′(bn
l,h(x))′ dx =

1

h
(2sn−1

k−l − sn−1
k−l−1 − sn−1

k−l+1), (5)

which we may encounter in the weak formulation of certain boundary value
problems.

• The identity

bn
k,h(x) = 2−n

n+1∑

l=0

(
n + 1

l

)
bn
2k+l, h

2

(x) (6)

is useful for mesh refinement.

• It is possible, thanks to Marsden’s equality

(x− t)n =
∑

k∈Z
hn(k + 1− t

h
) . . . (k + n− t

h
)bn

k,h(x), x, t ∈ R, (7)

to express any polynomial as a linear combination of the B-splines. The relation
(7) plays an important role in the stabilization of bases and error estimates.

We receive multivariate B-splines as tensor products of the univariate ones.
Definition 2 For x ∈ Rm, k ∈ Zm, n ∈ N and h > 0 the function

bn
k,h(x) =

m∏
i=1

bn
ki,h

(xi) (8)

is the m-variate B-spline of degree n on the grid of width h.

The nonzero restrictions of B-splines bn
k,h to Ω can be taken as a basis for the

solution of Neumann boundary value problem on a bounded domain Ω ⊂ Rm. But
these B-splines are not suitable for solving any Dirichlet boundary value problem,
because their linear combination

∑

k∈K

bn
k,h(x)uk, K = {k| supp bn

k,h ∩ Ω 6= 0}

generally does not satisfy essential boundary conditions. It is possible to remove this
disproportion if we work with weighted B-splines.
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Definition 3 Let a weight function1 w and a B-spline bn
k,h be given, then

bk(x) = w(x)bn
k,h(x) (9)

is called the weighted B-spline.

2. Boundary value problems and B-splines

Example 1 Consider the 1D Neumann boundary value problem

u′′(x) + 162u(x) = x, x ∈ (0, 1), (10)

u′(0) = u′(1) = 0. (11)

Find an approximation of the weak solution using B-splines defined above.
Solution: We find u ∈ W 1,2(0, 1) such that

−
∫ 1

0

u′v′ dx + 162

∫ 1

0

uv dx =

∫ 1

0

xv dx, ∀v ∈ W 1,2(0, 1). (12)

The unknown function u(x) is approximated by

ũ(x) =
N∑

k=1

b3
k−3,h(x)uk

over N uniformly distributed nodes (h = 1
N−1

). This approximation, in conjunction
with the Galerkin method, provides a mesh-free computational formulation of the
boundary value problem. The system of linear equations has the form

Aũ = f, (13)

ũ = (u1, . . . , uN)T , f = (f1, . . . fN)T , A =




a11 . . . a1N

. . . . . . . . .
aN1 . . . aNN


 ,

fj =

∫

Ω

f(x)b3
j−3,h(x) dx,

ai,j =

∫

Ω

[−(b3
i−3,h(x))′(b3

j−3,h(x))′ + 162 b3
i−3,h(x)b3

j−3,h(x)
]

dx.

Results for N = 11 nodes are given in Figure 1 and in Table 1.

1Weight function is a nonnegative continuous function on Ω that vanishes on the boundary ∂Ω.
For r > 0 we can put w(x) = dist(x, ∂Ω)r, x ∈ Ω. If r = 1 then w is called the standard weight
function.
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Fig. 1: The exact solution of the Neumann BVP and its approximation for N = 11.

N 8 11 14 21 31
max|u− ũ| 1.8× 10−3 8× 10−5 14× 10−6 16× 10−7 24× 10−8

Tab. 1: Dependence of the error of the approximation on the number of nodes.

Example 2 Solve the 1D Dirichlet boundary value problem

u′′(x) + 162u(x) = x, x ∈ (0, 1), (14)

u(0) = u(1) = 0 (15)

using B-splines.
Solution: We find u ∈ W 1,2

0 (0, 1) such that

−
∫ 1

0

u′v′ dx + 162

∫ 1

0

uv dx =

∫ 1

0

xv dx, ∀v ∈ W 1,2
0 (0, 1). (16)

We suppose that nodes x1, . . . , xN , at which the approximate values are computed,
are uniformly distributed.

i) We replace the original set {b3
k−3,h(x)}N

k=1 by the set of weighted B-splines. We
consider the Galerkin approximation in the form

ũ(x) =
N∑

k=1

w1(x)b3
k−3,h(x)uk, where w1(x) =





x/s, if 0 < x < s
1, if s ≤ x ≤ 1− s

(1− x)/s, if 1− s < x < 1

and the parameter s represents the width of the strip inside [0, 1], where the function
w1 6= 1. Results for N = 11 and s = 0.2 are given in Figure 2. The dependence of
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Fig. 2: The exact solution of the Dirichlet BVP and its approximation for N = 11, linear
weight function and s = 0.2.

N 8 11 14 21 31
s = 0.2 1.5× 10−2 1.1× 10−3 4× 10−4 2× 10−4 10−4

s = 0.3 1.2× 10−3 1.7× 10−3 1.2× 10−3 8× 10−4 4.8× 10−4

s = 0.4 2.4× 10−3 4× 10−4 3× 10−4 2× 10−4 1.5× 10−4

Tab. 2: The error of the approximation for different number of nodes and for different
widths of the strip.

the error max |u− ũ| on the number N of nodes and on the width of the strip s can
be seen in Table 2.

Not only the width s of the strip affects the quality of the approximate solu-
tion, but also the choice of the proper weight function is important. The errors of
approximation for the linear weight function w1 and the quadratic weight function

w2(x) =





(
2− x

s

)x

s
, if 0 < x < s

1, if s ≤ x ≤ 1− s
(
2− 1− x

s

)1− x

s
, if 1− s < x < 1

for N = 11 and s = 0.2 are compared in Table 3. The quadratic weight function
produces more accurate results than the linear weight function.

The errors for the linear weight function w1 and for the quadratic weight function
w2 for N = 11 and for different values of the parameter s are given in Table 4.

Note that the weighted B-splines w1b
3
k,h have not the first derivative and w2b

3
k,h

have not the second derivative in some points of the interval [0, 1]. Considering that
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N 8 11 14 21 31
ew1 1.5× 10−2 1.1× 10−3 4× 10−4 2× 10−4 10−4

ew2 8× 10−3 5.3× 10−4 2× 10−4 8.8× 10−5 6.4× 10−5

Tab. 3: The error ewi =max|u − ũwi | of the approximation for different form of weight
functions and different values of s.

s 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
ew1 × 104 22 11 16 17 7.4 4 4.3 11
ew2 × 104 13 5.3 5.1 6.1 5.4 4 3.1 3.4

Tab. 4: The error ewi =max|u − ũwi | of the approximation for different forms of weight
functions and different values of s.

these functions are elements of the space W 1,2
0 , they can be advantageously used in

our problem, in spite of the fact that the smoothness of these basis functions is lower
than the smoothness of original cubic splines. It can be seen from Figure 2 and
Table 3 that this fact has only small influence on approximation properties of the
used weighted basis. The amplitude and frequency of the approximation received for
N = 11 and w1 are in accordance with the analytic solution. The errors received in
the case of piecewise linear and quadratic weight functions are similar. The quadratic
weight function gives a bit better results, very similar to the case when we use e.g.
the perfectly smooth weight function w(x) = sin(πx). (For more information about
weight functions see [4].)

ii) If the basis contains B-splines that only have a small part of their support in the
considered interval, then the system of linear equations (13) is ill-conditioned and
convergence of the iterative process can be slow. This can be improved if we modify
the B-splines whose supports intersect the boundary.

Consider again the uniformly distributed nodes 0 = x1 < · · · < xN = 1, cubic
splines b3

k,h, and the weight function w1. Let

ũ(x) =
N−4∑

k=5

w1(x)b3
k−3,h(x)uk

+ 4w1(x)
(
b3
−2,h(x)u1 + b3

0,h(x)u3 + b3
N−3,h(x)uN + b3

N−5,h(x)uN−2

)

− 6w1(x)
(
b3
−1,h(x)u2 + b3

N−4,h(x)uN−1

)− w1(x)
(
b3
1,h(x)u4 + b3

N−6,h(x)uN−3

)
.

The errors for s = 0.2 and for different values of N are provided in Table 5.

N 8 11 14 21 31
maxw1|u− ũ| 1.5× 10−2 1.4× 10−3 3× 10−4 2× 10−4 8× 10−5

Tab. 5: Dependence of the error of approximation on the number of nodes.
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3. Conclusion

In this contribution, we presented methods of solving boundary value problems
using the Galerkin method with B-spline basis. This method belongs to the meshless
methods, because no explicitly given mesh is required for its realization. (For more
information about the meshless methods see [1], [2], [3]).

The weighted B-splines are a simple and comfortable tool from the computational
point of view (recursive formulas enable to compute derivatives and scalar products
of B-splines easily, see Remark 1). The size of support and smoothness of B-splines
depend on the parameters n and h, which we choose at the beginning of the com-
putation. In case of the Neumann boundary value problem it suffices to work with
B-splines only, whereas for the Dirichlet boundary value problem it is necessary to
use the weighted B-splines.

The error of any approximation depends not only on the number of nodes, but on
another factors, too. Example 2 showed that in the case of the Dirichlet problem the
error of the resulting approximation can become smaller if a proper weight function
is chosen. The influence of the choice of the weigh function and of the width s of the
the strip on the approximate solution can be the subject of a further study.
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