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Abstract

Cottle’s proof that the minimal number of 0/1-simplices needed to triangulate the
unit 4-cube equals 16 uses a modest amount of computer generated results. In this
paper we remove the need for computer aid, using some lemmas that may be useful
also in a broader context. One of the 0/1-simplices involved, the so-called antipodal
simplex, has acute dihedral angles. We continue with the study of such acute binary
simplices and point out their possible relation to the Hadamard determinant problem.

1. On a personal note

Until 1997, I lived in the two-dimensional world created by Edwin A. Abbott in
1884: Flatland. This is meant, of course, metaphorically, or maybe better mathe-
matically. My mathematical output, mostly in the context of superconvergence in
finite element methods, dealt with partial differential equations formulated on a two-
dimensional domain Ω. When people asked me if I could generalize my theorems to
three space dimensions, I shrugged and gave an answer along the lines of: ”I suppose
so. What’s different in three than in two dimensions?”

A square from Flatland is introduced to the third dimension in Flatland the Movie.
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My PhD supervisors did not push the matter, but things became differently when
I arrived at the Mathematical Institute of the Academy of Sciences in Prague on
October 1, 1997.

1.1. From two via three to arbitrary dimension

Michal Kř́ıžek, who had encouraged me to apply for the position that I was going
to hold for a year, investigated not only superconvergence in finite element methods,
but also discrete maximum principles. Both topics include certain demands to be
placed on the triangulation of the domain Ω. Also the convergence of the method
involves conditions on the triangulation. From his publications [1, 2, 3] around that
time, it is clear that Michal Kř́ıžek was not afraid to look beyond dimension two. At
that moment, if I remember it well, he was already involved with research together
with Sergey Korotov and Pekka Neittaanmäki that led to the two papers [4, 5] in the
influential journals Mathematics of Computation and SIAM Journal on Numerical
Analysis. And, as most of the readers of these proceedings dedicated to Michal’s
60th birthday will have experienced themselves as well, Michal’s enthusiasm for the
geometrical aspects of finite element methods is difficult to ignore. More positively
formulated, it is contagious. Thus, not unlike the Flatland character of Spherius,
the three-dimensional visitor of Flatland, who teaches the ignorant Flatlanders about
higher dimensions, Michal started to motivate me to do mathematics in three dimen-
sions.

Spherius reveils himself by intersecting with Flatland.

At first, this went slow. We studied superconvergence of quadratic tetrahedral finite
element methods already quite soon, but proved it only in [6]. In the mean time,
I, the pupil, had even surprised the master, Michal, by suggesting to prove supercon-
vergence for linear finite elements in dimensions higher than three, resulting in the
dimension independent superconvergence proof in [7]. This paper seemed to have
started, at least for me, a new chapter in my mathematical life. From that point
onwards, I always tried to think dimension independently, and was, of course, en-
thusiastically encouraged by Michal in doing so. This led even to geometric results
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that were a bit further away from the numerical analysis background of finite ele-
ment meshes. For instance, a right triangle can trivially be subdivided into two right
triangles, and with a bit of effort, a path-tetrahedron, which is a tetrahedron having
a path of three mutually orthogonal edges, can be subdivided into three of such path-
tetrahedra. This was already known, but we managed to prove the corresponding
result for path-simplices of arbitrary dimension in [8]. Even though remotely related
to local nonobtuse refinement of higher dimensional finite element meshes, the trend
was now that we did geometry for the sake of geometry. The last developments in
this direction are that we study nonobtuse and acute binary simplices, which are
simplices whose vertices are vertices of the unit n-cube. With these simplices one
can try to triangulate the n-cube, which led to the result [9] that, using nonobtuse
binary simplices, this can be done in only two ways, modulo the action of the cube
symmetries, the elements of the hyperoctahedral group.

Binary simplices in the three-cube.

This paper, in fact, started another chapter in my research. From this point onwards,
I got my own students who work with me, and with Michal on the background in
Prague, on topics like this. Starting January 2012, even a first PhD student will work
on the abstract geometrical questions that all originated from Michal’s enthusiasm,
dating back to the final years of the previous millennium. I am looking forward to
the coming four years of this PhD project.

1.2. Other dimensions and facets

Apart from mathematical influence, Michal Kř́ıžek has had a big impact on my
career and personal development. He was involved in many of the invitations that
I got to speak at conferences, to visit institutions, and even in the jobs that I got.
We traveled together to many places, among which Berkeley and Beijing, and he was
the only visitor that I got during the position that I held at the University of New
South Wales in Sydney. As a result, Michal Kř́ıžek is a member of the select group
of people that I have met on four different continents. The group is so select that it
has no other members (as far as I know).

For completeness of this account, I will also mention a less positive experience
that I had with Michal. During our visit to MSRI in Berkeley, we decided to travel
to the Arizona Impact Crater and to the Grand Canyon, by car. Well, Michal
decided to travel there, much against the wishes of conference organizer Ivo Babuška
who rather had us prove theorems also during that weekend. I went along, while
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not making myself more useful than to read the map – I have no driver’s license.
All went well, until the Sunday morning. We had slept in the car on a parking
somewhere in the Arizona desert. You may be aware of the fact that temperatures
can be quite low during desert nights, so we hardly slept due to the clattering of our
teeth. At sunrise, a bit past four, we decided to move on again, completely frozen,
very sleepy, hungry, not feeling well at all. I do not know how long it took, but it felt
like a long time before, finally, a gasoline station with restaurant was announced,
and I was counting the miles. When finally I told Michal to take the exit to the
gasoline station, his answer was one of surprise: ”Go here? Why? Our tank is still
three quarters full. We do not need gasoline for hours and hours!”. While the exit
appeared out of sight behind us, and after I had recovered my speech after a moment
of being completely stupefied, all I could do was shout two words, and to repeat them
to make a statement: ”Gasoline?? Gasoline?? Coffee!! Coffee!!”.
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With this, I think I have mentioned Michal’s single greatest flaw: he does not drink
coffee. I’m sure that Paul Erdös would agree. In spite of that, he is a great person
and a true friend.

2. Minimal cube triangulation with binary simplices

As mentioned in the previous section, one topic of recent interest was the trian-
gulation of the unit cube using binary simplices, which are simplices whose vertices
are vertices of the unit cube. Although the three- and four-dimensional cases have
been well-understood already for a few decades, I would like to add some minor
observations. In all that follows, we only consider triangulations with binary sim-
plices, also called 0/1-simplices, as special cases of 0/1-polytopes.

2.1. Triangulating the unit three-cube

One of the first questions that we asked ourselves when confronted with the
question what is the minimal number of 0/1-simplices needed to triangulate the unit
n-cube In was the following: of course, we knew that the answer for n = 3 is five,
but how does one actually prove such a statement?

The classical proof by Mara [10] is based on the inequality Pn ≥ 2Pn−1, where
Pj denotes the minimal number of 0/1-simplices that is needed to triangulate Ij. This
inequality is derived from the fact that In has 2n facets, which each show at least
Pn−1 0/1-simplices of dimension n−1. Since each binary n-simplex in a triangulation
of In has at most n facets that lie on the boundary ∂In of In, this immediately gives
the statement. Together with the simple fact that P2 = 2 this gives that P3 ≥ 4.
Mara [10] continues with the rather complicated argument that the interior facet
of a 0/1-simplex having n exterior facets can not be met by another 0/1-simplex
having n exterior facets. Apply this to the case n = 3. Then ∂I3 shows 12 triangular
facets. If these are the exterior facets of four 0/1-tetrahedra, their four interior facets
cannot meet one another, and a fifth 0/1-tetrahedron is necessary to complete the
triangulation.

We can now adapt the argument by Mara as follows. It will result in a stronger
version of the inequality Pn ≥ 2Pn−1 that will also be sufficient to prove minimality
of a triangulation of I4 in 16 binary simplices.

Theorem 2.1. For n ≥ 2 we have that

Pn ≥ 2Pn−1 +
(n− 2)(n− 1)!

Hn

,

where Hn is the maximum absolute value of the determinant of a 0/1-matrix of
size n× n.

Proof. Let In be triangulated into binary n-simplices. This induces triangulations
of each of the facets of In. The crucial observation is that the (n − 1)-simplicial
facets that are visible in two opposite facets of In must be facets of distinct binary
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n-simplices in In. Indeed, a binary n-simplex in In with n ≥ 2 cannot have two facets
in opposite facets of In, or it would have 2n vertices. This proves Mara’s inequality
Pn ≥ 2Pn−1. However, the total Euclidean volume of all the 0/1-simplices that are
visible in the two opposite cube facets equals only 2/n. This can be seen using the
formula that the volume of a binary n-simplex equals 1/n times the volume of a facet,
times the height of the vertex opposite this facet. The sum of the (n− 1)-volumes
of the exterior facets equals two (the added volume of the two triangulated facets
of the n-cube) and their heights are all equal to one. The remaining volume of
1 − 2/n = (n − 2)/n needs to be filled by other 0/1-simplices. The volume |S| of
a 0/1-simplex S in In that has the origin as one of its vertices equals

|S| =
∣∣∣∣det(P )

n!

∣∣∣∣
where the 0/1-matrix P has the remaining n vertices of S as columns. Dividing
(n− 2)/n by the largest possible value of this volume results in the statement. �

Corollary 2.2. P3 ≥ 5.

Proof. One easily verifies that the largest determinant of a 0/1-matrix of size 3×3
equals two. One can also use the Hadamard bound, valid for 0/1-matrices of size n×n,

Hn ≤ 2

(√
n+ 1

2

)n+1

. (1)

In both cases we find, using Theorem 2.1 above, that P3 ≥ 2P2 + 1 = 5. �
The 1893 Hadamard maximal determinant conjecture is contained in the question

what is the value of Hn in terms of n. This is still an open problem.

Jaques Hadamard (1865–1963)

See Sloan’s Online Dictionary of Integer Sequences, item A003432, for the rather
small number of known values for Hn, the first of which are given below.

n 2 3 4 5 6 7 8 9 10 11 12 13
Hn 1 2 3 5 9 32 56 144 320 1458 3645 9477

We will get back to this problem further on.
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For now, note that of course, the lower bound of five 0/1-tetrahedra is attained
by the triangulation of I3 consisting of an interior regular 0/1-tetrahedron with edge
length

√
2 and four 0/1-tetrahedra having each three exterior facets, so-called cube

corners. The regular 0/1-tetrahedron is depicted in the most left picture in the figure
in Section 1.1, a typical cube corner is displayed directly on its right.

2.2. Triangulating the unit four-cube with binary 4-simplices

Theorem 2.1 provides an immediate lower bound for the number P4 of binary
4-simplices that are needed to triangulate the unit four-cube, I4.

Corollary 2.3. P4 ≥ 14.

Proof. The Hadamard bound (1) shows that H4 ≤ 3. Moreover, there exist
binary 4-simplices whose matrix representation P indeed have determinant 3 (see
also Section 3). Thus, by Theorem 2.1,

P4 ≥ 2P3 +
2 · 6

3
= 2 · 5 + 4 = 14.

Note that even though the Hadamard bound is not an integer, Hn always is. �

Now, this lower bound is not sharp, and the reason for this is that all 0/1-simplices
in I4 of maximum volume 3/24 intersect one another. Hence, at most one of them
can be used in a triangulation. In the following we will prove this. Note that the
original result is by Cottle [11] but he used computer generated information. The
proofs below do not.

First we define the antipodal 0/1-simplices. An example is the convex hull of the
standard unit basis vectors and the all-ones vector. As such, it shares an interior
facet (spanned by the standard unit basis vectors) with a cube corner, and this also
explains its name. Of course, there are 2n distinct cube corners in In, and thus
as many 0/1-antipodal simplices. It is easy to see that the midpoint of the cube
is interior to each antipodal 0/1-simplex, and thus, that a triangulation of In into
0/1-simplices contains at most one of them. In the case n = 4, to prove that all
0/1-simplices of maximum volume 3/24 intersect, it is therefore sufficient to prove
that all 0/1-simplices of volume 3/24 are antipodal 0/1-simplices.

Lemma 2.4. Let S be a binary n-simplex with an edge of length one. Then there
exists a binary n-simplex Ŝ with an exterior facet such that |S| = |Ŝ|.

Proof. Without loss of generality, assume that the edge of length one of S sprouts
from the origin. Then the matrix P whose columns are the vertices of S other
than the origin has a column equal to a standard basis vector. As a result, the
0/1-simplex Ŝ represented by the origin and the columns of P t has an exterior facet
because P t has a row with only one nonzero entry. Obviously det(P ) = det(P t) and
thus the volumes of S and Ŝ coincide. �
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Definition 2.5. Write e for the all-ones vector in Rn. Given a vertex x of In, the
point e− x is called the antipodal vertex of x.

Lemma 2.6. Let S be a binary n-simplex with two antipodal vertices. Then there
exists a binary n-simplex Ŝ with an exterior facet such that |S| = |Ŝ|.

Proof. Without loss of generality, we assume that the antipodal vertices of S
are the origin and the all-ones vector e. Then the matrix P whose columns are
the vertices of S other than the origin has a column equal to e. As a result, the
0/1-simplex Ŝ represented by the origin and the columns of P t has an exterior facet
because P t has a row with no zero entries. Obviously det(P ) = det(P t) and thus
the volumes of S and Ŝ coincide.

The purpose of the above two lemmas is to conclude the following.

Corollary 2.7. A binary 4-simplex S with maximal volume has no exterior facet
and does not contain two vertices x and y that are antipodals, or joined by a cube
egde.

Proof. The volume of any binary 0/1-simplex with an exterior facet is at most
1/4 times the volume of that facet (which is at most 1/3), and thus at most 2/24.
Thus, S has no exterior facet, and hence by the above lemmas the rest of the state-
ment follows as well. �

Lemma 2.8. Each binary 4-simplex S of volume 3/24 is an antipodal 0/1-simplex.

Proof. By Corollary 2.7., S has no exterior facet. Thus, no cube facet of I4

contains 4 vertices of S. Hence, we may suppose without loss of generality that the
facet C0 of I4 with x4 = 0 contains the vertices p1, p2 and p3 of S, and that the
facet C1 of I4 parallel to C0 contains the remaining vertices p4 and p5. Since by
Corollary 2.7. no cube edge is an edge of S, the vertices of S in C0 are the regular
triangular facet of a three-dimensional cube corner. Again without loss of generality
we choose the origin such that p1 = e1, p2 = e2 and p3 = e3. The remaining two
vertices of S lie in the facet C1 parallel to C0. Again by Corollary 2.7., they are
not connected by a cube edge to p1, p2, p3, nor are they antipodal to them. This
disqualifies six of the eight vertices of C1. Thus, only one choice for the pair p4, p5
remains. One easily verifies that one of them is e4, and that the other is the all-ones
vertex e. In particular, this shows that S is an antipodal 0/1-simplex. �

Theorem 2.9. Each triangulation T of I4 into 0/1-simplices contains at least 16 bi-
nary simplices.

Proof. Using Theorem 2.1, we need at least ten 0/1-simplices of total volume
1/2 plus some additional 0/1-simplices that are needed to fill the remaining volume
of 1/2. These additional 0/1-simplices can only have volumes 1/24, 2/24 or 3/24 due
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to the Hadamard bound (1). Due to Lemma 2.8., together with the fact that each
antipodal 0/1-simplex contains the midpoint of I4 in its interior, there is at most
one 0/1-simplex S of volume 3/24 in a triangulation T of I4. If there is none, then
at least six 0/1-simplices of volume 2/24 are needed to complete the triangulation.
If there is one, then at least five more 0/1-simplices are needed to complete T . In
both cases, the total number |T | of 0/1-simplices in T is at least 16. �

A triangulation of I4 into 16 binary simplices exists and was given already by
Mara [10].

3. Acute simplices

In dimensions 2, 3, and 4, the antipodal 0/1-simplices are the ones with the
largest volume in In. The antipodal 0/1-simplex that is opposite the cube corner at
the all ones vector e has the origin as vertex together with e− e1, . . . , e− en, where
e1, . . . en are the standard unit basis vectors. Thus, the matrix having those vectors
as columns is

P = eet − I,
where I is the n × n identity matrix. Since the rank-one matrix eet obviously has
n− 1 eigenvalues equal to zero, and one equal to n due to eete = en, subtracting the
identity results in P having n − 1 eigenvalues equal to −1 and one equal to n − 1.
This shows that the antipodal 0/1-simplex has volume (n− 1)/n! in dimension n.

Moreover, each antipodal 0/1-simplex is an acute simplex, meaning that all its
dihedral angles are acute. Recall that a dihedral angle between two facets equals
π minus the angle between two exterior normals to those facets. For triangles, this
reduces to the usual angle. Even though it is intuitively clear that an antipodal
0/1-simplex is acute, it can also be prove rigorously by showing that the inverse of
the matrix P tP has negative upper triangular entries and positive row sums.

Proposition 3.1. ([8]) The simplex with as vertices the origin and the columns of
the matrix P is acute if and only if (P tP )−1 has all upper triangular entries negative
and all row sums positive.

Remark 3.2. Note that Q, where QtP = I, has normals to the facets of S as
columns, because the j-th column of Q is orthogonal to all columns of P but the j-th.
Thus, QtQ = (P tP )−1 contains dihedral angle information in its upper triangular
part, but not for the facet opposite the origin, whose corresponding normal equals −Qe,
where e is the all-ones vector. Thus, the remaining dihedral angle information is in
the row sums of (P tP )−1. For details, see [8].

Acute binary simplices are extremely rare compared to all binary simplices, in fact,
even relative to all nonobtuse binary simplices. The total numbers of acute binary
simplices in the n-cube, modulo the action of the hyperoctahedral group of cube
symmetries, are
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n 3 4 5 6 7 8 9 10 11
# 1 1 2 6 13 29 67 162 392

Note that in dimensions 3 and 4, the single acute binary simplex is, in fact, the
antipodal 0/1-simplex.

We computed the above numbers by a nontrivial computer program. Nontrivial,
because it is impossible to generate all binary simplices, to verify which are acute,
and then to put them into equivalence classes generated by the cube symmetries.
For this, the total amount of 0/1-simplices is simply too large. Thus, the trick is to
generate representatives of all equivalence classes of binary simplices directly. It is
beyond the scope of this paper to explain the method in detail.

Our computational results so far show, that for 3 ≤ n ≤ 13, apart from dimen-
sions 9, 10 and 13, the maximal determinant over all acute binary simplices is the
same as when taken over all binary simplices, as can be seen by comparing with the
table in Section 2.1. This leads to a conjecture, although based on little evidence.

n 2 3 4 5 6 7 8 9 10 11 12 13
det 1 2 3 5 9 32 56 96 224 1458 3645 7290

Conjecture: For dimensions n ≥ 3 and n = 0 (mod 4) and n = 3 (mod 4) there
exists a 0/1-matrix representing an acute binary simplex that has maximal determi-
nant.

Before trying to prove this conjecture, we would like to collect more computa-
tional data. This is not a trivial task, since the structure of acute binary simplices
is not yet understood. Some simple properties can, however, be easily proved.

Proposition 3.3. A nondegenerate acute binary simplex S has the following prop-
erties:

• S has no pair of antipodal points as vertices;

• S has no edge of the cube as edge;

• S has no external facet.

Proof. Without loss of generality, we give the proof for an acute binary simplex
having the origin as a vertex. Let x be a vertex of S other than e or the origin.
Then x, e−x and the origin form a right triangular facet of S because xt(e−x) = 0.
Indeed, x and e− x differ in all coordinates thus the sum of their products vanishes.
This contradicts the well known fact that acute simplices have acute facets. Next,
let x, y be vertices of S other than the origin with x−y = ek, a standard basis vector
of Rn. Then xtek = 1 and ytek = 0 but ek = x−y hence yt(x−y) = 0. Thus, y, x−y
and the origin form a right triangle, again contradicting that S is acute. Finally, if
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S has an external facet F , it is by definition a subset of a facet of In. The vertex v
of S opposite F is connected via an edge of In with a vertex of F , see also [9]. We
already proved above that this cannot happen in an acute binary simplex. �

While generating the acute binary simplices, we also investigated which values
their determinant can actually have, instead of only looking at their maximum value.
The set of determinant values of 0/1-matrices in general is known as the determinant
spectrum, and thus we investigate the subset that we will call the acute determinant
spectrum.

Below we present a global illustration of this acute binary determinant spectrum.
For values of n up to 11, we indicate by brightness how many distinct acute 0/1-
simplices have a certain determinant value. For instance, the slightly brighter line
between the vertical values 3 and 4 indicates the 3-antipodal. Slightly to its right
and between values 4 and 5 on the vertical axis, we see the 4-antipodal. In fact,
the antipodal 0/1-simplices are the left-most acute 0/1-simplices in the spectrum
for each value of n. There do not seem to exist acute 0/1-simplices with a smaller
volume.

On the other hand, the values of the determinant rapidly increase with the dimension,
as the Hadamard bound suggests. Moreover, and this is not really well visible in
the above diagram, we can distinguish several families, parametrized by n, whose
determinant is linear in n, similar as the determinant of the antipodal equals n− 1.

One of the tasks of my new PhD student will be to study these structures, from
2012 to 2016, and we hope that Michal Kř́ıžek is going to play a part in this project.
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