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Abstract

Alignment classification of tensors on Lorentzian manifolds of arbitrary dimension

is summarized. This classification scheme is then applied to the case of the Weyl

tensor and it is shown that in four dimensions it is equivalent to the well known

Petrov classification. The approaches using Bel-Debever criteria and principal null

directions of the superenergy tensor are also discussed.

1. Introduction

The Einstein equations in an n-dimensional spacetime represent a set of second
order non-linear PDEs for n(n + 1)/2 unknown components of metric gab. In full
generality it is hopeless to search for exact solutions of the system. However, there are
approaches seeking to reduce its compexity. First, obvious method is to assume some
kind of continuous symmetry (for example axial symmetry or staticity). Another
approach, less known outside of the community studying Einstein field equations
and Lorentzian differential geometry, is to make simplifying assumptions about the
Weyl tensor (consisting of partial derivatives of the metric up to the second order)
instead of assuming special properties of the metric itself. This approach is based on
the algebraic (Petrov-Penrose) classification developed by Petrov [22], Debever [6],
Penrose [20] and others and on the Newman-Penrose formalism [17] and it subse-
quently led to a discovery of many new exact solutions of the Einstein field equations,
including the Kerr metric describing gravitational field of a rotating black hole.

Since 1980s there is a growing interest in theoretical physics and differential
geometry in higher dimensional geometries with Lorentzian signature. Thus obviously
it would be of great interest to have some sort of algebraic classification in higher di-
mensions than four. In four dimensions there are several equivalent methods leading
to the Petrov-Penrose classification. This classification can be obtained using eigen-
bivectors [22], [1], using number and multiplicity of principal null directions (PNDs)
of the Weyl tensor [6], using factorization of the symmetric Weyl spinor [20] or using
principal directions of the Bel-Robinson tensor (see e.g. [2], [21]). In general these
methods do not give equivalent results in higher dimensions.
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Using alignment theory [15], [5] one arrives to a classification scheme valid in
arbitrary dimension n ≥ 4 which is equivalent to the Petrov-Penrose classification
for n = 4. It turns out that similarly as in the four-dimensional case most of the
known exact solutions to the Einstein field equations are algebraically special.

In this contribution we will focus on introducing the higher dimensional clas-
sification using alignment theory (Section 2), we briefly summarize two equivalent
approaches using Bel-Debever conditions and Bel-Robinson tensor (Section 3) and
we briefly discuss classification of several known metrics (Section 4). Various appli-
cations of this classification are discussed in Ref. [24] in this volume.

2. Weyl aligned null directions and their multiplicity

In a tangent space of an n-dimensional Lorentzian manifold we choose a null
frame with two null vectors ℓ = m

(1) = m(0), n = m
(0) = m(1) and n− 2 spacelike

vectors m(i) = m(i) (i, j, k = 2 . . . n− 1), obeying

ℓaℓa = nana = 0, ℓana = 1, m(i)am(j)
a = δij, a = 0 . . . n− 1. (2.1)

The metric then takes the form

gab = 2ℓ(anb) + δijm
(i)
a m

(j)
b . (2.2)

Obviously, such frame is not unique - one can still perform Lorentz transfor-
mations. The group of ortochronous Lorentz transformations is generated by null
rotations of one of the null frame vectors about the other one, e.g.

ℓ̂ = ℓ + zim
(i) −

1

2
zizi n, n̂ = n, m̂

(i) = m
(i) − zin, (2.3)

with parameters zi, spins defined by an orthogonal matrix X i
j

ℓ̂ = ℓ, n̂ = n, m̂
(i) = X i

jm
(j) (2.4)

and boosts with a parameter λ

ℓ̂ = λℓ, n̂ = λ−1
n, m̂

(i) = m
(i). (2.5)

Let us now present a short summary of useful definitions based on [15], [5].

Definition 1. A quantity q has a boost weight bw if it transforms under a boost
according to

q̂ = λbwq. (2.6)

Thus for frame components of a tensor T we obtain their boost weight

T̂a...b ≡ T (m̂(a), . . . m̂(b)) = λbwT (a...b)Ta...b, (2.7)

where bwT (a . . . b) can be conveniently expressed as number of 0’s minus number of
1’s in frame component indices.
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Definition 2. Boost order of a tensor T with respect to the null frame ℓ, n, m(i)

is the maximum boost weight of its frame components

boT = max {bwT (a . . . b) | Ta...b 6= 0} . (2.8)

Proposition 1. Let ℓ, n, m(i) and ℓ̂, n̂, m̂(i) be two null frames with ℓ and ℓ̂ being
scalar multiples of each other. Then the boost order of a given tensor is the same
relative to both frames.

Thus boost order of a tensor depends only on the choice of null direction 〈ℓ〉 and we
will denote it boT (ℓ). Note that for components for which bwT (a . . . b) = boT (ℓ) it
follows

T̂ ≡ T (m̂(a) . . . m̂(b)) = T (m(a) . . .m(b)). (2.9)

Definition 3. Let T be a tensor and let bmax(T ) denote the maximum value of
boT (ℓ) taken over all null vectors ℓ

bmax(T ) = max{boT (ℓ) | ∀ null 〈ℓ〉}. (2.10)

We say that a vector ℓ is aligned null direction (AND) of a tensor T whenever
boT (ℓ) < bmax(T ) and we will call integer bmax(T )− boT (ℓ) its multiplicity.

Definition 4. We will call a quantity

bmax(T )− bmin(T ), (2.11)

where
bmin(T ) = min{boT (ℓ) | ∀ null 〈ℓ〉}, (2.12)

principal alignment type (PAT) of a tensor T .
Choosing ℓ with maximal multiplicity (which is equal to bmax(T ) − bmin(T )), we

define secondary alignment type, SAT, to be

bmax(T )− b̃min(T ), (2.13)

with
b̃min(T ) = min{boT (n) | ∀ null 〈n〉 except 〈ℓ〉}. (2.14)

Definition 5. We can classify an arbitrary tensor according to its alignment type
consisting of two integers (PAT, SAT).

To determine an alignment type of a tensor one has to project the tensor T on
the null frame and sort its components by their boost weight

T =
∑

b

(T )(b), (2.15)
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where

(T )(b) =
∑

Ta...bm
(a) . . .m(b), bwT (a . . . b) = b. (2.16)

Then using null rotations (2.3) about ℓ and n one has to set as many leading and
trailing terms in (2.15) as possible to zero.

For arbitrary tensor in arbitrary dimension we define (in part we employ defini-
tions of [12], [11]):

Definition 6. A tensor T is of

• type G if for all frames some maximal boost-weight components do not vanish,
i.e. (T )(bmax(T )) 6= 0,

• type I if there exists a frame such that maximal boost-weight components do
vanish, i.e. (T )(bmax(T )) = 0,

• type II if there exists a frame such that all positive boost-weight components
vanish, i.e. (T )(b>0) = 0 and T =

∑

b≤0(T )(b),

• type D if there exists a frame such that T has only zero boost-weight compo-
nents, T = (T )(0),

• type III if there exists a frame such that T has only negative boost-weight com-
ponents, i.e. (T )(b≥0) = 0 and T =

∑

b<0(T )(b),

• type N if there exists a frame such that T has only components of boost-weight
−bmax(T ), i.e. T = (T )(−bmax(T )).

Note that according to this definition, type N is a subcase of type III which is
again a subcase of type II, etc. Sometimes, the term pure type II is used meaning
a spacetime of type II which is not of type III, etc.

Let us illustrate these definitions on some examples:

• A vector v can be decomposed as

v = v0n+ vim
(i) + v1ℓ. (2.17)

It has bmax(v) = 1. There are three classes of vectors:

1. Timelike vector (vava < 0) is of alignment type (0, 0) (type G):
In this case v0 cannot be set to zero by null rotations, i.e. for all ℓ

bov(ℓ) = 1, there are no ANDs.

2. Spacelike vector (vava > 0) is of alignment type (1, 1) (type D):
There exist ℓ and n such that v0 = 0 = v1, i.e. with bov(ℓ) = 0 = bov(n),
both ANDs are of multiplicity 1.
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3. Null vector (vava = 0) is of alignment type (2, 0) (type N):
There exists ℓ (ℓ ‖ v) such that v0 = 0 = vi, i.e. with bov(ℓ) = −1 and
multiplicity is 2.

• A bivector (an antisymmetric tensor of rank two), F , has in general decompo-
sition

F = (F )(+1) + (F )(0) + (F )(−1), (2.18)

or equivalently

Fab =

1
︷ ︸︸ ︷

2F0i n[am
i
b]+

0
︷ ︸︸ ︷

2F01 n[aℓb] + Fij m
i
[am

j
b] +

−1
︷ ︸︸ ︷

2F1i ℓ[am
i
b] . (2.19)

Thus bmax(F ) = 1.

There are cases

1. Case (0, 0) - type G: there are no ANDs.

2. Case (1, 0) - type II: this occurs when F0i can be set to zero using null
rotations, ℓ is AND of multiplicity 1.

3. Case (1, 1) - type D: this occurs when F0i, F1i can be set to zero, both
ANDs ℓ and n are of multiplicity 1.

4. Case (2, 0) - type N: all components F0i, F01, Fij can be set to zero, ℓ is
AND of multiplicity 2.

In even dimensions, there always exists an AND and thus a bivector is of type II
or more special (see Prop. 4.4 in [7]).

In four dimensions, only the following two cases exist

1. Generic case (1, 1) with canonical form Fab = λm2
[am

3
b] + µn[aℓb].

2. Special case (2, 0) with canonical form Fab = λℓ[am
2
b].

• In this paper, we are mainly interested in the algebraic classification of the
Weyl tensor with the following symmetries

Cabcd = C{abcd} ≡
1
2
(C[ab][cd] + C[cd][ab]), Cc

acb = 0, Ca[bcd] = 0. (2.20)

Decomposing the Weyl tensor in its frame components we obtain:

C = (C)(+2) + (C)(+1) + (C)(0) + (C)(−1) + (C)(−2), (2.21)
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or more specifically

Cabcd =

boost weight 2 − type G

︷ ︸︸ ︷

4C0i0j n{am
(i)
b ncm

(j)
d }+

1, I

︷ ︸︸ ︷

8C010i n{albncm
(i)
d } + 4C0ijk n{am

(i)
b m(j)

c m
(k)
d }

+4C0101 n{albncl d } + 4C01ij n{albm
(i)
c m

(j)
d }

+8C0i1j n{am
(i)
b lcm

(j)
d } + Cijkl m

(i)
{am

(j)
b m

(k)
c m

(l)
d }






0, II,D (2.22)

+

−1, III

︷ ︸︸ ︷

8C101i l{anblcm
(i)
d } + 4C1ijk l{am

(i)
b m(j)

c m
(k)
d }+

−2, N

︷ ︸︸ ︷

4C1i1j l{am
(i)
b lcm

(j)
d },

so e.g. components C0i0j = Cabcdℓ
amb

(i)ℓ
cmd

(j) have boost weight bwC(0i0j) = 2.

The Weyl tensor has bmax(C) = 2.

For Weyl components, we will follow the notation of [8] which is together with
additional identities (2.20) summarized in table 1.

bw Compt. Notation Identities
2 C0i0j Ωij Ωij = Ωji, Ωii = 0
1 C0ijk Ψijk Ψijk = −Ψikj, Ψ[ijk] = 0

C010i Ψi Ψi = Ψkik.
0 Cijkl Φijkl Φijkl = Φ[ij][kl] = Φklij , Φi[jkl] = 0

C0i1j Φij Φ(ij) ≡ ΦS
ij = −1

2
Φikjk

C01ij 2ΦA
ij ΦA

ij ≡ Φ[ij]

C0101 Φ Φ = Φii

-1 C1ijk Ψ′
ijk Ψ′

ijk = −Ψ′
ikj, Ψ

′
[ijk] = 0

C101i Ψ′
i Ψ′

i = Ψ′
kik.

-2 C1i1j Ω′
ij Ω′

ij = Ω′
ji, Ω

′
ii = 0

Table 1: Decomposition of the Weyl tensor by boost weight bw for dimensions n > 4
(c.f. Ref. [5]).

We classify the Weyl tensor according to the (non)existence of Weyl aligned
null directions (WANDs) and their multiplicity. Note that a generic Weyl
tensor for n ≥ 5 does not possess any WAND [15]. All possible algebraical types
are given in the table 2 (for the conformally flat case, type O, the Weyl tensor
vanishes). Alignment type classification of the Weyl tensor in four dimensions
is equivalent to the Petrov classification and WANDs coincide with principal
null directions (PNDs) of the Weyl tensor. As in four dimensions the Weyl
tensor is called algebraically special if it is of type II or more special.

Let us briefly summarize further refinement [5, 4] of the alignment type classi-
fication.
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n >4 dimensions 4 dimensions
Petrov type alignment type Petrov type

G (0,0)
I (1,0)
Ii (1,1) I
II (2,0)
IIi (2,1) II
D (2,2) D
III (3,0)
IIIi (3,1) III
N (4,0) N

Table 2: Possible Petrov/alignment types in higher dimensions compared to the
four-dimensional case [5].

• Boost-weight +1 components Ψijk can be decomposed as (see [4])

Ψijk = − 1
n−3

(δijΨk − δikΨj) + Tijk, T(ijk) = 0, Tiji = 0, Ti(jk) = 0. (2.23)

Thus there are two subcases of type I

– Subcase Ia: Ψi = 0 ⇔ Ψiji = 0,

– Subcase Ib: Tijk = 0 ⇔ ΨijkΨijk =
2

n−3
ΨiΨi.

Similar subclassification can be introduced for type III, i.e. for boost-weight
−1 components, Ψ′

ijk.

• Zero boost-weight components Φijkl can be decomposed in the same way as the
Riemann tensor:

Φijkl = C̄ijkl +
2

d− 2

(
δi[kR̄l]j − δj[kR̄l]i

)
−

2

(d− 1)(d− 2)
R̄δi[kδl]j (2.24)

with d = n− 2 and

R̄ij = S̄ij +
R̄

d
δij = Φikjk = −2ΦS

ij , R̄ = −2Φ. (2.25)

Therefore the following subclasses appear

– Subcase IIa: R̄ = 0,

– Subcase IIb: S̄ij = 0,

– Subcase IIc: C̄ijkl = 0,

– Subcase IId: Φ
A
ij = 0.

Some of their possible combinations are given in the table 3.
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Type Bel-Debever crit. superenergy ten. +2 +1 0 -1
G ℓ[eCa]bc[dℓf ]ℓ

bℓc 6= 0 Tabcdℓ
aℓbℓcℓd 6= 0

I ℓ[eCa]bc[dℓf ]ℓ
bℓc = 0 Tabcdℓ

aℓbℓcℓd = 0 Ωij

Ia ℓ[eCa]bcdℓ
bℓc = 0 Ωij Ψi

Ib Ωij Tijk

II ℓ[eCa]b[cdℓf ]ℓ
b = 0 Tabcdℓ

aℓbℓc = 0 Ωij Ψijk (Ψi)
IIa Cabcdℓ

bℓc = 0 Ωij Ψijk (Ψi) Φ
IIb Ωij Ψijk (Ψi) S̄ij

IIc Ωij Ψijk (Ψi) C̄ijkl

IId Cab[cdℓe]ℓ
b = 0 Ωij Ψijk (Ψi) ΦA

ij

IIabc ℓ[eCab][cdℓf ] = 0 Ωij Ψijk (Ψi) Φijkl

(Φ, ΦS
ij)

IIabd Cabc[dℓe]ℓ
c = 0 Tabcdℓ

aℓb = 0 Ωij Ψijk (Ψi) Φij

(Φ, ΦA
ij)

II’abd Cabcdℓ
d = 0 Ωij Ψijk (Ψi) Φij Ψ′

i

(Φ, ΦA
ij)

III ℓ[eCab][cdℓf ] = 0 Tabcdℓ
aℓc = 0 Ωij Ψijk (Ψi) Φijkl, Φ

A
ij

Cabc[dℓe]ℓ
c = 0 (Φ, ΦS

ij)
IIIa ℓ[eCab][cdℓf ] = 0 Ωij Ψijk (Ψi) Φijkl, Φ

A
ij Ψ′

i

Cabcdℓ
d = 0 (Φ, ΦS

ij)
IIIb Ωij Ψijk (Ψi) Φijkl, Φ

A
ij T ′

ijk

(Φ, ΦS
ij)

N Cab[cdℓe] = 0 Tabcdℓ
a = 0 Ωij Ψijk (Ψi) Φijkl, Φ

A
ij Ψ′

ijk

(Φ, ΦS
ij) (Ψ′

i)

Table 3: Summary of criteria for various algebraic classes of the Weyl tensor. Note
that for some subtypes Bel-Debever criteria or conditions involving the superenergy
tensor are not known. Last four columns show vanishing components of the Weyl
tensor of the corresponding boost weight. Components that are automatically zero
due to the identities given in table 1 are in brackets. Note that Cabc[dℓe]ℓ

c = 0
which is equivalent with Tabcdℓ

aℓb = 0 follows from Tabcdℓ
aℓc = 0 which is equivalent

with {ℓ[eCab][cdℓf ] = 0 ∧ Cab[cdℓe]ℓ
b = 0} [28, 29]. The same conditions can be

applied in the case of secondary classification (e.g. condition for type II applied to
a vector n in type D spacetimes). In four dimensions the following equivalences hold:
Ia =II=IIb =IIc, IIabc =IIa, IIabd =III and II’abd =IIIa =N [19].

• Boost-weight -2 components are represented by a symmetric traceless matrix
Ω′

ij and so type N spacetimes can be further classified according to multiplicities
of eigenvalues of Ω′

ij . In four dimensions, there is only one case with two distinct
non-vanishing eigenvalues, i.e. in Segre notation {11}. In five dimensions, there
are three possible cases:
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– Three distinct non-vanishing eigenvalues, i.e. in Segre notation {111},

– Two distinct non-vanishing eigenvalues, one of them with multiplicity 2,
i.e. in Segre notation {(11)1},

– Two distinct non-vanishing eigenvalues and one vanishing, i.e. in Segre
notation {110}.

One can similarly classify type N in each dimension. As was shown in [26],
for type N Ricci flat spacetimes the only possible case in arbitrary dimension
is {110 . . . 0}. This result can be straightforwardly generalized to the case of
Einstein spacetimes, see also Ref. [24] in this volume.

3. Equivalent approaches to the algebraic classifications of the Weyl tensor

– superenergy tensor and Bel-Deber criteria

There are equivalent approaches to the algebraic classification of the Weyl tensor
leading to the same classification scheme as in table 2, namely finding principal null
directions of the superenergy tensor [28, 29] and classifying the Weyl tensor according
to Bel-Deber criteria [19].

3.1. Classification based on principal null directions of the superenergy

tensor

In four dimensions Petrov types can be defined using principal null directions of
the completely symmetric and traceless Bel-Robinson tensor1 [28, 29]

Tabcd = CaecfCb
e
d
f −

1

8
gabgcdCefghC

efgh (3.1)

as follows2

1. Petrov type I ⇔ there exists ℓ such that Tabcdℓ
aℓbℓcℓd = 0,

2. Petrov type II (or D) ⇔ there exists ℓ such that Tabcdℓ
bℓcℓd = 0,

3. Petrov type III ⇔ there exists ℓ such that Tabcdℓ
cℓd = 0,

4. Petrov type N ⇔ there exists ℓ such that Tabcdℓ
d = 0.

In higher dimensions, superenergy tensor [28, 29], a generalization of the Bel-
Robinsor tensor, can be defined as

Tabcd = CaecfCb
e
d
f+CaedfCb

e
c
f− 1

2
gabCefcgC

ef
d

g
− 1

2
gcdCaefgCb

efg+
1

8
gabgcdCefghC

efgh,

(3.2)

1Note that in four dimensions PNDs of the Bel-Robinson tensor coincide with PNDs of the Weyl

tensor.
2Recall that in the sequence of algebraic types I, II, III, N, each type is considered as a special

subcase of more general types.
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having symmetries
Tabcd = T(ab)(cd) = T(cd)(ab). (3.3)

The superenergy tensor is completely symmetric only in four and five dimensions [27]
and in four dimensions it reduces to the Bel-Robinson tensor (3.1) [9, 27].

Algebraic classification using principal null directions of the superenergy tensor
is summarized in the table 3.

3.2. Higher dimensional generalization of the Bel-Debever conditions

Generalization of the Bel-Debever approach towards classifying the Weyl tensor
was developed in [19]. It is summarized in table 3.

4. Examples

Now let us briefly classify some known exact solutions of the Einstein equations
in higher dimensions.

• Black ring solution representing spinning five-dimensional black hole with hori-
zon topology S2×S1 [10] consists of regions of type I and G and it is of type II
on the black hole horizon [25].

• Kerr metric describing gravitational field of a rotating black hole and its higher
dimensional generalization - Myers-Perry rotating black hole metric [16] are of
the algebraic type D in arbitrary dimension.

• Kerr-Schild spacetimes [13] are spacetimes with metric of the form

gab = ηab − 2Hkakb, (4.1)

where H is a scalar function and k a null vector with respect to the background
flat metric ηab and also to the full metric gab. Thanks to the simple form of the
metric these spacetimes can be analyzed in arbitrary dimension [18]. This class
contains important solutions such as Kerr and Myers-Perry black holes [16] and
type N pp-waves [3, 18]. Einstein Kerr-Schild spacetimes are of type II or more
special in arbitrary dimension and they split in two groups [18, 14]:

– Non-expanding solutions are always of type N and belong to the Kundt
class [3, 23]. This case contains radiative solutions.

– Expanding solutions are always of type II or D. This case contains black
holes.
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Pravdová, A., Coley, A. and Milson, R.: Class. Quantum Grav. 24 (2007) 1691
(corrigendum).

[27] Senovilla, J.M.M.: Super-energy tensors. Class. Quantum Grav. 17 (2000),
2799–2842.

[28] Senovilla, J.M.M.: Algebraic classification of the Weyl tensor in higher di-
mensions based on its “superenergy” tensor. Class. Quantum Grav. 27 (2010),
222 001.

[29] Senovilla, J.M.M.: Erratum-ibid. Algebraic classification of the Weyl tensor in
higher dimensions based on its “superenergy” tensor. Class. Quantum Grav. 28
(2011), 129 501.

235


		webmaster@dml.cz
	2017-04-13T14:19:33+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




