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Abstract

The existence of spherically symmetric solutions is proved for a new phase-field
model that describes the motion of an interface in an elastically deformable solid,
here the motion is driven by configurational forces. The model is an elliptic-parabolic
coupled system which consists of a linear elasticity system and a non-linear evolution
equation of the order parameter. The non-linear equation is non-uniformly parabolic
and is of fourth order. One typical application is sintering.

1. Introduction

A central tenet in materials science is that many properties of materials are de-
termined by microstructure. Microstructure can be defined as the totality of all ther-
modynamic non-equilibrium lattice defects on a space scale ranging from Ångstrøms
to meters. By their dimension, defects can be arranged in the following hierarchy:
i) zero-, ii) one-, iii) two-, iv) three-dimensional defects. Their typical examples are,
respectively, point defects, dislocations, grain boundaries and voids. The driving
forces for the evolution of defects are of the Eshelby type that is radically different
to the Newton type.

We shall study, in this paper, the evolution of two-dimensional defects, taking
grain boundary as an example, by employing a phase-field approach that is still
young but has been shown powerful and important for both theoretical and numer-
ical investigations, especially for multi-dimensional problems, see, e.g. [8, 10, 13].
Starting from a sharp interface model based on a formula of configurational forces in
terms of the Eshelby tensor, Alber and Zhu [1, 2] have formulated a new phase-field
model which differs from the famous Cahn-Hilliard model (see [7]) by a non-smooth
gradient term. An application of our model is to describe sintering, a technique for
making a material from powders.

To state the new model we now introduce some notations. Let Ω be an open
subset in R

3. It stands for the set of material points of a solid body. The different
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phases of a solid are indicated by an order parameter S(t, x) ∈ R: That S takes
values near to zero or one means the solid is in phase γ or γ′. Other unknowns are
the displacement u(t, x) ∈ R

3 of the material point x at time t and the Cauchy stress
tensor T (t, x) ∈ S3. Here S3 denotes the set of symmetric 3 × 3-matrices. We shall
investigate the quasi-static process, the unknowns thus must satisfy the following
equations

−divx T (t, x) = b(t, x), (1)

T (t, x) = D
(

ε(∇xu)− ε̄S
)

(t, x), (2)

St(t, x) = c divx

(

∇x

(

ψS(ε(∇xu), S)− ν∆xS
)

|∇xS|
)

(t, x), (3)

for (t, x) ∈ (0,∞)× Ω, and the boundary and initial conditions

u(t, x) = γ(t, x), (t, x) ∈ [0,∞)× ∂Ω, (4)

∂

∂n
S(t, x) = 0, (t, x) ∈ [0,∞)× ∂Ω, (5)

∂

∂n

(

ψS(ε, S)− ν∆xS
)

|∇xS|(t, x) = 0, (t, x) ∈ [0,∞)× ∂Ω, (6)

S(0, x) = S0(x), x ∈ Ω̄. (7)

Here n is the unit outward normal vector, ∇xu denotes the 3×3-matrix of first order
derivatives of u, the deformation gradient, and

ε (∇xu) =
1

2

(

∇xu+ (∇xu)
T
)

is the strain tensor, where (∇xu)
T denotes the transposed matrix. Further, ε̄ ∈ S3

is a given matrix, the transformation strain. The elasticity tensor D : S3 → S3 is
a linear, symmetric, positive definite mapping, and ψS is the derivative with respect
to S of the free energy

ψ∗(ε, S,∇xS) = ψ(ε, S)+
ν

2
|∇xS|

2 =
1

2

(

D(ε− ε̄S)
)

· (ε− ε̄S)+ ψ̂(S)+
ν

2
|∇xS|

2, (8)

where for ψ̂ : R → [0,∞) we choose a double well potential with minima at points
S ≤ 0 and S ≥ 1. The scalar product of two matrices is A ·B =

∑3
i,j=1 aijbij . Thus,

ψS(ε, S) = −T · ε̄+ ψ̂′(S). (9)

Given are the positive constant c, the small positive constant ν, the volume force
b : [0,∞) × Ω → R

3 and the boundary and initial data γ : [0,∞) × ∂Ω → R
3,

S0 : Ω → R.
We thus complete the formulation of an initial-boundary value problem. The

equations (1) and (2) differ from the system of linear elasticity only by the term ε̄S,
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which couples this system to equation (3). The evolution equation (3) for the order
parameter S is non-uniformly parabolic because of the term divx (|∇xS|∇x∆xS).

Statement of the main result. Since we shall look for spherically symmetric
solutions to problem (1)–(7), we can make suitable assumptions to reduce the prob-
lem to its one space dimensional form. To this end we now assume that the body
force boundary and initial data and the unknowns, which are defined in the domain
Ω× (0, Te), have the following form

b(t, x) = b̂(t, r)
x

r
, γ(t, x) = γ̂(t, r), S0(x) = Ŝ0(r)

and
u(t, x) = û(t, r)

x

r
, S(t, x) = Ŝ(t, r),

respectively, where Te is a positive constant which denotes the life-span of weak
solutions, r = |x|, Ω = {x ∈ R

3 | a < r < d } for two positive constant a, d
satisfying a < d, and b̂, γ̂, Ŝ0 are given functions and û, Ŝ are scalar functions to
be determined, which depend only on t, r. We write

x = (xi), u = (ui), T = (Tij), D = (Dij
kl),

hereafter, i, j, k, l = 1, 2, 3, and we assume that D satisfies the properties of sym-
metry: Dij

kl = Dkl
ij = D

ij
lk = D

ji
kl. Moreover we assume that the material is isotropic,

namely we have

D
ij
kl = µ1δikδjl +

µ2

3
δijδkl, (10)

where δij is the Kronecker delta, and µ1 > 0, µ2 ≥ 0 are constants. For ε̄, we assume
that

ε̄ij = λδij . (11)

Then it follows that

Dε = µ1ε+
µ2

3
Trace(ε)I, Dε̄ = µ1λI +

µ2

3
Trace(λI), I = (µ1 + µ2)I, (12)

here for a matrix A, Trace(A) denotes the trace of A. Hence,

Dε · ε = µ1ε · ε+
µ2

3
(Trace(ε))2 > 0 ∀ε 6= 0. (13)

Under these assumptions, equations (1)–(3) are reduced to

ûrr +
2

r
ûr −

2

r2
û = G, (14)

∂

∂t
Ŝ + c

∂

∂r

(

(νŜrrr + F2)|Ŝr|
)

= −
2c

r
(νŜrr + F1)|Ŝr| , (15)
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with F1,F2,G being nonlinear functions defined by

G = G(Ŝr, b̂) =
λ

µ
Ŝr +

b̂

µ
, (16)

F1 = F1

(

û, ûr, ûrr, Ŝ, Ŝr

)

= λ
(

ûr +
2

r
û
)

+
2ν

r
Ŝr −Dε̄ · ε̄Ŝ − ψ̂′(Ŝ), (17)

F2 = F2

(

û, ûr, ûrr, Ŝ, Ŝr, Ŝrr

)

= F1,r. (18)

Since eq. (14) is linear, the inhomogeneous Dirichlet boundary condition for û
can be reduced to the homogeneous one. So we may assume for simplicity that γ̂ = 0.
Hence, simple computations show that (14) can be rewritten as

ûr +
2

r
û =

λ

µ
Ŝ +

1

µ

∫ r

a

b̂(t, y)dy + C(t), (19)

here, C(t) is a constant depending on t and γ̂(t, r) which is zero by assumption. It
thus follows from formula (19) and the boundary conditions for û that

û =
1

r2

(

λ

µ

∫ r

a

y2Ŝ(t, y)dy +
1

µ

∫ r

a

x2
∫ x

a

b̂(t, y)dydx

)

−
1

r2
r3 − a3

d3 − a3

(

λ

µ

∫ d

a

y2Ŝ(t, y)dy +
1

µ

∫ d

a

x2
∫ x

a

b̂(t, y)dydx

)

. (20)

Therefore, (14)–(15) can be reduced to the following single equation

∂

∂t
(r2Ŝ) + c

∂

∂r

(

r2(νŜrrr + F)|Ŝr|
)

= 0, (21)

with

F =
λ

µ
(λŜr + b̂) +

(

2ν

r
Ŝr −Dε̄ · ε̄Ŝ − ψ̂′(Ŝ)

)

r

. (22)

The boundary and initial conditions become

(νŜrrr + F)|Ŝr| = 0, (t, r) ∈ [0, Te]× ∂Ω, (23)

Ŝ(0, r) = Ŝ0(r), r ∈ Ω. (24)

Consequently, the existence of spherically symmetric solutions to problem (1)–(7)
is equivalent to solvability of problem (21)–(24), since û can be obtained from for-
mula (20) once Ŝ is known.

The domain Ω is reduced to an interval: Ω = (a, d) is a bounded open interval
with constants a < d. We write QTe

:= (0, Te)× Ω, where Te is a positive constant.

To state the existence result for this problem we need two definitions. For
A ⊂ QTe

, g : A → V ⊂ R and t ∈ [0, Te] let

A(t) = {x | (t, x) ∈ A} and g(t) : A(t) → V, g(t)(x) = g(t, x).
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Definition 1.1 Let A ⊂ QTe
such that A(t) is open for almost all t ∈ [0, Te], and

let α ∈ N0. We call g : A → R the α-th local weak derivative of S ∈ L2(QTe
) with

respect to x in A, if for almost all t ∈ [0, Te] the function g(t) belongs to L2,loc(A(t))
and is the local weak derivative of S in the usual sense:

g(t) = ∂αxS(t)|A(t), (25)

and if moreover there exists a sequence {An}n of measurable sets An ⊂ A with
g|An

∈ L2(An) for all n ∈ N, such that

meas

(

A \
∞
⋃

n=1

An

)

= 0.

Remark 1. The uniqueness of local weak derivatives in the sense of this definition
is obvious because of (25), and it is clear that if A is open and if S has the local
weak derivative ∂αxS in the usual sense in A, then ∂αxS is also a local weak derivative
in the sense of our definition. So Definition 1.1 generalizes the ordinary definition;
this allows us to use the same name and the same notation ∂αxS as for ordinary local
weak derivatives.

For a function S ∈ L2(0, Te;H
2
N(Ω)), where H

2
N(Ω) =

{

f ∈ H2(Ω) | ∂
∂n
f = 0,

on ∂Ω}, let
AS = {(t, r) ∈ QTe

| |Sr(t, r)| > 0}.

By the Sobolev embedding theorem we see that Sr(t) is continuous for almost all
t ∈ (0, Te). This implies that AS(t) is open for almost all t.

Definition 1.2 Let b̂ ∈ L∞(0, Te;L
2(Ω)) and Ŝ0 ∈ L2(Ω). A function Ŝ with

Ŝ ∈ L2(0, Te;H
2(Ω)) ∩ L∞(QTe

), Ŝr(t) ∈ H1
0 (Ω) a.e. in (0, Te), (26)

is a weak solution of the problem (21) – (24), if and only if Ŝ, with local weak

derivative Ŝrrr in AŜ and |Ŝr|Ŝrrr ∈ L1(AŜ), satisfies that

(r2Ŝ, ϕt)QTe
+ c
(

νr2Ŝrrr|Ŝr|, ϕr

)

AŜ

+ c
(

r2F|Ŝr|, ϕr

)

QTe

+ (r2Ŝ0, ϕ(0))Ω = 0 (27)

holds for all ϕ ∈ C∞
0 ((−∞, Te)× R).

For the function ψ̂, we need the following
Assumptions A. The function ψ̂(S) is a smooth double-well potential, and it has
two local minima at S− and S+ with S− < S+, one local maximum at S∗ satisfying
S− < S∗ < S+; and ψ̂

′(S) > 0 for S− < S < S∗ and ψ̂′(S) < 0 for S∗ < S < S+.
For simplicity, we assume further that

ψ̂(k)(S+) = 0 for 1 ≤ k ≤ 2m1 − 1, ψ̂(2m1)(S+) > 0,

ψ̂(k)(S−) = 0 for 1 ≤ k ≤ 2m2 − 1, ψ̂(2m2)(S−) > 0.
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and that ψ̂(S) ∼ S2ℓ1 as S → ∞, ψ̂(S) ∼ S2ℓ2 as S → −∞, where m1, m2, ℓ1,
and ℓ2 are positive integers. Let ℓ = max{ℓ1, ℓ2}. Assume that ℓ > 1.

Remark 2. One typical example of ψ̂ which satisfies assumptions A is ψ̂(S) =
(S(1− S))2, with S+ = 1, S− = 0, ℓ = ℓ1 = ℓ2 = 2 and m1 = m2 = 1.

We are now in a position to state the main result of this paper.

Theorem 1.3 Assume that the double-well potential ψ̂ satisfies assumptions A. Then
to all Ŝ0 ∈ H1(Ω) and b̂ ∈ L2(QTe

) with b̂t ∈ L2(QTe
) there exists a weak solution Ŝ

to (21)–(24), which in addition to (26) satisfies (20) and

Ŝ ∈ L∞(0, Te;H
1(Ω)), Ŝt ∈ L

4

3 (0, Te;W
−1, 4

3 (Ω)), (28)

|Ŝr|Ŝrrr ∈ L
4

3 (QTe
), (29)

where we defined |Ŝr|Ŝrrr = 0 on QTe
\ AŜ .

The main difficulties of the proof of this theorem are caused by the term |Sr|
which results in that eq. (21) is degenerate and its coefficients are non-smooth. The
coefficient of the principal term in (21) contains |Sr|, so this principal term can only

be defined over a domain AŜ which may be not open. This leads to the difficulty of
definition of weak derivatives Ŝrrr.

Related results are Alber and Zhu [1] – [6], Kawashima and Zhu [12], and
those for the degenerate Cahn-Hilliard equation and for the equation of thin film
St = −divx(m(S)∇x∆xS), where m(S) vanishes at zero. We refer to [9, 11] and
the references therein. However, the mathematical properties of (3) containing the
term |∇xS| differ essentially from the ones of these equations.

2. Sketch of the proof of the main result

The proof of Theorem 1.3 consists of the following three steps. For simplicity, we
drop the upper-script ,̂ i.e. change Ŝ, · · · back to S, · · · .

Step 1. Construction of approximate solutions
To construct approximate solutions to (21)–(24) we prove that there exist weak

solutions to the following initial-boundary value problem

(r2S)t + c
(

r2(νSrrr + Fκ)|Sr|κ
)

r
= 0 in QTe

, (1)

Sr = 0 on [0, Te]× ∂Ω, (2)

(Fκ + νSrrr)|Sr|κ = 0 on [0, Te]× ∂Ω, (3)

S|t=0 = S0 in Ω , (4)

where κ is a fixed positive constant, |y|κ is defined by |y|κ =
√

|y|2 + κ2, and Fκ is
the smoothed F in which b is replaced by its smooth approximation bκ.
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Eq. (1) is quasi-linear, uniformly parabolic over a domain that Sr is bounded.
However it is not easy to prove the existence of classical solution to prob-
lem (1)–(4), whence we consider the weak solutions to this problem. By def-
inition, S ∈ L2(0, Te;H

1(Ω) with Srrr ∈ L2(QTe
) is a weak solution of (1)–(4) if and

only if for all ϕ ∈ C∞
0 ((−∞, Te)× R)

−(r2S, ϕt)QTe
= (r2S0, ϕ(0))Ω + c

(

r2(νSrrr + Fκ)|Sr|κ, ϕr

)

QTe

. (5)

Step 2. Main a-priori estimates

Lemma 2.1 There is a constant C, independent of κ, such that for any t ∈ [0, Te]

‖Sκ
r ‖

2
H1(Ω) +

∫

Qt

(|Sκ
r |κ + κ)|Sκ

rrr|
2d(τ, y) ≤ C, (6)

‖ |Sκ
r |κS

κ
rrr‖L

4
3 (Qt)

≤ C. (7)

Step 3. Limits
To investigate the limits of approximate solutions constructed in Step 1, we need

the Egorov theorem.

Theorem 2.2 (Egorov) Let (Γ,Σ, µ) be a measure space with µ(Γ) <∞, let f, f 1, f 2,

f 3, · · · be real valued, measurable functions on Γ, and assume that f j(x) → f(x) as
j → ∞ for almost every x ∈ Γ.

Then, for every ε > 0 there is a subset Mε ⊂ Γ with µ(Mε) > µ(Γ)− ε such that
f j(x) converges to f(x) uniformly on Mε. That is, for every δ > 0 there is an Nδ

such that when j > Nδ we have that for every x ∈Mε

|f j(x)− f(x)| < δ.

With the help of this theorem we can get the local weak derivative Srrr as follows.
Decompose the set Ân = {(t, r) ∈ QTe

| |Sr(t, r)| >
1
n
} into a set An (on which the

sequence Sκ
r converges uniformly to Sr and thus satisfies |Sκ

r | ≥
1
2n

for sufficiently

small κ) and the set Ân \An (which has small measure). Using the uniform estimate
∫

QTe

(|Sκ
r |κ + κ)|Sκ

rrr|
2 d(τ, r) ≤ C, we can then show that Sκ

rrr converges in L2(An)

to Srrr. Finally, we apply the fact that AS differs from
⋃

∞

n=1An only by a set of
measure zero. We then have the following key lemma.

Lemma 2.3 The limit function S has the local weak L2–derivative Srrr on AS in
the sense of Definition 1.1. Moreover, there exists a subsequence Sκ such that
|Sκ

r |κS
κ
rrr ⇀ χ, weakly in L

4

3 (QTe
), where the function χ = χ(t, r) in L

4

3 (QTe
) is

given by χ = 0, if Sr = 0, and = |Sr|Srrr, if Sr 6= 0.
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