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Abstract: In this short note, we present several ideas and observations
concerning finite element convergence and the role of the maximum angle
condition. Based on previous work, we formulate a hypothesis concerning
a necessary condition for O(h) convergence and show a simple relation to
classical problems in measure theory and differential geometry which could
lead to new insights in the area.
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1. Introduction

The finite element method (FEM) is among the most popular, if not the single
most popular numerical method for the solution of partial differential equations.
The theory and practice of the FEM has a long and rich history. One of the main
questions is, of course, “when does it work”. Specifically, for piecewise linear FEM,
we ask when does the FEM have optimal O(h) convergence in the H1(Ω)-norm.
It was believed that the so-called maximum angle condition is a sufficient as well
as necessary condition for O(h) convergence. While the first is true, cf. [1, 2], the
maximum angle condition is not necessary for O(h) convergence, as was recently
shown in [2] by a simple argument.

While the author believes that we are still far away from formulating a necessary
and also sufficient condition for O(h) convergence, in this short note we present some
ideas and observations related to this question.

In Section 2.1, we investigate the refinement procedure from [2], where maximum
angle condition satisfying triangulations are arbitrarily subdivided to obtain maxi-
mum angle violating triangulations with O(h) convergence. We show that by such
refinement, one cannot obtain triangulations containing only degenerate elements.
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In Section 2.2, we review the only known counterexample of Babuška and Aziz [1],
which together with the results of Section 2.1 leads to formulating a hypothesis on
a necessary condition for O(h) convergence. Namely, we hypothesize that elements
satisfying the maximum angle condition must be “dense” in Ω.

We are unable to prove the presented hypothesis, in fact as far as the author
knows, no nontrivial necessary condition is known in the literature. In Section 3, we
present a simple connection between the question of FEM convergence and differ-
ential geometry, which could possibly give alternative insight into these and related
questions of FEM convergence.

2. A hypothesis on a necessary condition for O(h) convergence

We treat the following problem: Find u : Ω ⊂ R2 → R such that

−∆u = f, u|∂Ω = 0, (1)

where Ω is a bounded polygonal domain with a Lipschitz boundary and f ∈ L2(Ω).
Defining V = H1

0 (Ω) and the associated bilinear form a(u, v) =
∫

Ω
∇u · ∇v dx, the

corresponding weak form of (1) reads: Find u ∈ V such that

a(u, v) = (f, v) ∀v ∈ V.

The finite element method constructs a sequence of spaces {Vh}h∈(0,h0) on conform-
ing triangulations {Th}h∈(0,h0) of Ω, where Vh ⊂ V consists of globally continuous
piecewise linear functions on Th. The FEM formulation then reads: Find uh ∈ Vh
such that

a(uh, vh) = (f, vh) ∀vh ∈ Vh.

Denoting h as the maximal diameter of all elements K in Th, the natural measure
of convergence of uh to u is estimation by powers of h. Specifically, in the energy
norm of (1), we obtain at most O(h) convergence if u ∈ H2(Ω), i.e.

|u− uh|H1(Ω) ≤ C(u)h ∀u ∈ H2(Ω) ∩ V, (2)

where the constant C(u) is typically written in the form C|u|H2(Ω). The question is,
when can such a result be proved. Currently, the most general sufficient condition
known for (2) is the maximum angle condition:

Definition 1. A system of triangulations {Th}h∈(0,h0), h0 > 0 satisfies the maximum
angle condition, if there exists α < π such that all angles in all triangles K ∈ Th are
less than α for all h ∈ (0, h0).

Recently it was shown that the maximum angle condition is not necessary for
O(h) convergence. In [2], triangulations Th satisfying Definition 1 are refined by

subdividing each triangle K ∈ Th arbitrarily, thus obtaining new triangulations T̃h.
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Since Th satisfies Definition 1 and T̃h is a refinement of Th, then since Th allows
O(h) convergence, so must T̃h by Céa’s lemma.

The natural question arises, how far can one take these refinements. For example,
taking Th satisfying the maximum angle condition, can one construct T̃h such that
the maximal angles of all triangles are arbitrarily close to π? We answer this question
negatively in the following section.

2.1. Mesh subdivisions

In the following, we will need to distinguish between triangles K ∈ Th “satisfying”
and “violating” the maximum angle condition. Of course, this depends on the choice
of α in Definition 1. For this purpose, we fix some α arbitrarily close to π. We will call
K with maximum angle larger than α degenerate and non-degenerate otherwise. This
terminology is clear: if {Th}h∈(0,h0) violates Definition 1, than there exist triangles K
in some Th such that their maximum angle is arbitrarily close to π. Hence Definition 1
is violated for any choice of α. Therefore, in the end, the “maximum angle violating”
property is independent of the specific choice of α.

Definition 2. Let α ∈ (0, π) be close to π. A triangle K ∈ Th is called degenerate,
if the maximum angle in K is > α. Otherwise, K is called non-degenerate.

Now we show that a non-degenerate triangle K cannot be cut into degenerate
triangles only. Hence the construction from [2] cannot give triangulations containing
only degenerate triangles.

Lemma 1. Let α ∈ (2
3
π, π). Let K be a triangle with all angles less than α. Then

there does not exist a finite conforming partition of K into triangles which all contain
an angle greater than or equal to α.

Proof. Assume on the contrary that such a partition P exists. Let t = number of
triangles in P , vI = number of vertices of P contained in the interior of K and vB =
number of vertices of P lying on ∂K.

On one hand, the sum of all angles in P is πt. On the other hand, the same
sum can be calculated by summing all angles surrounding all interior, boundary and
corner vertices in P . Thus we get

πt = 2πvI + πvB + π,

which simplifies to the Euler-type identity

t = 2vI + vB + 1. (3)

Now, we calculate the number of angles in P that are greater than or equal to
α. On one hand, we obtain t, since each triangle in P contains exactly one such
angle. On the other hand, since α > 2

3
π, each interior vertex of P can be the vertex
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of (at most) two such angles. Similarly, each boundary vertex can be the vertex of
(at most) one such angle and the corner vertices of T are all < α. Thus

t ≤ 2vI + vB. (4)

Substituting (3) into (4), we get 1 ≤ 0, which is a contradiction.

Lemma 1 can be interpreted informally in the following way: A non-degenerate
triangle cannot be cut into degenerate triangles only, one always has at least one
non-degenerate triangle in the resulting partition.

In [2], triangulations violating the maximum angle condition but possessing the
O(h) convergence property are constructed by taking a system of triangulations sat-
isfying the maximum angle condition and subdividing each of its triangles arbitrarily.
However, Lemma 1 states that each of these subdivided triangles K contains a tri-
angle K̃ satisfying the same maximum angle condition as K. Therefore, using this
procedure, one cannot produce large regions of degenerate triangles in the following
sense.

Definition 3. We say that the set of non-degenerate triangles is dense in {Th}h∈(0,h0),

if for all x ∈ Ω and all neighbourhoods U ∈ O(x) there exists h̃ ∈ (0, h0) such that
for all h ∈ (0, h̃) there exists a non-degenerate K ∈ Th such that K ⊂ U .

Now we will prove the main result, that using the procedure of [2], one can obtain
only triangulations, where the set of non-degenerate triangles is dense in the sense
of Definition 3. In particular, one cannot obtain triangulations with only degenerate
triangles by subdividing triangulations satisfying the maximum angle condition.

Theorem 2. Let {Th}h∈(0,h0) satisfy the maximum angle condition. Let {T̃h}h∈(0,h0)

be a set of conforming triangulations of Ω obtained from {Th}h∈(0,h0) by subdividing
each triangle in each Th into a finite number of triangles. Then non-degenerate
triangles are dense in {T̃h}h∈(0,h0).

Proof. Choose x ∈ Ω and U ∈ O(x). Then for sufficiently small h̃, for each Th,

h ∈ (0, h̃) there exists K ∈ Th such that K ⊂ U . Since T̃h is obtained from Th by
subdividing each triangle, by Theorem 1 the partition of K must contain a non-
degenerate triangle K̃. Since K ⊂ U , then also K̃ ⊂ U , hence the set of non-
degenerate triangles is dense in {T̃h}h∈(0,h0).

2.2. The Babuška-Aziz counterexample

As far as the author is aware of, there exists only one counterexample to O(h) con-
vergence of the finite element method. This is the counterexample of Babuška and
Aziz [1], further refined in [4]. The counterexample consists of a series of triangula-
tions Tm,n of the unit square, where m and 2n denote the number of intervals into
which the horizontal and vertical sides of the unit square are divided, cf. Figure 1.
On these triangulations, the piecewise linear FEM is used to discretize Poisson’s
problem with the exact solution 1

2
x(1 − x). While the original paper [1] uses this
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Figure 1: Babuška-Aziz triangulation T3,9 of the unit square

problem only to provide a counterexample to O(h) convergence, in [4] a more de-
tailed analysis is carried out and the error of the discrete solution um,n is shown to
satisfy

‖u− um,n‖H1(Ω) ≈ min{1,m/n2}. (5)

In Tm,n, the maximal edge length satisfies h = 1/m. Estimate (5) means that if the
maximal condition is violated, i.e. n → ∞ faster than m, then O(h) convergence
does not hold.

In the Babuška-Aziz counterexample, if all triangles (except the few triangles near
the vertical boundaries) violate the maximal angle condition, then we lose O(h) con-
vergence. Therefore, in this counterexample, large open subsets of Ω containing
only degenerate triangles destroy O(h) convergence. In general, if another system
of triangulations Th coincided with Tm,n on a fixed open subset of Ω, then Th would
also not admit O(h) convergence. Of course, Tm,n are highly structured, even peri-
odic, and therefore represent only one possibility of triangulations containing only
degenerate triangles. Theorem 2 states that such triangulations cannot be obtained
by subdivision. Therefore, based on these considerations, we state the following
hypothesis, which says that the result of Theorem 2 is a necessary condition for
O(h) convergence.

Hypothesis. Let {Th}h∈(0,h0) be a system of triangulations and uh ∈ Vh the corre-
sponding discrete solutions. If |u − uh|H1(Ω) ≤ C(u)h for all u ∈ H2(Ω), or some
dense subset thereof, then triangles satisfying the maximum angle condition (non-
degenerate triangles) are dense in {Th}h∈(0,h0) in the sense of Definition 3.

The strategy how to prove this hypothesis is as follows: show that triangulations
similar to Tm,n violate O(h) convergence. Here “similar” means that Th should
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contain only degenerate triangles (up to perhaps a few adjoining the boundary).
However, for such general triangulation, we lack the simple structure of Tm,n, which
is an essential ingredient in the proofs presented in [1, 4].

3. Relation to differential geometry

The Babuška-Aziz counterexample is the only known counterexample to finite
element convergence to date. Moreover, it is interesting that this counterexample
coincides with a classical counterexample from the early stages of development of
measure theory, the so-called Schwarz lantern [5]. The purpose of Schwarz’s coun-
terexample is to show that even for smooth surfaces, surface area cannot be defined
as the limit of areas of approximating polyhedral surfaces. In fact, in Schwarz’s
counterexample, the surface areas of the approximating polyhedral surfaces tend to
infinity, although the limit surface (in the Hausdorff metric) has finite surface area.
This surprised the contemporary mathematical community, since this limit definition
was standardly used, based on a flawed analogy with curve length.

Since two different areas of mathematics share the same counterexample, it is
natural to ask whether there is some connection. Unsurprisingly, this is the case.
The purpose of this section is to point out this connection and that this opens
the door to obtain a different insight into the convergence of FEM via differential
geometry and measure theory.

Definition 4. Let Ω ⊂ R2 and v : Ω→ R. Then the graph of v is defined as

graph(v) = {(x, y, z) ∈ R3 : z = v(x, y) for (x, y) ∈ Ω}.

In the following theorem, we show that FEM convergence implies convergence of
surface areas of the corresponding graphs. By A(v), we denote the surface area of
graph(v) of a function v : Ω→ R, if it is well defined.

Theorem 3. Let u ∈ H2(Ω) and uh ∈ Vh for h ∈ (0, h0). If uh → u in H1(Ω) as
h→ 0, then for a subsequence, graph(uhn)→ graph(u) in the Hausdorff metric and
A(uhn)→ A(u).

Proof. Since H2(Ω), Vh ⊂ C(Ω̄), then u, uh ∈ C(Ω̄). Since uh → u in H1(Ω), also
uh → u in L2(Ω). Therefore there exists a subsequence uhn converging to u pointwise
almost everywhere in Ω. Since u, uhn ⊂ C(Ω̄), we have uhn → u uniformly in Ω. By
the definition of the Hausdorff metric and uniform convergence, we immediately have
graph(uhn)→ graph(u) in the Hausdorff metric.

It remains to prove the convergence of surface areas. For a function v ∈ H1(Ω),
the area of graph(v) is given by

A(v) =

∫
Ω

√
1 +

(
∂v
∂x

)2
+
(
∂v
∂y

)2
d(x, y).
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Therefore,

∣∣A(u)− A(v)
∣∣ ≤ ∫

Ω

∣∣∣√1 +
(
∂u
∂x

)2
+
(
∂u
∂y

)2 −
√

1 +
(
∂v
∂x

)2
+
(
∂v
∂y

)2
∣∣∣d(x, y). (6)

Using the easily verifiable inequality |
√

1 + a2 + b2−
√

1 + c2 + d2| ≤ |a− c|+ |b− d|
for all a, b, c, d ∈ R, we obtain

∣∣A(u)− A(v)
∣∣ ≤ ∫

Ω

(∣∣∂u
∂x
− ∂v

∂x

∣∣+
∣∣∂u
∂y
− ∂v

∂y

∣∣)d(x, y) ≤
√

2|Ω|1/2|u− v|H1(Ω) (7)

by Hölder’s inequality. Therefore, uhn → u in H1(Ω) implies A(uhn)→ A(u).

Theorem 3 thus establishes a simple connection to the theory of approximation
of surface area. Similar questions have been dealt with in the past decade in the
field of discrete differential geometry. The question is, how do classical differential-
geometric objects defined on polygonal (polyhedral) surfaces converge to those of the
limit surface. In the case of Theorem 3, we are interested in results of the following
type:

Theorem 4 ([3]). If a sequence of polyhedral surfaces {Mn} converges to a smooth
surface M in the Hausdorff metric, then the following conditions are equivalent:

convergence of area,

convergence of normal fields,

convergence of metric tensors,

convergence of Laplace-Beltrami operators.

Here convergence is always meant in the L∞-sense for the corresponding term.

Theorems 3 and 4 yield a potential strategy for proving necessary conditions
for FEM convergence. In the context of discrete differential geometry, the problem
can be attacked from other points of view using different techniques than usual in
the FEM community. We note that in [3], the theory used to prove Theorem 4 is
used also to investigate convergence of other objects such as geodesics and mean
curvature vectors. Unfortunately, it seems that there are no suitable more general
results directly applicable to the convergence of FEM in existing discrete differential
literature, although the analogy of the minimum angle condition is known in the
community.
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