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Abstract: This paper is concerned with goal-oriented a posteriori error es-
timates for discontinous Galerkin discretizations of linear elliptic boundary
value problems. Our approach combines the Dual Weighted Residual method
(DWR) with local weighted least-squares reconstruction of the discrete solu-
tion. This technique is used not only for controlling the discretization error,
but also to track the influence of the algebraic errors. We illustrate the per-
formance of the proposed method by numerical experiments.
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1. Introduction

Usually a posteriori error estimation techniques measure the error in a norm
which is connected with the mathematical formulation of the problem being solved.
The concern in practical application may be quite different. The main purpose
of the computation may be to calculate a quantity of interest, expressed in the
mathematical language as a functional applied to the solution of the solved problem
(e.g. drag or lift in the airflow simulations). The dual weighted residual (DWR)
method first proposed by Rannacher et al., (for a survey, see e.g. [2]), suggests a way
how to connect the error of the target quantity with the solved problem. This is
enabled by solving the so-called dual (or adjoint) problem.

Our main goal is to employ the DWR method for designing an efficient adaptive
algorithm for solving stationary partial differential equations. We focus on the Pois-
son problem with Dirichlet boundary conditions in this paper, but most of the work
can be extended even to nonlinear problems. Even though the DWR method can
be combined with any discretization technique based on the variational formulation,
we focus mainly on the discontinuous Galerkin (DG) method, which is based on
discontinuous piece-wise polynomial approximation.
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Solving the additional dual problem may lead to an increase in the computational
effort. Moreover, the dual solution needs to be in a space V +

h ) Vh, where Vh is the
original discrete space. On the other hand, the ability of measuring directly the
error of the target quantity reduces the computational efforts compared to other
estimation techniques.

There are several possibilities for discretization of the dual problem. One can
solve the dual problem on a globally refined mesh with higher polynomial degree,
see e.g. [8]. This approach gives very precise results, but the computational effort
used to solve the dual problem exceeds the cost of the original problem dramatically.
Therefore, we present an algorithm based on higher-order reconstruction presented
originally in [5], which can be computed locally and therefore much more efficiently.

Further, the presented method naturally allows to integrate estimation of the
algebraic errors arising from inexact solution of both the primal and dual problems.
We present estimates enabling to keep the discretization and algebraic errors in
balance.

Finally, we compare the performance of the presented goal-oriented error estima-
tion method with a classical (not goal-oriented) a posteriori error estimate and we
examine the influence of the algebraic errors by a numerical experiment.

2. Problem description

Let Ω ∈ R2 be a bounded polygonal domain. We consider the Poisson equation

−∆u = f in Ω, (1a)

u = uD on ∂Ω (1b)

where u : Ω → R is an unknown scalar function defined on Ω.
We use the standard notation for the Lebesgue spaces Lp(Ω), Sobolev spaces

W k,p(Ω), Hk(Ω) = W k,2(Ω) and H1
0 (Ω) for the subspace of H1(Ω) containing func-

tions with vanishing traces of ∂Ω. Moreover, the space of polynomial functions up
to the degree k defined on a domain M ⊂ R2 is denoted by P k(M). We assume that
f ∈ L2(Ω) and uD is trace of some u∗ ∈ H1(Ω) ∩ L∞(Ω) on ∂Ω.

We say that function u ∈ H1(Ω) is the weak solution of problem (1) if it satisfies

u− u∗ ∈ H1
0 (Ω), (2)

a(u, ϕ) = l(ϕ) ∀ϕ ∈ H1
0 (Ω),

where a(u, ϕ) :=
∫

Ω
∇u · ∇ϕ dx, l(ϕ) :=

∫

Ω
fϕ dx, u, ϕ ∈ H1(Ω).

3. Discretization of the problem

Let Th be a partition covering Ω consisting of finite number of closed triangles K
with mutually disjoint interiors. The boundary of the elementK ∈ Th will be denoted
by ∂K and its diameter by hK = diamK.
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We assume that there exists h0 > 0 such that {Th}h∈(0,h0)
is a system of triangu-

lations is shape-regular and locally quasi-uniform. We do not require the conforming
properties known from finite element methods. Therefore, the triangulations Th could
contain so called hanging nodes. Over the triangulation Th we define the so-called bro-
ken Sobolev space over the triangulation Th as H

s(Ω, Th) = {v ∈ L2(Ω), v
∣

∣

K
∈Hs(K),

∀K ∈ Th}.
The DWR method can be combined with any discretization technique based on

the variational formulation of the solved problem such as finite element method,
finite volumes method or discontinuous Galerkin.

Here we focus only on the discontinuous Galerkin (DG) method. Since the DG
method is very convenient for hp-adaptation, we assign to each K ∈ Th its local
polynomial degree pK . Then we define vector p := {pK ; K ∈ Th} and as the finite
dimensional discrete space we use

S
p

h = {v ∈ L2(Ω); v
∣

∣

K
∈ P pK(K) ∀K ∈ Th}. (3)

We say that the function uh ∈ S
p

h is the approximate solution of (2) if

ah(uh, ϕh) = lh(ϕh) ∀ϕh ∈ S
p

h, (4)

where ah(·, ·) is a bilinear form resulting from the DG discretization of the problem (2)
and lh is a linear form representing the right-hand side of the equation enriched by
some terms resulting from the DG method.

The Dirichlet boundary condition (1b) is not enforced directly, but it is integrated
in the forms ah and lh by a penalty term. Detailed introduction of this method is
not necessary for this paper, so we only stress out the important properties of the
DG method when needed. Precise definitions of the forms and description of the
properties of the method can be found in the monograph [3].

The crucial requirement on this method needed in this article is to be consistent,
i.e. the exact solution u of problem (2) also satisfies

ah(u, ϕ) = lh(ϕ) ∀ϕ ∈ H2(Ω, Th). (5)

For the purpose of the higher-order reconstruction presented in Section 5 we
also define the space Sp+1

h := {v ∈ L2(Ω); v
∣

∣

K
∈ P pk+1(K) ∀K ∈ Th}. Obviously

S
p

h ⊂ S
p+1
h ⊂ H2(Ω, Th).

4. Dual weighted residual method

Our goal is to estimate the error J(u)− J(uh), where J : V ∪ Sp

h → R is a linear
functional representing the so-called quantity of interest. Typically, this functional
represents a regularized value of the solution (or its derivative) in a given point in Ω
or an integral over a part of Ω or its boundary ∂Ω.

The trick which enables to plug the functional J into the computation (similarly
as the Aubin-Nietche trick used to prove the optimal rate of convergence in L2−norm)
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is the introduction of the so-called dual (or adjoint) problem. In addition to the
original problem we introduce the dual problem:

find z ∈ V such that ah(ψ, z) = J(ψ) ∀ψ ∈ H2(Ω, Th). (6)

And also its discrete variant:

find zh ∈ S
p

h such that ah(ψh, zh) = J(ψh) ∀ψh ∈ S
p

h. (7)

Remark 1. Problem (6) may look a bit artificial since it contains the bilinear
form ah(·, ·) from the discretized problem (4). One could also consider directly the
dual problem to the weak formulation (2), i.e. a(ψ, z) = l(ψ), ∀ψ ∈ V. If the dis-
cretization method is dually consistent, i.e. the discrete dual problem is a consistent
discretization of the weak dual formulation, then these two definitions coincide. It
has been shown in [6] that the dual consistency is essential in order to maintain the
optimal convergence order of the method. Dual consistency is maintained only for
the symmetric variant of DG method known as SIPG – symmetric interior penalty
Galerkin, see [3] for details.

The following manipulation gives us a relation between the error of the quantity of
interest and the residual of the solved problem. Thanks to linearity of J , consistency
of the DG scheme and the Galerkin orthogonality ah(u− uh, ϕh) = ah(ϕh, z − zh) =
0 ∀ϕh ∈ S

p

h, we get

J(u)− J(uh) = J(u− uh) = ah(u− uh, z) = ah(u− uh, z − ϕh) (8)

= lh(z − ϕh)− ah(uh, z − ϕh) =: rh(uh)(z − ϕh) ∀ϕh ∈ S
p

h

and very similarly

J(u)− J(uh) = ah(u− uh, z − zh) = ah(u− ψh, z − zh) (9)

= J(u− ψh)− ah(u− ψh, zh) =: r∗h(zh)(u− ψh) ∀ψh ∈ S
p

h.

Hence the residuals rh(uh)(·) and r
∗
h(zh)(·) are equivalent in the following way

rh(uh)(z − ϕh) = r∗h(zh)(u− ψh) ∀ϕh, ψh ∈ S
p

h. (10)

Unfortunately, even the “exact” discrete solution satisfying (4) is not available
in practical computations due to algebraic errors. Instead, we compute their ap-
proximation uah and zah typically resulting from a finite number of iterations of an
iterative solver. In this case, Galerkin orthogonality property is violated and hence
identities (8) and (9) need to be revised. Similarly to [1], by adding the algebraic
error to (8), we get

J(u)− J(uah) = ah(u− uah, z − zah) + ah(u− uah, z
a
h)

= rh(u
a
h)(z − zah) + rh(u

a
h)(z

a
h), (11)
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and rewriting (9) gives

J(u)− J(uah) = ah(u− uah, z − zah) + ah(u− uah, z
a
h)

= ah(u, z − zah)− ah(u
a
h, z − zah) + ah(u− uah, z

a
h)

= lh(z)− ah(u, z
a
h)− (J(uah)− ah(u

a
h, z

a
h)) + lh(z

a
h)− ah(u

a
h, z

a
h)

= r∗h(z
a
h)(u)− r∗h(z

a
h)(u

a
h) + rh(u

a
h)(z

a
h). (12)

Here, the expressions rh(u
a
h)(z − zah) and r∗h(z

a
h)(u) represent the discretization

error, while rh(u
a
h)(z

a
h) and r∗h(z

a
h)(u

a
h) represent the algebraic errors of the pri-

mal and dual problem, respectively. Unlike r∗h(z
a
h)(u

a
h) and rh(u

a
h)(z

a
h), expressions

rh(u
a
h)(z − zah) and r∗h(z

a
h)(u) are not computable and have to be further approxi-

mated.

5. Approximation of the exact solutions u and z

Except for a few very special examples (see e.g. [2, Chapter 3]) exact solution of
the dual problem is not computable and has to be approximated. Since the residuals
of the (algebraically exact) approximate solutions uh and zh equal to zero for all
functions from S

p

h, functions approximating u and z must be from a richer space
than Sp

h, otherwise the error estimates (8) and (9) would degenerate.

The standard approach is to compute the dual problem on a finer mesh and/or
with higher polynomial degree. To avoid this costly procedure we exploit a higher
order reconstruction of the discrete solutions uh and zh, which can be obtained
locally and hence much faster. We use the weighted least-square reconstruction,
firstly presented in [5].

Let uh ∈ S
p

h be the approximate solution of (4). We compute the reconstruction
u+h ∈ S

p+1
h locally for each element K ∈ Th by a weighted least square approximation

from the elements sharing at least a vertex with K. We denote this patch of elements
DK = {K ′ ∈ Th; K

′ ∩K 6= ∅}.

We compute the function U
+
K ∈ P pK+1(DK) by

U
+
K = argmin

Uh∈P
pK+1(DK)

∑

K ′∈DK

ωK ′‖Uh − uh‖
2
H1(K ′). (13)

Then we assemble the higher-order reconstruction u+h as an element-wise composition
of U+

K

∣

∣

K
, i.e. u+h =

∑

K∈Th
U

+
K

∣

∣

K
.

When choosing the values of the weights ωK ′, we distinguish between elements
sharing a face and elements having only a common vertex. We set ωK ′ = 1 if K ′ = K

or if K,K ′ share a face and ωK ′ = ε if K,K ′ share only a vertex. The parameter
ε > 0 is chosen to be considerably smaller than one.

The computation of z+h is done alike, using function zh.
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6. Error estimates

Exploiting (11), (12) and the reconstructions defined in Section 5, we introduce
two kinds of discretization error estimators

ηS := rh(u
a
h)(z

+
h − zah), η∗S := r∗h(z

a
h)(u

+
h ). (14)

Furthermore, we define algebraic error estimators

ηA := rh(u
a
h)(z

a
h), η∗A := r∗h(z

a
h)(u

a
h), (15)

which measure the influence of the algebraic errors arising from the inexact solution
of the primal and the dual problem, respectively. Since we do not have in hands
the true error, but only its approximation, we proceed with iterations of the Krylov
solver until these algebraic estimators decrease significantly (10–1000 times) under
the level of the discretization error.

Using the definitions of the error estimators (14) and (15) and the relations (11)
and (12), we can write the error estimates

J(u)− J(uah) ≈ ηS + ηA (16)

and

J(u)− J(uah) ≈ η∗S − η∗A + ηA. (17)

The functional J has not the properties of a norm and can attain both positive
and negative values on different elements. Hence, we have to separate the estimate
of the error, where we avoid overestimation, and the local error indicators that have
to be positive at each element. Therefore, we define

ηS,K = |rh(u
a
h)((z

+
h − zah)

∣

∣

K
)|, η∗S,K = |r∗h(z

a
h)(u

+
h

∣

∣

K
)|, K ∈ Th. (18)

Either of those can be used as a local error indicator for mesh refinement. Although
the primal and dual residuals are theoretically equivalent, see (10), localizations (18)
can differ notably and hence may lead to differently refined meshes.

7. Numerical experiments

The problem we solve comes from [7]. We consider Poisson problem

−∆u = f in Ω = (0, 1)× (0, 1) (19)

u
∣

∣

∂Ω
= 0,

and we set the primal and dual right-hand sides

f(v) = −

∫

Tf

∂v

∂x1
dx, J(v) = −

∫

Tg

∂v

∂x1
dx, (20)
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where Tf and Tg are triangles with vertices Tf = {(0, 0), (0.5, 0), (0, 0.5)} and Tg =
{(1, 1), (0.5, 1), (1, 0.5)}, see Figure 1.

Both f and J are in H−1(Ω) and the solutions have singularities along the lines
connecting points [0, 0.5], [0.5, 0] and [0.5, 1], [1, 0.5] for the primal and dual prob-
lems, respectively. We discretized the problem by SIPG DG method with piece-wise
quadratic polynomials. We compare the numerical results obtained by goal-oriented
estimates with u+h , z

+
h computed with the least-squares reconstruction (DWR) and

with globally increased polynomial degree (DWR P). The third approximation was
computed with a classical (not goal-oriented) error estimation technique (RES). This
method, first proposed in [4], estimates dual norm of the residual of the discrete so-
lution.

Meshes after 25 steps of mesh adaptation are showed in Figure 1. In each adap-
tation step we refined 10% of elements with the largest local error indicators. In
Figure 2, we compare the decrease of the error J(u)− J(uah) for all three algorithms
on adaptively refined meshes. The adaptive RES technique does not take into ac-
count the singularity of the dual problem. For this reason it does not refine the mesh
in the upper-right corner and it cannot decrease the error of the target quantity
bellow the level 10−6. The goal-oriented algorithm reduces the error more steadily.
The computation with the least-squares reconstruction behaves comparably to the
more expensive algorithm DWR P. Our goal-oriented algorithm almost achieves the
optimal theoretical rate of convergence O((#Th)

−2) proved in [7].
In the second experiment, Figure 3, we compare the decrease of the true error

of the quantity of interest J(u) − J(uah) with estimates ηS, η
∗
S of the discretization

error and estimates ηA, η
∗
A of the algebraic errors given by (14)–(15). These results

were obtained by the SIPG method with quadratic polynomials on fixed uniform
mesh with 256 elements. At each step (outer iterations, which are marked on the
horizontal axis in Figure 3) we simultaneously performed 8 iterations of the algebraic
solver (GMRES with ILU preconditioning) for primal and 50 iterations for the dual
problem, respectively. In other words, at the outer step i, the situation after i×8 and
i×50 steps of the algebraic solver for the primal and the dual problem, respectively,
is plotted.

Figure 3 nicely illustrates the relations (12) and (17). Since we perform more
iterations of the algebraic solver in each (outer) step, thus both |zh − zah| and the

Tf

Tg

Figure 1: The initial mesh (left) and final meshes produced by the DWR method
(center) and DWR P method (right), respectively.
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Figure 2: Error convergence of the RES, DWR and DWR P methods compared to
the theoretical rate.

algebraic error of the dual problem (≈ η∗A) is negligible already after a few steps. On
the other hand, the algebraic error of the primal problem (≈ ηA) decreases slower.
Therefore, in the first 10 steps the error of the target quantity J(u)−J(uah) is mainly
caused by the algebraic errors in the solution of the primal problem, hence its decrease
corresponds to the decrease of ηA. Only when the estimate ηA decreases under the
level of the discretization error, J(u)−J(uah) stops at the level of J(u)−J(uh) ≈ η∗S.

For example in the step 6 (i.e, after 48 and 300 iterations of the algebraic solver
for the primal and dual problem, respectively) both the error J(u)− J(uah) and the
estimate ηS are still strongly influenced by the algebraic errors of uah. On the the
contrary, the dual estimate η∗S is already at the level of the exact discretization error
J(u)− J(uh). In other words, the algebraical inexactness in the discrete solution uah
influences the primal estimate ηS more seriously than the dual estimate η∗S.

Similar (but reversed) behavior was observed in the opposite case, when uah ≈ uh
but zah is far from zh. This indicates that even quite inexact approximation zah of zh
could be sufficient for the primal estimate ηS. On the other hand, if we knew that for
some reason the dual algebraic problem was easier to solve, we should use the dual
estimate η∗S which can give better results for rough approximations of uh. Finally,
we note that this is possible only thanks to the equivalence (10) between the primal
and the dual residual, which also implies that J(uh) = ah(uh, zh) = lh(zh), hence we
are able to obtain an approximation of J(u) even without computing uh at all.
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