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Abstract: In this paper we summarize three recent results in computational
geometry, that were motivated by applications in mathematical modelling of
fluids. The cornerstone of all three results is the genuine construction devel-
oped by D. Sommerville already in 1923. We show Sommerville tetrahedra can
be effectively used as an underlying mesh with additional properties and also
can help us prove a result on boundary-fitted meshes. Finally we demonstrate
the universality of the Sommerville’s construction by its direct generalization
to any dimension.
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1. Introduction

Many computational methods require or prefer simplicial meshes as the underly-
ing geometrical playground. In two dimensions the best triangle among all, measured
by various regularity criteria, is the equilateral triangle, which is a space-filler. In
higher dimensions the situation is different, as already for d = 3 the equilateral
tetrahedron cannot tile the space, see [13].

If the equilateral tetrahedron cannot be taken as the standard, is there any other
playing such role what concerns space-filling? The answer is affirmative, as we show
in the sequel. Moreover, an answer to that question will be generalized to a general
dimension.
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The cornerstone of this paper is the construction proposed by Sommerville already
in 1923, see [14]. It takes the unit equilateral triangle A0A1A2 as a base and creates
the points B0, B1, B2, ... above the three original points satisfying

Bz = [Ai(z), zp], z ∈ Z, where i(z) ≡ z mod 3, (1)

and p is a positive parameter. Then the tetrahedra are defined as convex hulls of
four consecutive points, which we denote co{Bz, Bz+1, Bz+2, Bz+3} =: Kz

3 . Three
such tetrahedra are sketched in Figure 1. Obviously, this construction enables to
fill the whole infinite triangular prism by copies of a single element. Repeating this
construction appropriately above all triangles, one gets a face-to-face tessellation of
the three-dimensional space, determined up to a positive constant p, that consists
of congruent tetrahedra, whose representative is denoted by K3(p). For more details
we refer to [7].

The paper is devoted to three recent author’s results based on the above construc-
tion. These can be found in their full detail in [7], [9] and [8]; here we provide their
brief summary with some additional comments. Each of these results is presented in
a separate section.
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Figure 1: Illustration of the Sommerville’s construction.
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2. Well-centered Sommerville tetrahedra and their shape-optimization

This result was motivated by the work of Feireisl et al. [4], in which the con-
vergence of a numerical scheme to the compressible Navier-Stokes-Fourier system in
three spatial dimensions is proven. While the target system is confined to a smooth
bounded domain Ω, the numerical scheme is supposed to be defined on a family of
polyhedral domains {Ωh}h→0, for which Ω ⊂ Ωh and maxx∈∂Ωh

dist[x, ∂Ω] ≤ h. This
approach, known as variational crime, see e.g. [2], is known to decrease the rate of
convergence, upon the condition that conforming elements are used. This is, how-
ever, not the case in [4], where non-conforming Crouzeix-Raviart elements are used
for velocity.

Numerical domains Ωh are supposed to admit face-to-face tetrahedral meshes Th

(where h denotes the characteristic diameter of the elements), satisfying the strong
regularity property.

Definition 1 (Strong regularity). Let {Th}h→0 be a family of meshes. If there exists
θ0 > 0 independent of h such that for any Th and any K ∈ Th it holds that

θ(K) :=
̺(K)

diam K
≥ θ0, (2)

where ̺(K) is the radius of the largest ball contained in K, then we say that {Th}h→0

is a strongly regular family.

One can also define strong regularity with different regularity ratios. Equivalency
of some of these definitions can be found in [1]. The terms shape regular or regular
family of meshes can be found within the literature for the property (2).

Further, the tetrahedral elements of the mesh in [4] is assumed to satisfy so-called
well-centered property, introduced by VanderZee, see e.g. [16]. A well-centered sim-
plex contains its circumcenter in its interior; this ensures that the segment connecting
the circumcenters of two neighbouring elements is perpendicular to their common
facet and does not degenerate. This property is used in the numerical scheme for
the balance of temperature. For the sake of brevity, we use the term well-centered
mesh instead of the more proper d-well-centered mesh.

Definition 2 (Well-centered property). Let Kd := co{V0, V1, . . . , Vd} be an d-dimen-
sional simplex. We say that Kd is well-centered if its circumcenter lies in the interior
of Kd.

We would like to point out that in two dimensions the well-centeredness coincides
with acuteness, while in higher dimensions it is no longer true, see some illustrations
in [15].

With all the above said, the idea for finding the polyhedral domains Ωh and
meshes Th was the following. First, to find a face-to-face well-centered tetrahedral
tessellation of the whole three-dimensional space with the size of the elements not
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exceeding h and then to pick those elements whose intersection with Ω is non-empty.
Their union then builds Ωh.

We use the Sommerville’s result, which can be scaled to provide the desired
tessellation. By virtue of a sufficient condition introduced by VanderZee, [16, Theo-
rem 1] and elementary geometric calculations, we are able to determine the range of
parameters, for which the elements are well-centered.

Theorem 1 ([7], Theorem 3.3). The tetrahedra constructed by the method described
in Section 1 are well-centered if and only if p ∈

(
0,
√
2/2

)
.

Basically any parameter from given range would give a satisfactory mesh. How-
ever, it is obvious that parameters in the middle of the interval are better than those
at its edges; for p small we obtain flat tetrahedra of the wedge type that are close
to degenerate ones, while for p →

√
2/2 the distances of neighbouring circumcenters

degenerate. Therefore, we determine a shape optimal parameter within this range.

Theorem 2. Let K3(p) be a tetrahedron constructed by the method in Section 1 and
let θ be the regularity ratio defined by (2). Then θ(p) := θ(K3(p)) is maximal for
p = p⋆ =

√
2/4.

The value p⋆ is optimal also for regularity ratio (6) that is used later in Section 4
and also for the ratio of circumradius and inradius of an element, which is the original
assertion [7, Theorem 4.3].

While the general p ∈ (0,
√
2/2) gives a well-centered mesh that consists of a tetra-

hedra that are congruent to each other, for p⋆ we get a mesh build by copies of a single
element, which also trivially implies the strong regularity property. The element is
an equifacial tetrahedron, see [6]. As for Naylor [12], it is the most regular tetrahe-
dron, whose copies tile the three dimensional space. Thus it can (and in the next
section will) be used as a reference tetrahedron for measuring the shape regularity.

3. Strongly regular family of boundary-fitted meshes

The second result is also motivated by a numerical scheme for compressible flow
on an unfitted mesh. For establishing error estimates to a numerical scheme for com-
pressible Navier-Stokes equation in three dimensions in [3], the weak-strong unique-
ness principle, see [5], is used. For this reason, the existence of a strong solution is
assumed. But the system is known to possess strong solution only on sufficiently
smooth domains. Therefore, the target system is confined to a bounded domain
Ω ∈ C3, while the numerical scheme is designed on a tetrahedral mesh Th that fills
a polyhedral domain Ωh. There is no inclusion of the domains Ωh and Ω assumed,
but both domains shall be close to each other. We require for all x ∈ ∂Ωh that

dist[x, ∂Ω] ≤ dΩh
2, (3)

with the constant dΩ depending solely on the geometry of Ω. This is easily ensured
by placing the vertices of the polyhedral domain Ωh at the boundary of the smooth
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domain Ω. We call such mesh boundary-fitted. To prove (3), one just uses the Taylor
expansion.

Again, for the convergence, we need to assume that the family of polyhedral
domains is strongly regular. The question of existence of a strongly regular family of
boundary-fitted simplicial meshes to a C2 domain is affirmative in two dimensions
thanks to [10]. We attack the three-dimensional case and the result reads as follows.

Theorem 3 ([9], Theorem 1). Let Ω be a bounded domain in R
3 of the class C2, with

the minimal radius of an osculation sphere equal to rΩ. Let for some h1 sufficiently
small there exists (Ωh1

, Th1
) an approximative domain with boundary-fitted mesh and

let
θ(K) ≥ α

rΩ
diam K,

for any K ∈ Th1
, where θ is defined in (2) and α > α0 = 32(2 +

√
5)
√

2/3.
Then there exists a strongly regular family of boundary-fitted meshes {Th}h→0.

The assumption is easy to be fulfilled, as the initial regularity requirement gets
weaker with decreasing discretization parameter. The proof is based on the result of
Kř́ıžek, see [11], that shows that a Sommerville tetrahedron, i.e. tetrahedron K3(p

⋆)
from Section 2, can be decomposed into eight identical tetrahedra that are similar to
the original one. As a consequence, any tetrahedron of the size h can be decomposed
into eight tetrahedra of the size not exceeding h/2 while the regularity is preserved.
Hence we decompose the initial mesh, the newly established vertices that lie on ∂Ωh

get shifted to the smooth boundary ∂Ω and we show, that the regularity does not
deteriorate too much. The shifts of these vertices are performed by affine mappings.
This was our motivation to employ a new regularity criterion, based on the similarity
of a tetrahedron with the reference one, Sommerville tetrahedron.

Definition 3. Let K = co{A,B,C,D} be a tetrahedron,

AK := {FK ;FK an affine transformation, FK(K̃) = K}
be a set of all affine transformations mapping Sommerville tetrahedron K̃ onto K.
Then we define the Sommerville regularity ratio of tetrahedron K as

κ(K) = max
FK∈AK

σmin(FK)

σmax(FK)
,

where σmin(FK), σmax(FK) are the minimal and maximal singular values of FK .

We are able to show, that this regularity criterion is equivalent to the other stan-
dard ones in the sense of strong regularity, hence the whole proof can be performed
in the terms of κ. The details of the laborious and technical proof can be found in [9].
Here we just point out that the final argument is based on the following inequalities,

n−1∏

j=0

(1− aqj) > lim
n→∞

n−1∏

j=0

(1− aqj) = P (a, q) > 0,

for any n ∈ N and a, q ∈ [0, 1].
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4. Space-filling simplices in general dimension

The last of the triplet of results is motivated by the Sommerville’s construction
itself. One can view it as a method of creating the tessellation of d-dimensional space
out of (d− 1)-dimensional one.

The idea is to take a simplex of a tessellation of the (d−1)-dimensional space and
create the infinite prism made of d-dimensional simplices above it. More specifically,
for a simplex K ∈ Td−1, where K = co{A0, A1, . . . , Ad−1} we construct points Bz

satisfying

Bz = [Ai(z), zp], z ∈ Z, where i(z) ≡ z mod d, (4)

compare (4) with (1). The simplices are defined as convex hulls of d+ 1 consecutive
points Bz. Performing the same above all simplices of the original (d−1)-dimensional
tessellation, one recovers a face-to-face simplicial tessellation of d-dimensional space,
as it is summarized in the following lemma.

Lemma 1 ([8], Lemma 2.2). Let d ≥ 2 and Td−1 = {Kk
d−1}k∈Zd−1 be a simplicial

tessellation of (d−1)-dimensional space such that the graph constructed from vertices
and edges of Td−1 is a d-vertex-colorable graph. Then

• there exists Td = {Ll
d}l∈Zd a simplicial tessellation of d-dimensional space with

additional shape parameter pd,

• any connected compact subset of Td is a face-to-face mesh,

• Td is a (d+ 1)-vertex-colorable graph.

The vertex coloring is a tool which ensures the face-to-face property and guar-
antees that above a vertex (that is shared by several simplices) the new points are
constructed consistently, in the same heights above each element. Lemma 1 provides
us with the induction step, the initial step is given as a straight line discretized
equidistantly using p1 > 0 with points of alternating colors. Thus, we can state the
following.

Theorem 4 ([8], Theorem 2.1). For any d-dimensional space there exists a d-para-
metric family of simplicial tessellations Td(p),p = (p1, p2, . . . , pd), pi > 0. For
p fixed, all elements K ∈ Td(p) have the same d-dimensional measure equal to

measdK =

d∏

i=1

pi. (5)

Moreover, every connected compact subset of the tessellation builds a face-to-face
mesh.

We obtained a tessellation that is determined up to a d-dimensional vector of
positive parameters p = (p1, . . . , pd). Therefore, we determine the shape-optimal
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vector of parameters. To benefit from the equivolumetricity property (5), we decided
to optimize the ratio

ϑ(K) =
measdK

(diam K)d
, d ≥ 2. (6)

In particular, we are looking for an element K⋆ and a vector p⋆ satisfying

ϑ(K⋆(p⋆)) = sup
p∈Rd

+

min
K∈Td(p)

measdK

(diam K)d
, (7)

as in general all the elements are not equal. We are optimizing the worst element,
which is the one with largest diameter. Luckily, there is only a limited number of
candidates for the diameter, therefore (7) can be viewed as an optimization prob-
lem with nonlinear constraints. Such optimum must satisfy so-called Karush-Kuhn-
Tucker conditions. These are always necessary, but sufficient only when the optimized
function is convex.

Since we are not able to show the convexity, we prove that the minimizer exists
and that there is a unique vector p⋆ that satisfies these conditions. Then p⋆ must
be the minimizer. To be precise, the above is true after fixing p1, which obviously
plays the role of a scaling parameter and as such does not affect the shape of the
simplices. The statement reads as follows.

Theorem 5 ([8], Theorem 3.1). Let d ≥ 2 and let Td(p) be a tessellation constructed
through the procedure introduced above. Then there exists a unique one-dimensional
vector half-space

P ⋆=

{
p⋆,κ ∈ R

d
+|p⋆,κ=κp⋆, κ>0, p⋆1 = 1, p⋆2 =

1√
3
, p⋆j =

1

j − 1

√
2

3
, j ∈ {3, . . . , d}

}
,

of optimal parameters that realize

sup
p∈Rd

+

min
K∈Td(p)

measdK

(diam K)d
. (8)

The detailed proof can be found in [8]. Here we just point out two interesting
remarks.

The result of the optimization would be the same, if one optimizes at every level
of the construction, which is a one-dimensional optimization that is much easier.
In other words, a shape optimal tessellation cannot be created from a sub-optimal
tessellation of a hyperplane.

As it was already mentioned in Section 2, for d = 3 we obtain again the (equifa-
cial) Sommerville tetrahedron. One can verify that for the choice κ =

√
3/2 we get

unit equilateral triangle for d = 2, which was the base for construction in Section 2,
indeed κp⋆3 =

√
2/4.
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