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Abstract: A block version of the BFGS variable metric update formula is
investigated. It satisfies the quasi-Newton conditions with all used differ-
ence vectors and gives the best improvement of convergence in some sense
for quadratic objective functions, but it does not guarantee that the direction
vectors are descent for general functions. To overcome this difficulty and uti-
lize the advantageous properties of the block BFGS update, a block version of
the limited-memory BNS method for large scale unconstrained optimization is
proposed. The algorithm is globally convergent for convex sufficiently smooth
functions and our numerical experiments indicate its efficiency.
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1. Introduction

In this contribution we propose a block version of the widely used BNS method,
see [3], for large scale unconstrained optimization

min f(x) : x ∈ RN ,

where it is assumed that the problem function f : RN → R is differentiable.
The BNS method belongs to the variable metric (VM) or quasi-Newton (QN)

line search iterative methods, see [9], [11]. They start with an initial point x0 ∈ RN

and generate iterations xk+1 ∈ RN by the process xk+1 = xk + sk, sk = tkdk, k ≥ 0,
where usually the direction vector dk ∈ RN is dk = −Hkgk, matrix Hk is symmetric
positive definite and a stepsize tk > 0 is chosen in such a way that

fk+1 − fk ≤ ε1tkg
T
k dk, gTk+1dk ≥ ε2g

T
k dk, k ≥ 0 (1)

(the Wolfe line search conditions, see [11]), where 0 < ε1 < 1/2, ε1 < ε2 < 1,
fk = f(xk), gk = ∇f(xk). Typically, H0 is a multiple of I and Hk+1 is obtained from
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Hk by a VM update to satisfy the QN condition (see [9]) Hk+1yk = sk, yk = gk+1−gk,
k ≥ 0.

Among VM methods, the BFGS method, see [9], [11], belongs to the most ef-
ficient. It preserves positive definite VM matrices and can be written in the form

H+ = (1/b)ssT +
(

I − (1/b)syT
)

H
(

I − (1/b)ysT
)

, b = sTy, (2)

b > 0 by (1). Note that for simplification we often omit index k and replace in-
dices k + 1, k − 1 by symbols +,−, respectively. The BNS and L-BFGS (see [5],
[6] – subroutine PLIS) methods represent its well-known limited-memory adaptations
(for large-scale optimization). In every iteration we repeatedly update an initial
approximation of the inverse Hessian matrix ζkI, ζk > 0, by the BFGS method,
using m couples of vectors (sk−m̃, yk−m̃), . . . , (sk, yk) successively (without forming
approximations of the inverse Hessian matrix explicitly), where m̃ = min(k, m̂− 1),
m = m̃ + 1 and m̂ > 1 is a given parameter. In the case of the BNS method,
matrix H+ can be expressed in the form, see [3],

H+ = SU−TDU−1ST + ζ
(

I − SU−TY T
)(

I − Y U−1ST
)

, (3)

where for k≥ 0 we denote Sk = [sk−m̃, . . . , sk], Yk = [yk−m̃, . . . , yk], (Uk)i,j=(ST
k Yk)i,j

for i ≤ j, (Uk)i,j = 0 otherwise (an upper triangular matrix), Dk = diag[bk−m̃, . . . , bk].
For STY nonsingular and any H ∈ RN×N , the BFGS update formula (2) can be

easily generalized to the following block version

H+ = S(STY )−1ST +
(

I − S(STY )−TY T
)

H̄
(

I − Y (STY )−1ST
)

, H̄ =
1

2
(H +HT ),

(4)
which satisfies the QN conditions H+Y = S (for the whole block of stored difference
vectors) and was derived in [12] and [4] for STY,H symmetric positive definite.

Formula (4) is not directly applicable to general functions, since it does not
guarantee that the corresponding direction vectors are descent. Thus we split ma-
trices S and Y in such a way that S = [S[1], . . . , S[n]], Y = [Y[1], . . . , Y[n]], with all
blocks ST

[i]Y[i] positive definite, i.e. matrices ST
[i]Y[i] + Y T

[i]S[i] symmetric positive defi-

nite, i = 1, . . . , n. Then we replace the BNS formula (3) by n successive updates of
an initial matrix ζI using a modification of the block BFGS update (4) with matri-
ces S[i], Y[i], i = 1, . . . , n, instead of S, Y . Obviously, for n = m we obtain the BNS
method.

In Section 2 we derive the block BFGS update, investigate its properties and
show some similarities to the VM methods, based on the corrected BFGS updates,
see the limited-memory BFGS method [13] – [16]. In Section 3 we focus on quadratic
functions and show optimality of the block BFGS method and a role of unit stepsizes.
In Section 4 we present the block BNS method and derive a convenient formula
similar to (3) to represent the resultant VM matrix. The simplified algorithm is
described in Section 5. Global convergence of the algorithm is established in Section 6
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and numerical results are reported in Section 7. We refer to report [17] for details
and proofs of assertions, here we briefly present only the main results.

We will denote the Frobenius matrix norm by ‖ · ‖F .

2. The block BFGS update

Using the following theorem, update (4) can be derived for general functions:

Theorem 1. Let WL,WR ∈ RN×N be nonsingular, matrix Y have a full rank, ma-
trix H+ be given by (4) and matrices Ai+1, i = −1, 0, . . . , be the unique solution
to

min
Ai+1∈R

N×N

∥

∥W−1
L (Ai+1 − Āi)W

−1
R

∥

∥

F
s. t. Ai+1Y = S, Ā−1 = H, Āi =

1

2
(Ai + AT

i ),

i ≥ 0. Then for W T
RWRY = STS, TS square nonsingular, we have limi→∞Ai = H+.

The new update has similar interesting properties as the standard BFGS update.

Theorem 2. Let matrix H+ be given by (4), matrices STY, H̄,H+, S
T B̄S, T ∈ Rm×m

nonsingular, B̄ = H̄−1, B+ = H−1
+ . Then (also for nonsymmetric H̄)

(a) matrix H+ is invariant under the transformation S → ST , Y → Y T ,

(b) B+ = B̄ − B̄S(ST B̄S)−1ST B̄ + Y (STY )−TY T ,

(c) detB+ = det B̄ . det(STY )/ det(ST B̄S),

(d) for H and STY positive definite, also matrix H+ is positive definite,

(e) forS
∆
=[Š, s],Y

∆
=[Y̌ , y],STY, ŠT Y̌ symmetric nonsingular, P̌ =I−Y̌ (ŠT Y̌ )−1ŠT,

s̃ = P̌ T s and ỹ = P̌ y we have s̃T ỹ
∆
= b̃ 6= 0, H+ = (1/b̃) s̃s̃T + P̃ T ȞP̃ ,

P̃ = I−(1/b̃)ỹs̃T , Ȟ = Š(ŠT Y̌ )−1ŠT + P̌ T H̄P̌ ; besides, ŠTB+s̃ = ŠT Ȟ−1s̃ = 0
holds.

Theorem 2(e) shows some connections with our methods [13] – [16] based on vec-
tor corrections for conjugacy. The following theorem indicates that we can expect
good properties of the block BFGS update also for functions similar to quadratic.

Theorem 3. Let matrices Š, Y̌ , P̌ , Ȟ, H+ and vectors s̃, ỹ have the same meaning
as in Theorem2(e), STY be symmetric positive definite, s̈ = s + Šσ, ÿ = y + Y̌ σ,
σ ∈ Rm̃, m̃ ≥ 1. Then b̈ = s̈T ÿ ≥ s̃T ỹ > 0. Moreover, if matrix H̄ is nonsingular,
P̈ = I−(1/b̈)ÿ s̈T , Ḧ+ = (1/b̈)s̈ s̈T + P̈ T ȞP̈ and Ĝ is any symmetric positive definite

matrix satisfying ĜS = Y , then function ϕ(σ) = ‖Ĝ
1

2 Ḧ+Ĝ
1

2 − I‖F is minimized and
Ḧ+ = H+ holds for σ = −(ŠT Y̌ )−1Y̌ T s, when s̈ = s̃, ÿ = ỹ.
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Paradoxically, the standard BFGS update often gives better results if STY is
almost symmetric and the Hessian matrix is ill-conditioned. Therefore we will use,
in addition to the choice s̈ = s̃, ÿ = ỹ, also the choice s̈ = s, ÿ = y, which corresponds
to the standard BFGS update of Ȟ and can be easily realized by means of blocks of
order one, or a special choice s̈ = s− (sTy−/b−)s−, ÿ = y− (yTs−/b−)y−, which can
be more robust than the block BFGS update, see [17] for details.

3. Results for quadratic functions

Compared to the BNS method, the block BFGS update gives the best improve-
ment of convergence in some sense for linearly independent direction vectors:

Theorem 4. Let f(x) = 1
2
(x − x̄)TG(x − x̄), x̄ ∈ RN , with a symmetric posi-

tive definite matrix G, let all columns of S be linearly independent, k = k − m̃,
Ŝi = [sk, . . . , si], Ŷi = [yk, . . . , yi], P̂i = I− Ŷi(Ŝ

T
i Ŷi)

−1ŜT
i , i = k, . . . , k, s̈k = s̃k = sk,

ÿk = ỹk = yk, s̈i = si + Ŝi−1σi, ÿi = yi + Ŷi−1σi, σi ∈ Ri−1, s̃i = P̂ T
i−1si,

ỹi = P̂i−1yi, i = k + 1, . . . , k. Then matrices ŜT
i Ŷi are symmetric positive definite

and s̈Ti ÿi ≥ s̃Ti ỹi > 0, i = k, . . . , k.
Moreover, let H̄ be symmetric positive definite, H+ be given by (4) and Ḧk+1 by

Ḧk = H̄, Ḧi+1 = (1/s̈Ti ÿi) s̈is̈
T
i + P̈ T

i ḦiP̈i, P̈i = I − (1/s̈Ti ÿi) ÿis̈
T
i ,

i = k, . . . , k. Then value ‖G1/2Ḧ+G
1/2− I‖F is minimized and matrices Ḧ+ and H+

are identical and symmetric positive definite for s̈i = s̃i, ÿi = ỹi, i = k + 1, . . . , k.

Furthermore, similarly to Theorem 3.3 in [16], we get (see Theorem3.2 in [17])
that if one stepsize t is unit in two successive iterations with matrices H, H+ obtained
by the block BFGS updates, all stored direction vectors from previous iterations are
conjugate with vector s+; thus if all steps are unit, all matrices STY are tridiagonal.

4. The block BNS method

Using Lemma 1, we split matrices S, Y in such a way that S = [S[1], . . . , S[n]],
Y = [Y[1], . . . , Y[n]], n ≥ 1, with all blocks ST

[i]Y[i] positive definite (ST
[i]Y[i] + Y T

[i]S[i]

symmetric positive definite), i = 1, . . . , n, and use the theory in Section 2 for ma-
trices S[i], Y[i] instead of S, Y . We use the RL factorization instead of the LU one,
since we start with the submatrices of S, Y which contain their latest columns to
have maximum of the latest QN conditions satisfied. The following lemma converts
the problem of factorization to the same problem of a smaller dimension. A gener-
alization of the standard BNS formula (3) is given by Theorem 5.

Lemma 1. Suppose that A,R, L ∈ Rµ×µ, µ > 0, u, v ∈ Rµ, α ∈ R, α 6= 0,

Ā =

[

A u
vT α

]

, R̄ =

[

R u
α

]

, L̄ =

[

L
(1/α) vT 1

]

.

Then to have Ā = R̄L̄, it suffices to find R,L satisfying A − (1/α)uvT = RL.
Moreover,
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(a) if u = v then matrix Ā is symmetric positive definite if and only if both α > 0
and matrix A− (1/α)uvT is symmetric positive definite,

(b) if matrix Ā is positive definite, then α > 0 and A−(1/α)uvT is positive definite.

Theorem 5. Let ζ > 0,H[1] = ζI,S = [S[1], . . . , S[n]], Y = [Y[1], . . . , Y[n]], S
T
[i]Y[i] non-

singular, P[i] = I − Y[i](S
T
[i]Y[i])

−1ST
[i], H[i+1] = S[i](S

T
[i]Y[i])

−1ST
[i] +

1
2
P T
[i](H[i] +HT

[i])P[i],

Σi = Y T
[i]S[i], 1 ≤ i ≤ n, H+ = H[n+1]. Then ( Ũ is an upper block triangular matrix)

H+ = SŨ−TEŨ−1ST + ζ
(

I − SŨ−TY T
)(

I − Y Ũ−1ST
)

, (5)

E = diag
[

(1/2)(Σ1 + ΣT
1 ), . . . , (1/2)(Σn−1 + ΣT

n−1),Σn

]

, (6)

Ũ =









ST
[1]Y[1] . . . ST

[1]Y[n−1] ST
[1]Y[n]

. . .
...

...
ST
[n−1]Y[n−1] ST

[n−1]Y[n]

ST
[n]Y[n]









. (7)

Although matrix H+ is unsymmetric generally, we use the usual direction vector
d+ = −H+g+, such that z∗ = x+ + d+ satisfies g(z∗) = 0, g(z) = g+ +H−1

+ (z − x+)
(a linear model for gradients which respects the QN conditions); for ill-conditioned
problems we usually obtained better results than e.g. with vector d̄+ = −(1/2)(H++
HT

+)g+.

5. Implementation

Although we need not the symmetry of H+ to establish global convergence, for
better efficiency we also want to have all submatrices ST

[i]Y[i] sufficiently near to
symmetric. Since the block BFGS update can deteriorate stability, we sometimes do
not use this update for the last block ST

[n]Y[n], see Section 2 and [17] for details.

Algorithm 5.1 (simplified)

Data: A maximum number m̂ > 1 of columns of matrices S, Y , line search param-
eters and a global convergence parameter εD ∈ (0, 1).

Step 0: Initiation. Choose starting point x0 ∈ RN , define starting matrix H0 = I
and direction vector d0 = −g0 and initiate iteration counter k to zero.

Step 1: Line search. Compute xk+1 = xk + tkdk, where tk satisfies (1), gk+1 =
∇f(xk+1), sk = tkdk, yk = gk+1 − gk, bk = sTk yk, ζk = bk/y

T
k yk. If k = 0 set

Sk = [sk], Yk = [yk], S
T
k Yk = [bk], Y

T
k Yk = [ yTk yk], compute ST

k gk+1, Y
T
k gk+1

and go to Step 4.

Step 2: Matrix updates. Compute Y̌ T
k sk = −tkY̌

T
k Hkgk and form basic matri-

ces Sk := [Šk, sk], Yk := [Y̌k, yk], ST
k Yk :=

[

ŠT
k Y̌k ŠT

k yk
sTk Y̌k sTk yk

]

, Y T
k Yk :=

[

Y̌ T
k Y̌k Y̌ T

k yk
yTk Y̌k yTk yk

]

.
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Step 3: Block factorization. Create and factorize positive definite blocks ST
[i]Y[i] =

R[i]L[i] and ST
[i]Y[i] + Y T

[i]S[i] = R̄[i]L̄[i] with unit diagonal entries of L[i], L̄[i]

and with diagonal entries of R̄[i] greater than εD TrST
[i]Y[i], i = n, . . . , 1,

where number n ≥ 1 is determined during this process.
Step 4: Direction vector. Compute dk+1 = −Hk+1gk+1 by the block BNS method

and an auxiliary vector YkHk+1gk+1. Set k := k+1. If k ≥ m̂ delete the first
column of Sk−1, Yk−1 and the first row and column of ST

k−1Yk−1, Y
T
k−1Yk−1 to

form matrices Šk, Y̌k, Š
T
k Y̌k, Y̌

T
k Y̌k. Go to Step 1.

6. Global convergence

Assumption 1. The objective function f : RN → R is bounded from below and
uniformly convex with bounded second-order derivatives (i.e. 0 < G ≤ λ(G(x)) ≤
λ(G(x)) ≤ G < ∞, x ∈ RN , where λ(G(x)) and λ(G(x)) are the lowest and the
greatest eigenvalues of the Hessian matrix G(x)).

Theorem 6. If the objective function f satisfies Assumption 1, Algorithm5.1 gen-
erates a sequence {gk} that satisfies lim

k→∞

‖gk‖ = 0 or terminates with gk = 0 for

some k.

The proof of this theorem is based on Theorem2 and some inequalities for non-
symmetric positive definite matrices, see [17].

7. Numerical experiments

We compare our results with the results obtained by the L-BFGS method [5] and
the BNS method [3], all implemented in the system UFO [10], using the following
collections of test problems:

• Test 11 – 55 modified problems [8] from CUTE collection [2] with various di-
mensions N from 1000 to 5000 (prescribed for the given problem),

• Test 12 – 73 problems from the collection [1], N = 1000, 2000 and 5000,

• Test 25 – problems from the collection [7], 70 problems for N = 1000, 69 of
them for N = 2000 and N = 5000.

The source texts and the reports corresponding to these test collections can be
downloaded from the web page camo.ici.ro/neculai/ansoft.htm (Test 12) and from
www.cs.cas.cz/luksan/test.html (Tests 11 and 25).

Test 11 Test 12, N = Test 25, N =
Method

N ≤ 5000 1000 2000 5000 1000 2000 5000
L-BFGS 79575 26526 41348 76703 125838 189248 445820
BNS 76463 25575 42227 76667 121297 179829 436457

Alg. 5.1 59858 21583 32425 56299 100334 151035 310684
Alg 5.1 as % of BNS 78 84 77 73 83 84 71

Table 1. Comparison of the total number of function evaluation.
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Test 11 Test 12, N = Test 25, N =
Method

N ≤ 5000 1000 2000 5000 1000 2000 5000
L-BFGS 11.02 1.70 6.07 23.27 10.83 35.99 207.87
BNS 9.77 1.43 5.88 21.59 9.65 31.51 190.10

Alg. 5.1 7.46 1.23 4.80 16.16 7.88 26.74 135.47
Alg 5.1 as % of BNS 76 86 82 75 82 85 71

Table 2. Comparison of the total computational time in seconds.

We have used m̂ = 5, εD = 10−6 and the final precision ‖g(x⋆)‖∞ ≤ 10−6. In the
last row of Tables 1-2 we give the values for Algorithm5.1 expressed as percentages
of the corresponding values for the BNS method.

8. Conclusions

In this contribution, we derive a block version of the BFGS variable metric update
formula for general functions and show some its positive properties and similarities
to approaches based on vector corrections ([13] – [16]).

In spite of the fact that this formula does not guarantee that the corresponding
direction vectors are descent, we propose the block BNS method for large scale
unconstrained optimization, which utilizes the advantageous properties of the block
BFGS update and is globally convergent.

Numerical results indicate that the block approach can improve unconstrained
large-scale minimization results significantly compared with the frequently used
L-BFGS and the BNS methods.
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