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ON BEHAVIOR OF SOLUTIONS TO A CHEMOTAXIS SYSTEM
WITH A NONLINEAR SENSITIVITY FUNCTION∗

TAKASI SENBA† AND KENTAROU FUJIE‡

Abstract. In this paper, we consider solutions to the following chemotaxis system with general
sensitivity 

τut = ∆u−∇ · (u∇χ(v)) in Ω× (0,∞),
ηvt = ∆v − v + u in Ω× (0,∞),
∂u

∂ν
=
∂u

∂ν
= 0 on ∂Ω× (0,∞).

Here, τ and η are positive constants, χ is a smooth function on (0,∞) satisfying χ′(·) > 0 and Ω is
a bounded domain of Rn (n ≥ 2).

It is well known that the chemotaxis system with direct sensitivity (χ(v) = χ0v, χ0 > 0) has
blowup solutions in the case where n ≥ 2. On the other hand, in the case where χ(v) = χ0 log v with
0 < χ0 � 1, any solution to the system exists globally in time and is bounded.

We present a sufficient condition for the boundedness of solutions to the system and some related
systems.
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1. Introduction. We treat this system,

(PP )


τut = ∇ · (∇u− u∇χ(v)) in Ω× (0, T ),

ηvt = ∆v − v + u in Ω× (0, T ),
∂u

∂ν
=
∂v

∂ν
= 0 on ∂Ω× (0, T ),

u(·, 0) = u0, v(·, 0) = v0 in Ω.

Here, η and τ (time constants) are positive constants, Ω ⊂ Rn (n ≥ 2) is a bounded
domain with smooth boundary ∂Ω, χ is smooth on (0,∞) satisfying χ′(v) > 0 (v > 0),
ν = ν(x) is the outer normal unite vector at x ∈ ∂Ω and initial conditions u0 and v0

are positive in Ω.
This system (PP) is introduced to describe the aggregation of cellular slime molds.

Normally the living things move around as individual amoebas, performing a simple
random walk. But when the environmental situation worsens, they suddenly change
their behavior and aggregate to a single milt-cellular body. During this aggregation
process, a chemical signal is secreted by cells to guide the collective movements. Un-
known functions u and v in (PP) represent the density of the living things and the
chemical concentration, respectively.

The maximal principle guarantees that

u > 0 and v > 0 in Ω× (0, Tmax).
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Here, Tmax is the maximal existence time of the classical solution (u, v). It follows
from the boundary condition that

‖u(t)‖L1(Ω) = ‖u0‖L1(Ω) for t ∈ [0, Tmax).(1.1)

The function χ(v) represents the relation between the movement of cells and the
chemical concentration. The term uχ′(v)∇v represents the flow due to the stimulus
of the chemical substance. This property is so called chemotaxis. Then, the positivity
of χ′ means that the chemical substance is an attractant. When χ(v) = av and a is
positive constant, we refer to this function as linear sensitivity function. The following
functions are used in biological models frequently.

χ(v) = av, a log v,
av

b+ v
(a > 0, b > 0).

Except the linear sensitivity function, they satisfy that

lim
v→∞

χ′(v) = 0.(1.2)

This property represents saturation of the stimulus.
The following are our problem and our landmark.

Our problem
(i) Find a condition of sensitivity functions for the boundedness of solutions.
(ii) Find a condition of sensitivity functions for the existence of blowup solutions.
Our conjecture
(i) All solutions exist globally in time and are bounded, if one of the following two
conditions holds:
· limv→∞ χ′(v) = 0 and n = 2, or
· lim supv→∞ vχ′(v) < n

n−2 and n ≥ 3.
(ii) There exist blowup solutions, if lim supv→∞ vχ′(v) > n

n−2 and n ≥ 3.

Here, we say that a solution (u, v) to (PP) blows up at a time T, if

lim sup
t→T

(
‖u(t)‖L∞(Ω) + ‖v(t)‖L∞(Ω)

)
=∞.

2. Known results. In this section, we describe known results.
Firstly, we describe those in the case where χ(v) is a linear function.
Theorem 2.1. Suppose that χ(v) = χ1v, χ1 > 0, η > 0 and τ > 0 and that Ω is

a bounded domain of Rn (n ≥ 2) with smooth boundary. Then, the following hold:
(i) Suppose n = 2. Then, solutions exist globally in time and are bounded, if one of

the following two conditions holds ([10]):
· ‖u0‖L1(Ω) < 4π/χ1, or
· Ω is a bounded disk and u0 is a radial function satisfying ‖u0‖L1(Ω) < 8π/χ1.

(ii) If Ω is a bounded disk of R2 and u0 is a radial function satisfying ‖u0‖L1(Ω) >
8π/χ1, there are blowup solutions ([7]).

(iii) If Ω is a bounded ball of Rn (n ≥ 3), there are blowup solutions ([16]).
Then, in the linear sensitivity case, the behavior of solutions depends on the

constant χ1 and the L1 norm of the solution u if n = 2, and there exist blowup
solutions for any positive constant χ1 if n ≥ 3.

When χ is a nonlinear function satisfying (1.2), classical solutions to (PP) satisfy
the following properties.

Theorem 2.2. Suppose that Ω is a bounded domain of Rn (n ≥ 2) with smooth
boundary. Then, the following hold:
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(i) If χ′(v) ≤ a/(b + v)p, a > 0 and p > 1, solutions to (PP) exist globally in time
and are bounded ([14, 5]).

(ii) If χ(v) = a log v and a <
√

2/n, solutions to (PP) exist globally in time and are
bounded ([15, 1]).

The above sensitivity functions χ(v) satisfy that lim supv→∞ vχ′(v) <
√

2/n.
Then, those conditions for global existence of classical solutions are not critical in the
sense of our conjecture.

3. limiting systems. When the sensitivity function is a linear function, the
condition for global existence of classical solutions is critical. The condition comes
from a Lyapunov function and the Trudinger-Moser inequality ([10, 7, 16]). On the
other hand, when the sensitivity function is not linear, it seems that conditions pre-
sented at the moment are not critical. In this case, we do not have any tools such as
the Lyapunov function. Then, we consider the limiting system of (PP) as τ or η = 0.
Because, those systems are simpler than (PP).

First, we consider the limiting system of (PP) as τ = 0. For simplicity, we assume
η = 1.

(PE)


ut = ∇ · (∇u− u∇χ(v)) in Ω× (0, T ),

0 = ∆v − v + u in Ω× (0, T ),
∂u

∂ν
=
∂v

∂ν
= 0 on ∂Ω× (0, T ),

u(·, 0) = u0 in Ω.

Classical solutions to this system satisfy the following properties.
Theorem 3.1. Suppose that Ω is a bounded domain of Rn (n ≥ 2) with smooth

boundary and that limv→∞ χ′(v) = 0. Then, the following hold:
(i) If n = 2, solutions to (PE) exist globally in time and are bounded ([2]).
(ii) If n ≥ 3, Ω is a bounded ball, u0 is radial, χ(v) = a log v and a < 2/(n− 2), then

solutions to (PE) exist globally in time and are bounded ([11]).
(iii) If n ≥ 3, Ω is a bounded ball, u0 is radial, χ(v) = a log v and a > 2n/(n − 2),

there are blowup solutions to (PE) ([11]).
We think that the assumption (1.2) is almost necessary condition in two dimen-

sional case. Because, if Ω is a bounded disk of R2 and infv>0 χ
′(v) > 0, we can find

blowup solutions to (PE) by using an argument similar to the one in [9].
In the case of n ≥ 3, the conditions for global existence of solutions and existence

of blowup solutions are not critical. Because, in our conjecture, the critical number
is n/(n− 2).

Next, we consider the limiting system of (PP) as τ = 0. For simplicity, we assume
η = 1.

(EP )



0 = ∇ · (∇u− u∇χ(v)) in Ω× (0, T ),
vt = ∆v − v + u in Ω× (0, T ),
∂u

∂ν
=
∂v

∂ν
= 0 on ∂Ω× (0, T ),

v(·, 0) = v0 in Ω,∫
Ω

u(x, t)dx = λ in (0, T ),

where λ is a given positive constant. The last condition means the conservation of
mass. Since solutions to the original system (PP) satisfy (1.1), then we impose this
property also for solutions to (EP).
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This system (EP) can be transformed into a non-local parabolic equation. In fact,
the first equation and the boundary condition of (EP) guarantee that

log u = χ(v) + C,

where C is a constant. This and the last condition of (EP) ensure that

u =
λ exp(χ(v))∫

Ω
exp(χ(v))dx

.

Therefore, the system (EP) is equivalent to the following system,

(NLP )



vt = ∆v − v +
λ exp(χ(v))∫

Ω
exp(χ(v))dx

in Ω× (0, T ),

u =
λ exp(χ(v))∫

Ω
exp(χ(v))dx

in Ω× (0, T ),

∂v

∂ν
= 0 on ∂Ω× (0, T ),

v(·, 0) = v0 in Ω.

Here, λ is a given positive constant.
Classical solutions to (NLP) satisfy the following properties.
Theorem 3.2 ([12]). Suppose that Ω is a bounded domain of Rn (n ≥ 2) with

smooth boundary and that χ satisfies (1.2). Then, the following hold:
(i) If n = 2, solutions to (NLP) exist globally in time and are bounded.
(ii) If n ≥ 3 and lim supv→∞ vχ′(v) < n/(n− 2), solutions to (NLP) exist globally in

time and are bounded.
(iii) If n ≥ 3, Ω is a bounded ball of Rn, χ(v) = a log v and a > n/(n− 2), there are

blowup solutions to (NLP).
In two dimensional case, (1.2) is the sufficient condition for the global existence

of solutions to (PE) and (NLP). We expect that (1.2) is also the sufficient condition
for (PP). In the case of n ≥ 3, the threshold number n/(n − 2) in Theorem 3.2 is
same as the one in our conjecture. Then, we think that this result is an evidence for
our conjecture.

4. Our results. Considering results on the limiting systems mentioned in the
previous section, we consider also almost limiting systems which are the systems (PP)
in the case where τ or η is sufficient small.

In two dimensional case, classical solutions to those almost systems satisfy the
following properties.

Theorem 4.1 ([3, 4]). Suppose that Ω is a bounded domain of R2 with smooth
boundary and that limv→∞ χ′(v) = 0. Then, the following hold:
(i) If Ω is a bounded disk, (u0, v0) is radial and η is sufficiently small, then solutions

to (PP) exist globally in time and are bounded.
(ii) If Ω is convex and τ is sufficiently small, then solutions to (PP) exist globally in

time and are bounded.
Remark 4.2. If our conjecture is correct, the smallness of constants η and τ and

the symmetry of (u0, v0) are not necessary in two dimensional case.
In high dimensional case, classical solutions to the almost limiting system satisfy

the following property.
Theorem 4.3 ([4]). If n ≥ 3, Ω is a bounded and convex domain of Rn, τ is

sufficiently small and lim supv→∞ vχ′(v) < n/(n − 2), then solutions to (PP) exist
globally in time and are bounded.
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Remark 4.4. If our conjecture is correct, we expect that the smallness of τ and
the convexity of Ω are not necessary. Moreover, the research on blowup solutions is
necessary.

5. Idea of proof of Theorem 4.3. In this section, we describe the idea of the
proof of Theorem 4.3. For simplicity, we assume η = 1.

Lemma 5.1. There exist positive constants Tmin > 0 and L > 0 satisfying

‖(u, v)‖C([0,Tmin]×Ω) ≤ L for τ ∈ (0, 1].

Lemma 5.2. There exists a positive constant vmin satisfying

v ≥ vmin in Ω× [0, Tmax) for τ ∈ (0, 1].

Lemma 5.1 comes from the standard energy argument and Lemma 5.2 comes from
minΩ v0 > 0 and ‖u‖L1(Ω) > 0.

Let z =
exp(χ(v))∫

Ω
exp(χ(v))dx

and w =
u

z
. Those functions satisfy the following system,

(TPP )



∂v

∂t
= ∆v − v + w

exp (χ(v))∫
Ω

exp (χ(v)) dx
in Ω× (0, T ),

τ
∂w

∂t
=

1

z
∇ · (z∇w)− τ

z

∂z

∂t
w in Ω× (0, T ),

∂v

∂ν
=
∂w

∂ν
= 0 on ∂Ω× (0, T ),

v(·, 0) = v0, w(·, 0) =

∫
Ω

exp(χ(v0))dx
u0

exp(χ(v0))
in Ω.

Let H = 2 max(‖u0‖L1(Ω), ‖w(0)‖L∞(Ω), L) and let

S(τ) = sup{T > 0; sup
0<t<T

‖w(t)‖L∞(Ω) ≤ H},

where L is the constant in Lemma 5.1.
Lemma 5.3. There exists a constant θ ∈ (0, 1) such that

‖v‖C2+θ,(2+θ)/2(Ω×[0,S(τ)]) < C(H),

where here and henceforth we will denote by C(H) a positive generic constant (possibly
changing from line to line) depending on H.

Proof. For q > n/2, n/q < 2β < 2, the semi-group property of the Laplacian
guarantees that

‖v(t)‖L∞(Ω) ≤ ‖v0‖L∞(Ω) +

∫ t

0

‖e(t−s)(∆−1)w(s)z(s)‖L∞(Ω)ds

≤ ‖v0‖L∞(Ω) + C

∫ t

0

es−t

(t− s)β
‖w(s)‖L∞(Ω)‖z(s)‖Lq(Ω)ds.

Here and henceforth, we will denote by C a positive generic constant (possibly chang-
ing from line to line). We see that

‖z(t)‖Lq(Ω) =
‖ exp(χ(v)))‖Lq(Ω)

‖ exp(χ(v)))‖L1(Ω)
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≤
‖ exp(χ(v))‖1/qL1(Ω)‖ exp(χ(v))‖(q−1)/q

L∞(Ω)

‖ exp(χ(v))‖L1(Ω)

≤ C(H)
‖(v + 1)µ‖(q−1)/q

L∞(Ω)

(|Ω| exp(χ(vmin)))(q−1)/q
.

Since lim supv→∞ vχ′(v) < µ < n/(n− 2), we can take q and β such that

q > n/2, n/q < 2β < 1 and µ
q − 1

q
< 1.

Then, we have that ‖v‖L∞(Ω×[0,S(τ)]) ≤ C(H). We obtain this lemma from this
estimate and the parabolic regularity argument.

By those and the parabolic regularity argument, we get a unique classical solution
(v, w) to (TPP) in Ω× [0, S(τ)].

We will show that S(τ) =∞ if τ is sufficiently small. Assume to the contrary that
S(τ) <∞ for τ ∈ (0, 1]. For an integer J ≥ 2 and j = 0, 1, 2, · · · , J , put T = S(τ)/J
and zj = z(jT ). Then, for j = 0, 1, 2, · · · , J − 1 and t ∈ (jT, (j + 1)T ] we have

τwt =
1

zj
∇ · zj∇w +∇ log

z

zj
· ∇w − τ zt

z
w in Ω.

For j = 0, 1, 2, · · · , J − 1, put ζ = (t − jT )/τ , W (x, ζ) = w(x, t), Z(x, ζ) = z(x, t),
Z0(x) = zj(x) and Q(x, ζ) = zt(x, t)/z(x, t). Then, those functions satisfy that

∂W

∂ζ
=

1

Z0
∇ · Z0∇W +∇ log

Z

Z0
· ∇W − τQW in Ω× (0, T/τ).

Put A = Z−1
0 ∇ · Z0∇ in Ω with ∂ · /∂ν = 0 on ∂Ω. The function W satisfies that

W (ζ) = eζAW (0) +

∫ ζ

0

e(ζ−ξ)AF (ξ)dξ for ζ ∈ (0, T/τ),

where

F = ∇ log
Z

Z0
· ∇W − τQW.

There exists a positive constant Λ depending on infΩ Z0, ‖Z0‖∞ and Ω such that

‖∇eζAW (0)‖Lq(Ω) ≤ Ce−ζΛ‖∇W (0)‖Lq(Ω) for ζ ∈ (0, T/τ),∫ ζ

0

‖∇e(ζ−ξ)A∇ log
Z(ξ)

Z0
· ∇W (ξ)‖Lq(Ω)dξ ≤ C(H)T θ/2e−ζΛ sup

ξ∈[0,ζ]

eξΛ‖∇W (ξ)‖Lq(Ω)

for ζ ∈ (0, T/τ),∫ ζ

0

‖∇e(ζ−ξ)AτQ(ξ)W (ξ)‖Lq(Ω)dξ ≤ C(H)τ (q−1)/q for ζ ∈ (0, T/τ)

and that

sup
ξ∈[0,T/τ ]

eξΛ‖∇W (ξ)‖Lq(Ω)

≤ C‖∇W (0)‖Lq(Ω) + C(H)T θ/2 sup
ξ∈[0,T/τ ]

eξΛ‖∇W (ξ)‖Lq(Ω) + C(H)τ (q−1)/qeTΛ/τ .
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Here, θ is the constant in Lemma 5.3. Taking 0 < τ � T � 1, we have that

‖∇w((j + 1)T )‖Lq(Ω) ≤ Ce−TΛ/τ‖∇w(jT )‖Lq(Ω) + C(H)τ (q−1)/q

for j = 0, 1, 2, · · · , J − 1.

and that

‖∇w(jT )‖Lq(Ω) ≤ Ce−jTΛ/τ‖∇w(jT )‖Lq(Ω) + C(H)τ (q−1)/q for j = 1, 2, 3, · · · , J.

Those estimates guarantee that

‖∇w(t− jT )‖Lq(Ω) ≤ Ce−(t−jT )Λ/τ‖∇w(jT )‖Lq(Ω) + C(H)τ (q−1)/q

for t ∈ [jT, (j + 1)T ]. Take x(t) ∈ Ω such that w(x(t), t) = ‖w(t)‖L∞(Ω). We have
that

λ =

∫
Ω

u(t)dx =

∫
Ω

w(t)z(t)dx

≥
∫

Ω

w(x(t), t)z(t)dx− diam(Ω)

∫
Ω

|w(x, t)− w(x(t), t)|
|x−x(t)|

z(t)dx,

where diam(Ω) = sup{|x− y|;x, y ∈ Ω}. Then, we obtain that

‖w(t)‖L∞(Ω) ≤ λ+ C(Ω, H, q)‖∇w(t)‖Lq(Ω) < H for t ∈ [0, S(τ)],

if τ is sufficiently small. This means that S(τ) =∞, a contradiction. Then, we have
that S(τ) =∞ if τ is sufficiently small. Therefore, we get Theorem 4.3.
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