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Department of Technical Mathematics, Faculty of Mechanical Engineering,
Center of Advanced Aerospace Technology, Czech Technical University in Prague,
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Abstract: This paper is interested with the numerical simulation of the
fluid-structure interaction problem realized with the aid of the OpenFOAM
package. The case of flow past oscillating NACA 0012 profile was chosen.
The loose, strong and combined strong coupling algorithms were tested. The
results are presented and a significant improvement of the combined coupling
algorithm is shown.
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1. Introduction

The presented paper is concerned with the numerical simulation of the two-
dimensional viscous incompressible flow past a moving airfoil, which is considered as
a solid flexibly supported body with two degrees of freedom, allowing its vertical and
torsional oscillations. This problem was addressed previously in e.g. [3], [10], [13].
The same problem was studied in [7] where the results of the turbulent incompres-
sible flow model were compared to the solution of the laminar flow model. The
results showed that the turbulence is necessary to take into account in aeroelastic
computations even for low speeds (and low Mach number) air flows. In reality the
transition from laminar to turbulent flow exists on the surface of the airfoil. We
adopted a model based on the non-turbulent fluctuations proposed by Walters and
Cokljat [11] referred to as k-kL-ω model.

The main attention is paid to the fluid-structure coupling algorithms. Parti-
cularly, the pressure implicit with splitting of operators (PISO) and semi-implicit
method for pressure linked equations (SIMPLE) algorithms are used, see e.g.[3], [8].
A combination of PISO and SIMPLE algorithms is called PIMPLE, see [6]. Fluid
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flow solver is coupled with the structure using both the loose and the strong cou-
pling algorithms. Realization of the numerical experiments is done with the aid of the
open-source software OpenFOAM, see [12]. PIMPLE based solver pimpleDyMFoam
is modified and coupled with the rigid body motion library sixDoFRigidBodyMotion.
The method is applied on a test case and numerical results are shown.

2. Mathematical model

In this section, the formulation of the initial-boundary value problem describing
the interaction of the fluid flow with the moving airfoil is presented. In order to enable
the computations on the moving domain, the governing equations are formulated in
the arbitrary Lagrangian-Eulerian (ALE) form, see [10]. The viscous incompressible
turbulent flow in computational domain Ωt ⊂ R2 for any t ∈ (0, T ) is described by
the Reynolds-averaged Navier-Stokes (RANS) equations (see e.g. [4], [9]) in the ALE
conservative form (see e.g. [13])

1

J

DA(Jv)

Dt
+ div[v ⊗ (v −w)] = −grad(p) + div(T + R)/ρ,

div(v) = 0,
(1)

where v is the mean velocity vector, p is the mean kinematic pressure, i.e., the mean
pressure divided by the constant fluid density ρ, T is the mean viscous stress tensor
and R is the Reynolds stress tensor. Symbol w denotes the so-called ALE velocity,
symbol J denotes the Jacobian of the ALE mapping and symbol DA(·)/Dt represents
the ALE derivative, see e.g. [10]. The components of the viscous stress tensor T are
for a Newtonian fluid given by

Tij = µ

(
∂vi
∂xj

+
∂vj
∂xi

)
, (2)

where µ = ρν is the dynamic viscosity, ν is the kinematic viscosity. The Rey-
nolds stress tensor R is approximated using the turbulent viscosity approach, see
e.g. [5], [9], i.e,

Rij = 2ρνT

(
∂vi
∂xj

+
∂vj
∂xi
− 1

3

∂vk
∂xk

δij

)
− 1

3
ρkδij. (3)

Here, νT is the turbulent kinematic viscosity and k is the total kinetic energy of
fluctuations. The turbulent kinematic viscosity νT and the total kinetic energy of
fluctuations k need to be further specified by the turbulence model. The k-kL-ω
model is used, which consists of three transport equations. The equation for the
laminar kinetic energy kL written in ALE form reads

1

J

DA(JkL)

Dt
+ div[kL(v −w)] = PkL −RBP −RNAT −DL + div[ν grad(kL)], (4)
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Figure 1: (Left) Sketch of the computational domain Ωt. (Right) Sketch of the airfoil
with two degrees of freedom. xcm and xea denote position of the center of mass and
the elastic axis, respectively with e being its relative distance, i.e., eccentricity.

for the turbulent kinetic energy kT

1

J

DA(JkT )

Dt
+ div[kT (v −w)] = PkT +RBP +RNAT − ωkT −DT+

+ div

[(
ν +

αT
σk

)
grad(kT )

]
, (5)

and for the specific dissipation rate ω is given by

1

J

DA(Jω)

Dt
+ div[ω(v −w)] = Cw1

ω

kT
PkT +

(
CwR
fW
− 1

)
ω

kT
(RBP +RNAT )−

− Cw2ω
2 + Cw3fωαTf

2
W

√
kT
d3

+ div

[(
ν +

αT
σω

)
grad(ω)

]
, (6)

Here, the right hand side terms in equations (4) to (6) – e.g. PkT , RBP , etc. –
correspond to the notation used in [5]. The Reynolds stress (3) is calculated based
on the solution of these equations with the aid of the quantities k = kT + kL, ω,
see [5].

The flow model is coupled with the non-linear system of ordinary differential
equations describing the motion of the rigid airfoil, see Figure 1. The motion of such
an airfoil is described by the system of non-linear ordinary differential equations
(see e.g. [7])

mḧ+ khh+ Sαα̈ cosα− Sαα̇2 sinα = −L(t),

Sαḧ cosα + Iαα̈ + kαα = M(t),
(7)

where α is the rotation around the elastic axis (clockwise positive) and h denotes the
vertical displacement of the elastic axis (downwards positive), see Figure 1, m is the
mass of the airfoil, Sα is the static moment around the elastic axis, Iα is the inertia
moment around the elastic axis, kh is the bending stiffness, and kα is the torsional
stiffness. L and M denotes the aerodynamic lift force (upwards positive) and the
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aerodynamic torsional moment (clockwise positive), respectively. The aerodynamic
lift force L acting in the vertical direction and the torsional moment M are defined by

L = −l
∫

ΓWt

2∑
j=1

(T2j+R2j−ρpδ2j)nj dS, M = l

∫
ΓWt

2∑
i,j=1

(Tij+Rij−ρpδij)njrort
i dS, (8)

where rort
1 = −(x2− xea

2 ), rort
2 = x1− xea

1 and l is the depth of the airfoil section and
n = (n1, n2) is the unit outer normal to ∂Ωt on ΓWt (pointing into the airfoil).

The system of equations (1) is equipped with an initial conditions v(x, 0) =
v0(x), p(x, 0) = p0(x) and by boundary conditions prescribed at ∂Ωt = ΓI∪ΓWt∪ΓO,
see Figure 1. Velocity vI is prescribed at the inlet part of the boundary ΓI, no-slip
boundary condition, i.e., v = w, at the moving part of the boundary representing
the surface of the airfoil ΓWt and p = 0 at the outlet part of the boundary ΓO. Three
equations of the turbulence model, i.e., (4), (5) and (6) are also equipped by an
initial conditions kT (x, 0) = kT0(x), kL(x, 0) = kL0(x) and ω(x, 0) = ω0(x) and by
boundary conditions prescribed on ∂Ωt. The boundary conditions at the solid wall,
i.e., at ΓWt , are kT = 0, kL = 0 and ∂ω/∂n = 0 (see e.g. [5], [11]). The values of kT
and ω at the inlet part ΓI are set according to parameters of the inlet flow and kL = 0.
The system (7) is equipped with initial conditions prescribing the values h(0), α(0),
ḣ(0), α̇(0). The flow model, i.e, (1), (4), (5), (6), and structure model, i.e., (7), are
coupled thought the aerodynamic lift force and the torsional moment (8).

3. Numerical method

The fluid flow solver is based on OpenFOAM’s implementation of the finite vo-
lume method, see e.g. [8]. In order to resolve the incompressibility of the fluid
the PIMPLE algorithm is used to approximate the fluid flow, see e.g. [4], [8]. Ap-
proximation of the ALE derivative is done by the second order backward difference
formula, see e.g. [2], [8].

Pressure-velocity coupling. The velocity and the pressure are treated in a segre-
gated approach, with the pressure field computed by a pressure correction equation
that exploits the discrete momentum equation to replace the velocity field in the
continuity equation with a pressure term. The PIMPLE algorithm can be summa-
rized as: first, the momentum predictor step is performed, which corresponds to
the finite volume discretization of the equation (1) to obtain new estimation of the
velocity field. This velocity field is not in general divergence-free, to solve this pro-
blem the pressure correction equation is solved. Finally, the velocity is corrected
with the new estimation of the pressure field. The PIMPLE algorithm is shown
on Figure 2 (Left). Let us mention that, in the case of using the SIMPLE loop, an
under-relaxation factors are used, see e.g. [4] or [8].
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Figure 2: (Left) Flowchart of the PIMPLE algorithm. (Right) Flowchart of the
loose/strong coupling algorithms.
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Figure 3: Flowchart of the combined strong coupling algorithm.
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Coupling algorithms. The system (7) is solved by second order Adams-Bashforth-
Moulton predictor-corrector method, see e.g. [1]. Figure 2 (Right) shows flowchart
of the loose/strong coupling algorithm with the convergence check being

r = max
i

[ |(ẏi)n+1
k+1 − (ẏi)

n+1
k |

|(ẏi)n+1
k+1 |

]
< 10−4, y = [ḣ, α̇], (9)

where index k indicates number of convergence checks starting at k = 0. For k = 0,
the algorithm is loose. Figure 3 shows flowchart of the combined strong coupling
algorithm, which takes advantage of the iterative process of the fluid flow solver, i.e.,
SIMPLE loop.

4. Numerical results

In this section the numerical results of the coupled problem of the fluid flow
and structure interaction is presented. The described methods were applied to the
analysis of the flow induced vibrations of the profile NACA 0012 profile. The com-
putation was carried out for the same data as in [10]: m = 0.086622 kg, Sα =
−0.000779673 kg m, Iα = 0.000487291 kg m2, kh = 105.109 N m−1, kα = 3.695582 N m
rad−1, l = 0.05 m, c = 0.3 m, ρ = 1.225 kg m−3, ν = 1.5 · 10−5 m s−2 and the
position of the elastic axis xea

1 = 0.4c = 0.12 m. The presented results are for
far field flow velocities U∞ = 35, 40, 45 m s−1, which yield the Reynolds numbers
Rec = 700 000, 800 000, 900 000. The computation starts at time t = 0 with the
initial condition being the fully developed flow with the airfoil in a fixed position
given by the prescribed initial translation h(0) = −50 mm and the initial angle of
attack α(0) = 6 deg. Initial velocities of the structural model are ḣ(0) = 0 and
α̇(0) = 0. The results of the airfoil motion due to the fluid-structure interaction for
time t ∈ 〈0, 1〉 are shown in Figures 4 for the far field velocities U∞ = 35, 40, 45 m s−1.
The results of the loose, strong and combined strong coupled algorithms are shown.
Obtained results indicate the need of the use of the strong coupled algorithm in post
flutter regimes (for this model the critical velocity is approximately 37 m s−1). Furt-
hermore, in our test case, the combined strong coupling algorithm proved to get very
close solutions to the strong coupling algorithm with less computer-time needed, see
Table 1.

5. Conclusion

In this paper the modification of the OpenFOAM’s solver is presented, which
allows solution of an aeroelastic problem with the transition to turbulence taken
into account. The results show the need for the strong coupling algorithms in the
post-flutter regime. Furthermore, by the combination of the PIMPLE and strong
coupling algorithms significant reduce in computer-time needed for the simulation
were observed for our test case.
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Figure 4: (Left) h [mm] and (Right) α [deg]. Dotted, dashed marked by + and solid
lines are graphs of the solutions of the loose, strong and combined strong coupling
algorithms, respectively.

U∞ Weak Strong Combined Strong

35 5 19.7 6.5
40 5 21.1 8.6
45 5 27.1 11.2

Table 1: Mean value of SIMPLE iterations per time-step during the computation
for loose, strong and combined strong coupling algorithms for the far field velocity
U∞ = 45 m s−1.
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