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Abstract: In this contribution, we propose a new hybrid method for min-
imization of nonlinear least squares. This method is based on quasi-Newton
updates, applied to an approximation A of the Jacobian matrix J , such that
AT f = JT f . This property allows us to solve a linear least squares problem,
minimizing ‖Ad+f‖ instead of solving the normal equation AT Ad+JT f = 0,
where d ∈ Rn is the required direction vector. Computational experiments
confirm the efficiency of the new method.
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1. Introduction

Consider the objective function

F (x) =
1

2
fT (x)f(x) =

1

2

m
∑

k=1

f 2
k (x), (1)

where f : Rn → Rm is a twice continuously differentiable mapping with elements fk(x),
1 ≤ k ≤ m. Let J(x) be its Jacobian matrix with elements Jkl(x) = ∂fk(x)/∂xl,
where 1 ≤ k ≤ m and 1 ≤ l ≤ n. Then the gradient and the Hessian matrix of
function (1) have the form

g(x) = JT (x)f(x) =
m

∑

k=1

fk(x)gk(x), (2)

G(x) = JT (x)J(x) + C(x) =
m

∑

k=1

gk(x)gT
k (x) +

m
∑

k=1

fk(x)Gk(x), (3)
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where gk(x) and Gk(x) are gradients and Hessian matrices of functions fk(x),
1 ≤ k ≤ m. The most known methods for minimization of the objective function (1)
are trust-region realizations of the Gauss-Newton method, which are iterative and
their iterations have the form

xi+1 = xi, ∆i+1 < ∆i if
F (xi + di) − F (xi)

Qi(di)
< ρ, (4)

xi+1 = xi + di, ∆i+1 ≥ ∆i if
F (xi + di) − F (xi)

Qi(di)
≥ ρ, (5)

where 0 < ρ < 1, Qi(d) = g(xi)
T d + (1/2)dTBid, Bi = J(xi)

T J(xi) and di is an
approximate minimum of the quadratic function Qi(d) on the trust region defined by
constraint ‖d‖ ≤ ∆i [2], [8]. Let x∗ ∈ Rn be a minimum of function (1). The Gauss-
Newton method works well if F (x∗) is small (if F (x∗) = 0, the rate of convergence
is superlinear), but the convergence can be slow if F (x∗) is large. Thus hybrid
methods, which are combinations of the Gauss-Newton method and variable metric
methods, are advantageously used. In the subsequent text, we use the notation
Fi = F (xi), gi = g(xi), Gi = G(xi), etc, and F ∗ = F (x∗), g∗ = g(x∗), G∗ = G(x∗),
etc. Sometimes index i is omitted and index i+1 is replaced by the symbol +. More
details concerning methods described in this contribution can be found in [6].

2. Hybrid methods

Hybrid methods are based on the fact that (Fi − Fi+1)/Fi → 1, if Fi → F ∗ = 0
Q-superlinearly, and (Fi − Fi+1)/Fi → 0, if Fi → F ∗ > 0. This fact forms the basis
for a simple hybrid method in [1]: Let B1 = JT

1 J1. If (Fi − Fi+1)/Fi ≥ ϑ, we set
Bi+1 = JT

i+1Ji+1. If (Fi − Fi+1)/Fi < ϑ, we set

Bi+1 =
1

γi

(

Bi + [yi, Bisi]M
B
i [yi, Bisi]

T
)

, (6)

where si = xi+1 − xi, yi = gi+1 − gi = JT
i+1fi+1 − JT

i fi, γi > 0 and the matrix
MB

i ∈ R2×2 is chosen in such a way that the quasi-Newton condition Bi+1si = yi is
satisfied [7]. This simple hybrid method switches between the Gauss-Newton method
and a selected variable metric method (defined by matrix MB

i ). More complicated
hybrid methods are based on structured variable metric updates [4]: Let C1 = 0 and
Bi = JT

i Ji + Ci. If (Fi − Fi+1)/Fi ≥ ϑ, we set Ci+1 = 0. If (Fi − Fi+1)/Fi < ϑ, we
set

Ci+1 =
1

γi

(

Ci + [zi, Cisi]M
C
i [zi, Cisi]

T
)

, (7)

where si = xi+1 − xi, zi = JT
i+1fi+1 − JT

i fi+1, γi > 0 and the matrix MC
i ∈ R2×2 is

chosen in such a way that the quasi-Newton condition Ci+1si = zi is satisfied, see [7].
If matrix Bi is ill-conditioned, then a more advantageous way is to use a full rank

approximation Ai of the Jacobian matrix Ji and replace the solution of the normal
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equation di = −B−1
i gi, where Bi = AT

i Ai, by the solution of the linear least-squares
problem di = −A†

ifi. This approach is used in [13], where matrix Ai is expressed as
a sum Ai = Ji + Li and matrix Li is updated to satisfy the quasi-Newton condition
(Ji+1 +Li+1)

T (Ji+1 +Li+1)si = yi. This approach is not quite rigorous, since usually
A†

ifi 6= B−1
i gi. The equality A†

ifi = B−1
i gi is satisfied only if AT

i fi = gi = JT
i fi.

For this purpose, the additional condition Li+1fi+1 = 0 was added to the above
quasi-Newton condition in [11]. In this contribution, we confine our attention to
the simple hybrid method of the form (6). By a variational principle, we derive the
update, which satisfies the quasi-Newton condition AT

i+1Ai+1si = yi together with
the condition AT

i+1fi+1 = gi+1 = JT
i+1fi+1.

3. New hybrid method

Let B = AT A, where A = J if the Gauss-Newton step is accepted, so B = JT J
holds. To use the variational principle, we write the standard quasi-Newton condition
B+s = AT

+A+s = y in the form

√
γA+s = z̃,

√
γAT

+z̃ = γy, z̃T z̃ = γsT y, (8)

where z̃ ∈ Rm is a free vector parameter. Notice that the last equality, which is
a consequence of the first two equalities, is the only restriction on the choice of z̃.

Theorem 1. Let W be a symmetric positive definite matrix. Then the Frobenius

norm ‖W−1/2(
√

γA+ −A)T‖F is minimal on the set of all matrices satisfying quasi-

Newton condition (8) if and only if

√
γAT

+ = AT − Ws

sT Ws
s̃T +

(

γy − z + sT z
Ws

sT Ws

)

z̃T

z̃T z̃
, z̃T z̃ = γsT y. (9)

where s̃ = As and z = AT z̃.

Proof. This proof is similar to the proof of Theorem 3.1 proposed in [12]. Denote
X =

√
γAT

+. Necessity will be proven using the Lagrangian function

L =
1

2

∥

∥W−1/2
(

X − AT
)
∥

∥

2

F
+ ũT

(

XT s − z̃
)

+ vT (Xz̃ − γy)

=

m
∑

i=1

[

1

2
(ξi − di)

T W−1 (ξi − ai) + ũis
T ξi + z̃iv

T ξi

]

− ũT z̃ − γvT s,

where AT = [a1, . . . , am] and X = [ξ1, . . . , ξm]. Differentiating the Lagrangian func-
tion we obtain

∂L

∂ξi
= W−1 (ξi − ai) + ũis + z̃iv.

Therefore, the conditions for stationarity of the Lagrangian function have the form
W−1(ξi − ai) + ũis + z̃iv = 0, 1 ≤ i ≤ m, or

X − AT = −WsũT − Wvz̃T .
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Using the first condition from (8) we obtain

XT s = As − sT Wsũ − vT Wsz̃ = z̃ ⇒ ũ =
1

sT Ws

(

As − (1 + vT Ws)z̃
)

,

which after substitution to the previous equality gives

X − AT = − Ws

sT Ws
s̃T + wz̃T ,

where w ∈ Rn is an unknown vector (determined uniquely by vector v). Using the
second condition from (8) we obtain

Xz̃ = AT z̃ − sT AT z̃
Ws

sT Ws
+ z̃T z̃w = γy ⇒ w =

1

z̃T z̃

(

γy − z + sT z
Ws

sT Ws

)

,

which after substitution to the previous equality (with using relation X =
√

γAT
+)

gives (9). Sufficiency follows from the convexity of the Frobenius norm.

Update (9) contains two vector parameters Ws/sT Ws and z̃. These parameters
should be chosen in such a way to guarantee condition AT

+f+ = g+.

Lemma 1. Equalities

√
γA+s = z̃,

√
γAT

+z̃ = γy, AT
+f+ = g+ (10)

can be satisfied simultaneously only if

fT
+f+sT y ≥ (sT g+)2. (11)

Proof. From the first two equalities in (10), the relation z̃T z̃ = γsT y follows, which
determines the norm of vector z̃. The first and the third equalities imply fT

+ z̃ =√
γfT

+A+s =
√

γsT g+. Since the distance of the hyperplane fT
+ z̃ =

√
γsT g+ from the

origin is equal to
√

γ|sT g+|/‖f+‖, the norm of vector z̃ cannot be smaller than this

number, which together with equality ‖z̃‖ =
√

γsT y gives
√

γ|sT g+|/‖f+‖ ≤
√

γsT y,
or fT

+f+sT y ≥ (sT g+)2.

Remark 1. If perfect line search is used, then sT
i gi+1 = 0 holds in every iteration,

so sT
i yi = sT

i gi+1 − sT
i gi = −sT

i gi > 0, and condition (11) is always satisfied. If
the strong Wolfe condition is used (see [10]), then |sT

i gi+1| ≤ ε2|sT
i gi| holds in every

iteration, so sT
i yi = sT

i gi+1 − sT
i gi ≥ (1 − ε2)|sT

i gi|, and condition (11) is satisfied
whenever

fT
i+1fi+1 ≥

ε2
2

1 − ε2

|sT
i gi|. (12)

If xi → x∗ (so gi → 0 and si → 0) and F (x∗) > 0, there exists an index k ∈ N
such that condition (12) (and therefore also condition (11)) is satisfied ∀i ≥ k.
Moreover, in our numerical experiments with Algorithm 1, the condition (11) was
always satisfied, if Fi − Fi+1 ≤ ϑFi with ϑ = 0.0005.
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Theorem 2. Let vectors f+ and As be linearly independent and assume the inequal-

ity (11) holds. If we use vectors

z̃ =
√

γ(λ1f+ + λ2As), (13)

where

λ2
2 =

sT yfT
+f+ − (sT g+)2

fT
+f+sT AT As − (sT AT f+)2

, λ1 =
sT g+ − λ2s

T AT f+

fT
+f+

, (14)

and
Ws

sT Ws
=

γsT y(ATf+ −√
γg+) +

√
γsT g+(γy − AT z̃)

γsT ysTAT f+ −√
γsT g+sT AT z̃

, (15)

in formula (9), then equalities (10) hold.

Proof. Vector z̃ has to satisfy equalities fT
+ z̃ =

√
γsT g+ and z̃T z̃ = γsT y. Setting

z̃ =
√

γ(λ1f+ + λ2As), we obtain the system of equations

λ1f
T
+f+ + λ2s

T AT f+ =
√

γsT g+,

λ2
1f

T
+f+ + 2λ1λ2s

T AT f+ + λ2
2s

T AT As = γsT y

for unknowns λ1 and λ2. Since the vectors f+ and As are linearly independent, these
equations have the unique solution given by (14). Update (9) satisfies the first two
equalities in (10) (Theorem 1). Using the third equality, we obtain

√
γg+ = AT f+ − Ws

sT Ws
sT AT f+ +

(

γy − AT z̃ + sT AT z̃
Ws

sT Ws

)

z̃T f+

z̃T z̃

= AT f+ −
(

sT AT f+ − sT AT z̃

√
γsT g+

γsT y

)

w +
(

γy − AT z̃
)

√
γsT g+

γsT y
,

where w = Ws/sTWs. This relation implies that

w = λ

(

AT f+ −√
γg+ +

(

γy − AT z̃
)

√
γsT g+

γsT y

)

, (16)

and since sT w = sT Ws/sTWs = 1, one can write

λ
(

γsT ysTAT f+ −√
γsT g+sT AT z̃

)

= γsT y.

Substituting this value λ into (16), we obtain (15).

The above considerations are summarized in the following algorithm.

Algorithm 1

Data: Trust-region parameters [8], update parameter ϑ = 0.0005, termination pa-
rameters ε = 10−15, ε = 10−5.

Step 1: Initiation. Choose starting point x1 ∈ Rn and initial trust-region radius
∆1 > 0. Compute f1 = f(x1), J1 = J(x1), F1 = (1/2)fT

1 f1, g1 = JT
1 f1. Set

A1 =J1 and i = 1
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Step 2: Termination. If Fi ≤ ε or ‖gi‖ ≤ ε, then terminate the computation.

Step 3: Direction determination. Determine direction vector di using a trust-region
strategy (see [8]). Compute f(xi+di), F (xi+di) = (1/2)f(xi+di)

T f(xi+di).
Determine xi+1 and ∆i+1 by (4)–(5).

Step 4: Decision. If xi+1 = xi, go to Step 2. If xi+1 6= xi, set fi+1 = f(xi + di),
Fi+1 = F (xi + di) and compute Ji+1 = J(xi + di), gi+1 = g(xi + di).

Step 5: Update. If (Fi − Fi+1)/Fi ≥ ϑ, set Ai+1 = Ji+1. If (Fi − Fi+1)/Fi < ϑ,
compute matrix Ai+1 by (9) with (13)–(15).

Step 6: Increase i by 1 and go to Step 2.

4. Computational experiments

Methods for nonlinear least-squares were tested by using 80 problems with 200 va-
riables taken from the collection TEST24 contained in the software system for uni-
versal functional optimization UFO [9]. Table 1 contains results obtained by the
following methods:

GN - Gauss-Newton’s method,
HN - New hybrid method (Algorithm 1),
HS - Structured hybrid method proposed in [11],
QN - New quasi-Newton method proposed in [8],
QB - Broyden’s good quasi-Newton method, see [8].

These methods were implemented as dog-leg trust-region methods (see [8]). Indi-
vidual methods were realized in two different ways. First the rectangular matrix A
was updated and the updated matrix was decomposed as the product A = QR
by the standard way. Secondly, the matrices Q and R in the QR decomposition
were updated using the algorithm described in [3] (so only the Jacobian matrix was
decomposed and the number of QR decompositions was decreased).

Table 1 proposes results obtained by solving 80 problems with 200 variables.
Notice that 80 % of these problems have zero residuals, so they are not quite suitable
for comparing hybrid methods with the Gauss-Newton method. This table contains
the total numbers of iterations NIT, function evaluations NFV, Jacobian (or gradient)
evaluations NFJ, matrix decompositions NDC, the total number of failures (number of
unsolved problems) F and the total computational time.

Rectangular matrix update QR decomposition update

NIT NFV NFJ NDC F Time NIT NFV NFJ NDC F Time

GN 3376 3698 3454 3256 - 38.31 5867 6421 5946 5698 1 60.82
HN 2477 2730 2556 2372 - 26.53 4046 4389 4126 2603 - 29.29
HS 2477 2716 2557 2395 - 27.61 3319 3665 3399 3354 - 35.45
QN 5473 5988 6435 5413 - 69.37 8064 8566 9102 606 1 22.46
QB 6904 8092 928 6531 - 76.54 8513 9899 1294 1285 1 25.80

Table 1: TEST24 – 80 problems with 200 variables
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The results contained in Table 1 imply several conclusions:

• Hybrid methods HN and HS are more robust than Gauss-Newton method GN,
since they increase the rate of convergence for large residual problems. The
new method seems to be better than structured hybrid method HS, especially
if the efficiency is measured by the computational time.

• Quasi-Newton methods [8], developed originally for solving nonlinear equa-
tions, are surprisingly efficient, if they are applied to the QR decomposition
of the matrix A, especially if the efficiency is measured by the computational
time.

For better understanding, the methods that update rectangular matrix (the first
part of Table 1) are also compared by using performance profiles proposed in [5]. In
Figure 1, value ρM(0) is the percentage of the test problems for which method M is
the best and value ρM (τ) for τ large enough is the percentage of the problems that
method M can solve. Performance profiles show the relative efficiency and reliability
of the methods: the higher is the particular curve, the better is the corresponding
method.
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Figure 1: Test 24 – 80 problems with 200 variables

Notice that the Gauss-Newton method has a better score for τ = 0, since 80% of
problems used have zero residuals.
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