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Abstract: In the last decade the dramatic onset of multicore and multi-
processor systems in combination with the possibilities which now provide
modern computer networks have risen. The complexity and size of the investi-
gated models are constantly increasing due to the high computational complex-
ity of computational tasks in dynamics and statics of structures, mainly be-
cause of the nonlinear character of the solved models. Any possibility to speed
up such calculation procedures is more than desirable. This is a relatively new
branch of science, therefore specific algorithms and parallel implementation are
still in the stage of research and development which is attributed to the latest
advances in computer hardware, which is growing rapidly. More questions are
raised on how best to utilize the available computing power. The proposed
parallel model is based on the explicit form of the finite element method, which
naturaly provides the possibility of efficient parallelization. The possibilities
of multicore processors, as well as parallel hybrid model combining both the
possibilities of multicore processors, and the form of the parallelism in a com-
puter network are investigated. The designed approaches are then examined
in addressing of the numerical analysis regarding contact/impact phenomena
of shell structures.
Keywords: explicit form of finite element method, dynamics of structures,
parallel computing
MSC: 68U20, 74H15, 35L53

1. Introduction

Explicit algorithms are highly suitable for a solution of short time highly non-
linear computations mainly for numerical simulation of the processes of forming
casts or the simulation of crash tests in the automotive and aviation industry or for
form finding of thin membranes in civil engineering, etc. This method facilitates the
consideration of a variety of nonlinearities in an easy and explicit manner.
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At this time, the technologies of multi-core CPU processors, programmable graph-
ical multi-core GPU processors, as well as their combinations, are commonly available
on the market. In view of the affordability of solid computer assemblies, an intercon-
nection of aforementioned parallel machines (CPU+GPU) in a generally heteroge-
neous computer cluster through the computer network is another level of parallelism.
The proposed approach is related to a somewhat different view of distribution of nu-
merical computations in nonlinear dynamics of structures, which explicit integration
provides.

A different approach is meant here in comparison to those commonly applied ap-
proaches in the field of the parallelization of explicit numerical computations primar-
ily focused on powerful single workstations as for example in the open-source finite el-
ement toolkit NiftySim [7] or in the open-source SPH (abbreviation of the Smoothed
Particle Hydrodynamics) toolkit DualSPHysics [3]. Most of the approaches deal
with the network type of computations related to the FETI method (abbreviation
of the Finite Element Tearing and Interconnecting) [5], e.g. in the open-source fi-
nite element toolkit SIFEL [9]. The FETI method is well suited for the implicit
integration of the equations of motion. In addition, it is also strongly dependent on
a robust algorithm providing decomposition of the finite element mesh to particular
subdomains. It applies especially to the methods of the Newmark family and other
methods frequently used in civil engineering practice [19].

2. Mathematical-physical model

Consider a body B in a three-dimensional Euclidian space R3, which is composed
of an infinite number of material elements. Under the influence of external forces,
the body B will undergo macroscopic geometric changes. If the applied loads are
time dependent, the deformation and geometry of the body B will be a function of
time. A material body B in motion starts from the so-called initial configuration Bt0

at time t0. As time proceeds with the application of external forces, the body will
occupy a different region Bt at time t, which is called the current configuration.
A particle of the body B in the initial configuration Bt0 occupies a position X,
which is referred to a reference Cartesian frame.

The deformed configuration is characterized by the mapping, which represents the
bijective function φB : Bt0 → Bt. Mapping φB takes the position vector X from the
reference configuration Bt0 and places the same point in the deformed configuration
x = X + u. Motion of a continuous medium is also denoted by deformation, which
is characterized by the rigid body motion, where the original shape of the body
after the motion preserves the distance between particles, and by the motion with
deformation, which is characterized by changes of distance between particles.

Now let’s consider the Principle of Balance of Linear Momentum, which is based
on the Newton’s second law of motion. This law expresses the meaning that the
rate of change of linear momentum p of an arbitrary part of a continuum body Bt
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is proportional to the sum of volume b and surface forces

D

Dt

[∫
Bt

p dv

]
=

D

Dt

[∫
Bt

%v dv

]
=

∫
∂Bσ

t da +

∫
Bt

%b dv, (1)

where D/Dt [•] denotes the material derivative, % the material density, v the velocity
field and t the traction forces on boundary ∂Bσ. The left part of eq. (1) is expressed
by the Reynolds transport theorem in sense of a body acceleration a as

∫
Bt

%a dv.
It then finally leads to the Cauchy’s equations of motion with boundary and initial
conditions expressed in their locally valid strong form as follows:

div σT + %b =%a in B × [0, τ ], (2)

u(x, t) = u on ∂BD × [0, τ ], t = σ · n̂ on ∂Bσ × [0, τ ], (3)

v(t0) = v0 in B, u(t0) = u0 in B. (4)

Connections between kinematic, thermal and mechanical variables is established
by the constitutive equations, which are here considered as locally valid standard
material model defined by the differentiable potential, which is here reduced to spec-
ifying elastic energy density Ψ called Helmholtz’s free energy. Consider strain-like
variable ε ∈ Xε, where Xε is a real Banach space and a stress-like variable σ ∈ X∗

σ,
both are subset of a linear space X∗

σ × Xε, where X∗
σ is the continuous dual space.

Then we can write σ ≡ δΨ(ε), where σ and ε denote Cauchy’s stresses and elastic
strains, respectively. The Helmholtz’s free energy has the form

Ψ(ε) =
λ

2
(tr ε)2 + µε : ε, σ ≡ %∂εΨ(ε) = Cijkl : ε, (5)

where λ and µ are Lamé constants, respectively, and Cijkl ≡ λδijδkl+µ (δikδjl + δilδjk)
denotes fourth order constitutive tensor. It can be viewed as a linearized form of the
Saint Venant-Kirchhoff material model.

The critical part of the developed algorithm is the consideration of nonlinear
boundary conditions represented by their change caused by the contact of surface
portion ∂BC of the body B with the neighboring barrier or with the other body and
optionally also by contact of body B with itself. The contact causes the formation
of additional forces, which at the time of their creation are suitably applied into the
process of numerical integration of the equations of motion. Here it leads to the
conditions providing the basis to treat frictionless contact problems in the context of
constraint optimization known as Hertz–Signorini–Moreau or Kuhn–Tucker–Karush
condition expressed for flat shells [20]

gN,C ≥ 0, pN ≤ 0, pNgN,C ≤ 0, (6)

where pN is the associated normal component of the stress traction vector t = σ · n̂
in the current configuration, gN,C denotes the normal gap and h denotes the shell
thickness, thus

gN,C =

{
|(x2 − x̂1) · n̂1 − h

2
| if (x2 − x̂1) · n̂1 − h

2
< 0,

0 otherwise.
(7)

121



x2

x̂1

n̂1

B1

B2

ξ1

ξ2
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Figure 1: Determination of penetration normal gap gN,C for flat shell finite element

The most commonly used constitutive equation simply representing the com-
plex micromechanical behaviour on the contact surface leads to a standard penalty
method pN = −εNgN , where εN is a penalty parameter. This approach is considered
here.

3. Model numerics

For obtaining a semi-discrete form of the equations of motion, the tools of varia-
tional calculus are used. These involve finding a local minima of some relevant energy
functional J(q(t)), thus δJ(q(t), t) ≡ GJ(q(t), t)(η(t)) = 0, where GJ(q(t), t)(η(t))
denotes Gâteaux derivative of the functional in direction of function η(t) ∈ X. It
finally leads to the form of Euler-Lagrange equations

δJ(q(t), t) ≡ ∂qL(q(t), q̇(t), t)− d

dt
(∂q̇L(q(t), q̇(t), t)) , (8)

where L(q(t), q̇(t), t) ∈ C2[a, b] is the associated Lagrangian. The particular ap-
proach used in this relation is the Hamilton’s variational principle in elastodynamics
deduced from an analogy to the Lagrangian form of D’Alembert’s principle. It then
leads to the expressions

L = K − (U + Uc) , (9)

δ

∫ τ

τ−∆τ

L dτ + δ

∫ τ

τ−∆τ

W dτ = 0, δu(τ −∆τ) = δu(τ) = 0, (10)

where functional K : K → R represents kinetic energy and functionals U : U → R and
W : W → R represent energy of internal (deformative energy) and external forces,
respectively, and Uc : Uc → R represents energy of constraint contact forces. A par-
ticular composition of the respective energy functionals can be found in e.g. [6], [15]
or [20]. The resulting set of nonlinear ODEs of the second order is then used for an
explicit time integration. For the approximation of the field variables and respective
geometry of the body B, the finite element method is used. Thus B ≈ Ω =

⋃ne

e=1 Ωe,
where Ω denotes discretized body B by ne finite element non-overlapping sub-
regions Ωe. The boundary of the region ∂Ω is composed of the curves or areas ∂Ωe of
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the elements Ωe : ∂Ω =
⋃nr

e=1 ∂Ωe, which generally approximate the real geometry of
the boundary ∂B without an overlap of finite elements. An effective triangular flat
shell finite element developed by T. Belytschko et al. [1] is applied as a suitable type
of finite element for explicit computations [18]. The resulting form of semidiscrete
set of nonlinear ordinary differential equations

Mü + f int(u) = fext(u) ∈ Ω, (11)

where M, f int(u) and fext(u) represent the mass matrix, internal and external forces,
respectively. Those are then used for subsequent explicit integration. The partic-
ular explicit integration algorithm is applied according to the half time step form
mentioned in [2]. In an explicit approach, the mass matrix M is considered in its
diagonalized form (i.e. the lumped mass matrix).

The nonlinear contact conditions are involved in the developed parallel comput-
ing model for the modeling of the contact/impact phenomena with geometrically
nonlinear behavior of a solid continua represented by a large rotational kinematics
solved in the small strain regime [18].

4. Hybrid-parallel computing model

The hybrid-parallel computing model is based on a physically logical decomposi-
tion according to the specific nature of addressed impact problems. Thus the general
model of contact is here the source of the domain decomposition algorithm. This ap-
proach is applicable primarily to the simulation of the impact tasks of a wider group
of separate entities (bodies) interacting with each other through contact forces. This
of course also applies to the so-called self-contact problem. In this sense of gener-
ality it is the most computationally demanding process. The algorithm used must
be applied to all the finite element nodes of the finite element model and also to all
discretized separate domains Ωi (macro entities).

The solution to the problem of contact of solids then theoretically falls within the
area of a so-called nearest neighbor (NN) search as it is suggested in [20]. The kd-
tree data structure falls into the set of data structures providing desired properties.
This type of data structure represents a special case of binary trees. The detailed
mathematical study of the related algorithm provides [10].

The core of such an algorithm is defined here as a collection of n objects (nodes
of finite element mesh) that build a data structure, which provides those objects in
the time as fast as possible based on the NN query represented by the bounding
box encapsulating respective finite element. Appropriate searches in the tree can
then be processed in parallel on the set of current finite elements mapped to the
available cores of the multicore CPU in the pre-processing phase. It does not require
any synchronization procedures causing slowing down the performance by sequential
execution of this part of the code. This algorithm belongs to the cornerstones of the
entire parallel model.
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The rest of the code related to parallel processing on a single workstation is
applied similarly to the algorithm proposed for GPGPU technology [16] for multicore
CPU environment [17]. This applies to the integration of respective finite elements
and explicit integration of equations of motion applied to all the finite element nodes.

5. Analysis of the macro entity interaction multigraph

The proposed algorithm for the purpose of hybrid-parallel computational process-
ing strongly relates to the analysis of the motion of the individual macro elements in
a space representing the structures interacting with each other through the contact
forces as ilustrated in Fig. 2.

Bα

Bγ

Bβ

Bounding Boxα

Bounding Boxβ

Bounding Boxγ

Figure 2: Ilustrative example of the macro entity interaction multigraph (macro
body contact interaction)

Nonlinear dynamics is often demonstrated by the chaotic behavior. The source
of chaotic behaviour is provided here by mutual interaction of deformable bodies,
which generates special types of combinatorial sequences. Such a combinatorial
sequence can be defined by so-called unoriented multi-graph. The topology of such
a multigraph can be defined by the spatial distribution of the interacting bodies.
The nodes in the multi-graph represent all the contained bodies (macro entities) and
the graph edges represent contact interaction between the bodies.

The MEIM (Macro Entity Interaction Multigraph) assembly is performed through
the range searching queries to the kd-tree data structure used for mapping the spatial
data. The MEIM analysis itself is further based on the depth-first search (DFS)
algorithm to find connected subgraphs [13] representing individual clusters of touching
bodies.

The assembly and analysis of the MEIM is only required while performing a nu-
merical simulation in the scope of a computer network where it is no longer possible
to take advantage of the shared memory address space. The algorithm for the data
distribution within a computer network starts primarily from the basic DFS analysis
of the MEIM. Based on the DFS algorithm, all connected subgraphs are obtained,
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MT
S =

m1 m2 · · · mJ





g1 s11 s12 · · · s1β
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...
... . . . ...
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g1 g2 · · · gK





c1 t11 t12 · · · t1β
c2 t21 t22 · · · t2β

...
... . . . ...

cI tα1 tα2 · · · tαβ

⇒ MT =

g1





0 1 1 0
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c3 2 0 0 0
c4 3 0 0 0

0 0 0 0

, α ∈ {1, . . . , I}, β ∈ {1, . . . ,K}.

{m4,m5} ∈ c3, {m1,m2,m3} ∈ c4

{m1,m2,m3,m4,m5} ∈ g1

∑I
α tα1 : number of ME must be solved together

;

1

g1 g2 g3 g4

c3 c4 c1 c2 c1 c2

2 3 1 1 1 1

c5

ci ∈ C

gk ∈ G

T

Figure 3: The MEIM model example, where ci ∈ C (workstations connected to
computer network), mj ∈ M (macro entities) and gk ∈ G (connected subgraphs)

even if they represent isolated nodes only. The simple example of MEIM is presented
in Fig. 3.

As a result of the process of the MEIM analysis, a new state of the data distrib-
ution within the computer network is gained. The process of the MEIM analysis is
performed at the end of each time step on the side of the central server.

6. The new open-source project

Since the implementation of the discussed algorithms and technologies into exist-
ing open-source projects mentioned earlier would require considerable time for their
own analysis, a hybrid-parallel numerical testing solver called FEXP (abbreviation
of the Finite [E]lement [E]XPlicit solver) was composed. The solver has a testing
purpose, which means testing the effectiveness of both the algorithms and the tech-
nologies used. It combines the possibility of using multi-core processors (CPU) with
parallelization in computer heterogeneous cluster interconnected in a LAN (abbre-
viation of the Local Area Network). In the case of a local workstation within the
LAN, it concerns the use of multicore CPUs and the usage of GPGPU technology
Nvidia CUDA or OpenCL refering to the use of Graphics Processing Units (GPU) for
some parts of the computations. With respect to generality, availability and support
of a wide range of software technologies and software modularity, the programming
language C++ in current version 14 was chosen as the main programming language
for the composition of the FEXP solver.
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Figure 4: Initial configuration of spheres

As a development environment, the Windows OS was chosen, primarily due to
the availability of advanced development tools required to develop such applica-
tions. Thus for the project management and code compilation, Microsoft Visual
Studio 2015/2017 Community IDE (Integrated Development Environment) was used.

7. Simulation test

Verification of the designed solution was performed on a model containing impact
of four spheres. This type of example was chosen primarily due to the expected fluc-
tuation of the individual parts of the model within the simulated computer network
during the solution process.

The movement of bodies is initiated by the initial conditions represented by the
velocity constraints (see Fig. 5), where small velocities in Z direction are introduced
primarily due to the applied type of contact detection algorithm which is represented
by node-to-element contact. This artificial numerical impurity avoids the state rep-
resented by element-to-element contact.

The whole simulation process can be decomposed into three main stages, namely
into the initial configuration Fig. 4 and 6, intermediate data fluctuation process due
to the mutual contact interaction Fig. 7 and into the final data balance Fig. 8,
respectively. During the simulation process another workstation was connected and
subsequently it was considered into the simulation process.
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1Figure 5: Velocity initial conditions of individual macro entities (spheres)

m4 = {Bt0,SXY
}

m2 = {Bt0,SX
}

m1 = {Bt0,SC
}

m3 = {Bt0,SY
}

{m1, m2} ∈ c1

{m4} ∈ c3

{m3} ∈ c2

Central Server

{m4} ∈ g4

{m3} ∈ g1

{m1} ∈ g3

{m2} ∈ g2

Figure 6: Macro entity distribution over the network at time t0.

The process of numerical computation within the simulated computer cluster
can be characterized by Table 1. It shows the amount of data and their distribution
over the computer cluster for the aformentioned time frames. The number 1.25
indicates that the data of the entire model were transferred more than once during
the computation within the computer cluster.
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Figure 7: Macro entity distribution over the network at times t51 and t53.
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Figure 8: Macro entity distribution over the network at time t337.
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Time Workstation Elements Nodes El./Thread Nd./Thread

c1 384 196 128 65.3
t0 c2 192 98 64 32.7

c3 192 98 64 32.7
c1 576 294 192 98
c2 0 0 0 0

t51 c3 192 98 64 32.7
c4 0 0 0 0
c1 768 392 256 130.7
c2 0 0 0 0

t53 c3 0 0 0 0
c4 0 0 0 0
c1 192 98 64 32.7
c2 192 98 64 32.7

t337 c3 192 98 64 32.7
c4 192 98 64 32.7

∑
Element transfer 960

1.25∑
Node transfer 490

1Table 1: The statistics of data transfer.

Type of parallel element Volume Settings

3–workstation as initial state,
Computing Workstation 3/4 4th workstation connected at runtime,

Server Workstation 1 It start as first, always present.

3–computing threads per one worsktation,
Computing Workstation CPU Thread 16 1–thread always for communication with server.

Number of used threads was determined
automatically by number of native threads per CPU.

4–for communication with client workstations,
Server CPU Thread 5/6 1–main loop thread,

1–service thread.

∑
CPU Running Thread 17/22∑
CPU Computing Thread 9/12∑
Workstation 4/5

1Table 2: The statistics of parallelism (and concurrency).
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Table 2 shows the amount of threads used and their purpose. The numbers
separated by backslash represent a specific value before and after connecting work-
station c4 to the cluster.

8. Conclusions

The first and foremost scientific contribution is related to a somewhat different
view of the distribution of numerical computations in nonlinear dynamics of struc-
tures. Is is provided by the explicit integration of equations of motion as opposed
to those commonly applied approaches in the field of the parallelization of explicit
numerical computations primarily focused on powerful single workstations.

Due to the complicated and lengthy development of the FEXP solver and its basic
tuning, the performance tests have not been performed yet. In view of these tests, it
will be necessary to make partial optimizations which primarily concern the type of
communication protocol (replace the current plain text with binary data). As a next
step, it is necessary to select a group of tasks for which solution within a computer
cluster represents a reduction of the time required for the numerical computation.
However, it assumes that the aforementioned tasks will exhibit behaviors similar to
the presented test task.

The presented solution represents a starting point in the process of the further
code development related both to the currently contained algorithms, but also to
other algorithms, which are already in an elaborated phase. The same applies even
to other software technologies especially focused on a the field of cloud computing.
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[16] Rek, V., and Němec, I.: Parallel computing procedure for dynamic relaxation
method on GPU using NVIDIA’s CUDA. Applied Mechanics and Materials 821
(2016), 331–337.
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