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Institute of Mathematics of the Czech Academy of Sciences, Prague 2021

ON MODELS OF LONG-TERM BEHAVIOR OF CONCRETE

Jan Chleboun, Lenka Dohnalová, Judita Runcziková
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Abstract: Long-term behavior of concrete is modeled by several widely
accepted models, such as B3, fib MC 2010, or ACI 209 whose input parameters
and output values are not identical to each other. Moreover, the input and,
consequently, the output values are uncertain. In this paper, fuzzy input
parameters are considered in uncertainty quantification of each model response
and, finally, the sets of responses are analyzed by elementary tools of evidence
theory. That is, belief and plausibility functions are proposed to combine
evidence from different models.
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1. Introduction

The lifespan of a structure made of concrete is expected to be one hundred years.
As a consequence, the question arises what the long-term prediction of its condition
might be.

The time evolution of concrete material parameters and its other properties has
been the subject of research for decades. The outcomes of the efforts of experi-
menters, analysts, and other specialists have materialized in various mathematical
models of the long-term behavior of concrete. Some are widely accepted and used in
civil engineering for the assessment of the long-term behavior of concrete structures.
At least the B3 model [4], fib Model Code 2010 [7], ACI 209.2R-08 code [3], and
Eurocode 2 [6] should be mentioned.

Among quantities that are in the focus of concrete-oriented civil engineers, only
two are the subject of this paper, namely the drying shrinkage εsh and the drying
creep compliance Jd. Since the readership is expected to be more mathematics- than
engineering-oriented, let us limit ourselves to a brief characterization formulated
in [5]: “Concrete drying is accompanied by its gradual contractive volume changes
referred to as shrinkage and additional compliance called drying creep or the Pickett
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effect. The complex interplay between shrinkage and creep determines the evolution
of stresses and so its thorough analysis can help to identify potential cracking and
thus to estimate the lifetime of a concrete structure.”

The importance of the correct assessment of the impact that these phenomena
can have on real structures has been demonstrated by, for instance, the disastrous
fate of the Koror-Babeldaob Bridge (the Republic of Palau) [1] or the Morandi Bridge
(Genoa, Italy) [2]. Both were prestressed concrete structures and both contended
with problems caused by creep. The former collapsed in 1996, the latter in 2018.

The proposed models of the drying shrinkage and the drying creep compliance
take the form of functions of the time variable, where, however, a number of other
quantities are present as input parameters, see Section 3. These parameters must
be considered uncertain (as explicitly stated in [4], for instance), though the mod-
els themselves are presented as crisp functions. From the viewpoint of uncertainty
quantification, the functions are functions of several variables (see (3)–(7)), that is,
of the time variable and the input quantities included in the uncertainty analysis.

The goal of this paper is to propose an approach that combines two sources of
uncertainty: the use of different models of the same quantity, and the fuzziness of
the input parameters of the models.

It must be emphasized that the focus is on presenting the approach, not on
the particular definition of the fuzzified models. Their fuzzy parameters have been
chosen to illustrate the idea and demonstrate the calculation of fuzzy outputs, not
to assess a particular concrete structure.

2. Introduction to fuzzy sets

Although the most common approach is to represent uncertain input parameters
by random variables or processes, a fuzzy set approach is used in this paper. The
authors believe that it enables a more realistic assessment of the uncertainty in
input parameters than a probabilistic approach that suffers from the lack of relevant
probabilistic data.

A fuzzy number r is represented by a continuous membership function µr defined
on R (the set of real numbers). The function µr is, for simplicity, concave or qua-
siconcave and with the range equal to the interval [0, 1]. The value µr(x) is called
the grade of membership of x in the fuzzy set Ar = (R, µr). The fuzzy set Ar is
equivalently characterized by the set of intervals IαAr = {x ∈ R| µr(x) ≥ α}, where
α ∈ (0, 1] and I0

Ar
is the closure of ∪α∈(0,1]I

α
Ar

. The intervals IαAr are called the α-cuts
or α-level sets of Ar. If a set of embedded intervals IαA, where α ∈ (0, 1], is given,
then the associated membership function µA is defined by µA(x) = sup{α| x ∈ IαA}.

If a function of one real variable is given and its variable takes values from a fuzzy
set, the range of the function forms an output fuzzy set. The goal is to characterize
its fuzziness.

Let us assume that a continuous function f is defined on the interval I0
A and

that the associated membership function µA is given, too. Let f(A) denote the
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range of f , then µf(A), the membership function of f(A), is obtained by the Zadeh
extension principle [8, Section 2.1.7]

µf(A)(y) = sup{µA(x)| f(x) = y}. (1)

Under the continuity and convexity assumptions made on µA, the membership func-
tion µf(A) can be reconstructed from the family of the α-cuts of f(A), see [8, Sec-
tion 2.1.7], that are defined as follows:

Iαf(A) =

[
min
x∈IαA

f(x), max
x∈IαA

f(x)

]
; (2)

the minimum and maximum are attained owing to the continuity of f and the com-
pactness of IαA.

If f is a function of n variables such that their values xi belong to fuzzy sets Ai
associated with membership functions µi, an i-dependent system of IαAi , the α-cuts
of each Ai, is defined. Moreover, α-cuts of A = A1 × · · · × An can easily be defined
as IαA = {x ∈ A| µi(xi) ≥ α, i = 1, . . . , n}. Then the Zadeh extension principle can
again be applied in its original form (1) or in the computationally more convenient
form (2), where global extremes are searched for on rectangular parallelepipeds IαA.

3. Crisp models of long-term behavior of concrete

Three models of the drying shrinkage εsh and the drying creep compliance Jd

were taken into consideration, namely the B3 model [4], fib Model Code 2010 [7],
and ACI 209.2R-08 code [3].

The models are rather phenomenological and depend on a number of material,
physical, or technological parameters. Not all of the parameters are shared by all
the models. Since a full description of the relationships included in the εsh and Jd

functions is out of the scope of this contribution, let us concentrate on only those
parameters that will be considered uncertain, and let us substitute the respective
numerical values for the other parameters, that is, fixed parameters. These include,
for instance, the modulus of elasticity at the age of 28 days (28 178 MPa), cement
content (409 kg/m3), start of drying (7 days), start of loading (7 days), the type of
cement and its particular sort, the aggregate type, etc.

To give the reader an impression of the functions εsh and Jd, let us show the
expressions in the fib Model Code 2010 after substituting numerical values for the
fixed parameters and after rounding to a few significant digits

JfibMC
d (t) = 0.12

f−1.7
cm (1− hRH)

3
√
D

(
t− 7

m+ t− 7

)0.28

, (3)

where

m = min
{

8874
√
f−1

cm , 1.5D + 1479
√
f−1

cm

}
; (4)

εfibMC
sh (t) = 0.001023 e−0.012 fcm

(
1− h3

RH

)( t− 7

0.035D2 + t− 7

)0.5

. (5)
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Figure 1: Drying shrinkage εsh and drying creep compliance Jd graphs; t0 is equal to
seven (days).

Only four non-numerical symbols appear in (3)-(5), these represent the average rel-
ative humidity of the environment (hRH), the mean compression strength (fcm),
and a parameter related to the volume-surface ratio of the modeled structural el-
ement (D). The time (in days) is denoted by t and considered in the interval
IT = (7, 36500].

The other models are also represented by nonlinear functions. For the B3 model,
for instance, we obtain

JB3
d (t) =

0.723
√

e−8+8(1−hRH) tanh(φ(t)) − 0.0003354

fcm (0.019w2.1f−0.28
cm + 270)0.6 γ0.6

, (6)

εB3
sh (t) = 1.08 · 10−6

(
0.019w2.1fcm

−0.28 + 270
)
γ
(
1− hRH

3
)

tanh (φ(t)) , (7)

where w, which is not used in the fib MC model, stands for the water content of
a concrete mixture, and

φ(t) = 3.71

√
(t− 7) 4

√
fcm

D2
, γ =

√
11.63 4

√
fcm + 0.072D2

8.18 4
√
fcm + 0.085D2

.

To give the reader an idea of Jd (in 1/MPa) and εsh graphs, typical curves are
depicted in Figure 1. The values w = 205 kg m−3, hRH = 0.7, fcm = 33.3 MPa,
and D = 200 mm are used in (3), (5), (6), and (7) as well as in the other model.
The shapes of the Jd and εsh graphs are similar, though the models are not fully
comparable because the sets of their input parameters are not identical. A brief
summary and comparison of the models is available in [5].

4. Fuzzification of the models

The common approach to the fuzzification of the B3, fib MC 2010, and ACI
models is used. That is, some input parameters are represented by fuzzy numbers.
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These are the already mentioned fcm, hRH, and D. One additional fuzzy parameter
(water content w) is used in the B3 model and four additional fuzzy parameters are
considered in the fib MC 2010 model (slump of concrete slurry, ratio of fine to total
aggregate, air content, and cement content). The other parameters (not listed here)
remain crisp and fixed.

The trapezoidal form of fuzzy numbers is applied. To give a few examples, let
us list [0.92, 0.99, 1.01, 1.08]ŵ, [0.9, 0.97, 1.03, 1.1]f̂cm, [0.92, 0.99, 1.01, 1.08]ĥRH, or

[0.93, 0.99, 1.01, 1.07]D̂, where [a, b, c, d]q̂ stands for the fuzzy set determined by the
α-cuts (i.e., intervals) [(1−α)a+αb, αc+ (1−α)d] multiplied by the representative
crisp value of an input quantity q̂.

Let us indicate the dependence of the drying shrinkage and the drying creep
compliance on the model. That is, the functions ε∗sh, and J∗d are introduced, where ∗
is replaced by B3, fibMC, and ACI. From the mathematical point of view, the input
variables of these functions are fuzzy numbers except for time t; for computational
purposes, the fuzzy inputs are represented by real variables in the α-level intervals.

It is convenient to define AB3, AfibMC, and AACI, the fuzzy sets of inputs, through
their α-cuts that are, in fact, products of the α-cuts of the relevant variables. For
example, AαACI = Iαfcm,ACI × IαhRH,ACI × IαD,ACI. Although the models share some
uncertain input parameters, their respective fuzzy sets of inputs can be different in
practice.

By switching from single input values to intervals of input values, we obtain
α-dependent sets of εsh and Jd curves over the interval IT. Although these represent
fuzzy sets, they are not suitable for further uncertainty analysis. Instead of moni-
toring the entire evolution, it is more convenient to record εsh and Jd at fixed time
points t1, t2, . . . , tn ∈ IT.

To obtain the model-dependent fuzzy sets of the output drying shrinkage and
drying creep compliance at each discrete time point t1, t2, . . . , tn, the α-cut–based
technique (2) is applied, where f is replaced by εsh and Jd with the superscript
indicating the model.

In (2), the global extrema must be found. To this end, sensitivity analysis is per-
formed by the differentiation of the drying shrinkage and drying creep compliance
with respect to the uncertain parameters. By using a computer algebra system, one
can show monotonicity properties of the functions, which makes the search for the ex-
trema quite simple as these are attained at corner points whose position is easily iden-
tifiable on the basis of the sign of the partial derivatives of εsh and Jd. The analyst,
however, should be aware of a minor complication due to the non-differentiability at
some (usually hRH) points because a few dependencies are expressed in a piecewise
manner in the models, see (4).

5. Evaluation of the outputs of the models

Instead of the interval [0, 1], a finite set S = {α0, α1, . . . , αL} ⊂ [0, 1] is considered
to determine the α-cuts, where α0 = 0 < α1 < · · · < αL = 1.
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For each αi ∈ S, intervals Iαi
εB3
sh

, Iαi
εACIsh

, and Iαi
εfibMC
sh

result from solving (2) with the

drying shrinkage function on the αi-cuts of AB3, AACI, and AfibMC, respectively. The
intervals Iαi

JB3
d

, Iαi
JACI
d

, and Iαi
JfibMC
d

are obtained in a similar manner for the drying creep

compliance.

An illustrative example of such outputs is presented in Figure 2 for α = 0.25
and t = 3650. The B3, fib, and ACI output intervals are indicated by the dotted,
dashed, and solid line segments, respectively. Though the intervals overlap, the line
segments are vertically separated to be easily visually comparable.

Figure 2: Left: The intervals I0.25
εB3
sh

, I0.25

εfibMC
sh

, and I0.25
εACI
sh

. Right: The intervals I0.25
JB3
d

,

I0.25

JfibMC
d

, and I0.25
JACI
d

.

We observe that, in this setting of input data, the response of the three models is
more consistent for the drying shrinkage εsh than for the drying creep compliance Jd.
It holds I0.25

εB3
sh
∩ I0.25

εACI
sh
∩ I0.25

εfibMC
sh

= [3.85, 3.87]× 10−4.

5.1. Application of evidence theory

Instead of a simple union and intersection of the output intervals, another and
more sophisticated approach can be used to assess the combined response of the
models.

Evidence (also known as Dempster–Shafer) theory allows for the combination of
evidence from different sources, see, for instance, [9, 10]. In this approach, a (finite,
for simplicity) subset F of P (X), the power set of the universal set X, is fixed
and its elements are evaluated through a mapping m : F → [0, 1] (called the basic
probability assignment) in such a way that

m(∅) = 0, and
∑
A∈F

m(A) = 1.
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Then, two measures are defined on P (X), namely Belief (Bel) and Plausibility (Pl):

Bel (A) =
∑

{B∈F : B⊆A}

m(B) and Pl (A) =
∑

{B∈F : B∩A 6=∅}

m(B), (8)

where A ∈ P (X).

Belief and Plausibility are often interpreted as lower and upper bounds on prob-
abilities [9, 10], but, for our purposes, we can interpret them simply as lower and
upper bounds on the combination of weighted outputs of the models.

To this end, let for each αi ∈ S, the three intervals Iαi
εB3
sh

, Iαi
εACIsh

, and Iαi
εfibMC
sh

form

the set Fαi and m(Iαi
εB3
sh

) = wB3, m(Iαi
εACIsh

) = wACI, and m(Iαi
εfibMC
sh

) = wfibMC, where

wB3, wACI, and wfibMC are fixed, αi-independent positive weights whose sum is equal
to one.

Then, Bel αiεsh(I) and Pl αiεsh(I) can be calculated for any interval I ⊂ R and αi ∈ S.
In parallel, the same steps can be applied to the intervals Iαi

JB3
d

, Iαi
JACI
d

, and Iαi
JfibMC
d

to

obtain Bel αiJd(I) and Pl αiJd(I).

Examples: Let wB3 = 0.4, wACI = 0.25, wfibMC = 0.35, and I1 = [3.2, 4.4]×10−4, then
the interval I1 fully covers the εsh output of the fib MC model and intersects the εsh

output intervals of the B3 and ACI models, see Figure 3 (left). As a consequence
of (8), Bel 0.25

εsh
(I1) = wfibMC = 0.35 and Pl 0.25

εsh
(I1) = wB3 +wACI +wfibMC = 1. We can

conclude that given the 0.25-level of uncertainty in the considered input data and
the ten-year time, the range of the drying shrinkage εsh represented by the interval I1

contains the entire response of the fib MC model and intersect the responses of the B3
and ACI models. That is, I1 is, to some degree, consistent with the B3 and ACI
responses. However, the degree of consistency (i.e., the size of the intersection) is
not assessed in Dempster-Shafer theory.

The interval I2 = [2.8, 4.4] × 10−4 fully covers the εsh output of the fib MC and
ACI models and intersects the εsh output interval of the B3 model, see Figure 3
(left). We obtain Bel 0.25

εsh
(I2) = wfibMC +wACI = 0.35 + 0.25 = 0.6 and Pl 0.25

εsh
(I2) = 1.

If I3 = [1, 2.3]× 10−5, for example, then Bel 0.25
Jd

(I3) = 0 and Pl 0.25
Jd

(I3) = 1 as can
be seen in Figure 3 (right).

Let us emphasize that the Bel and Pl function values can be calculated for
any interval. One can, for example, search for the shortest interval K1 such that
Pl (K1) > Bel (K1) > 0. Then K1 encompasses the output of at least one model and
is consistent with the output of at least one other model. As a consequence, the
analyst can consider K1 as the range of an output quantity that is fully related to at
least one model and partially supported by at least one other model. The intensity
of the relationship between the interval K1 and the output intervals delivered by the
models is represented by the Bel and Pl values that are also related to the credibility
of the models (see wB3, wACI, and wfibMC). More constraints can be incorporated
into the search. Take 1 = Pl (K2) > Bel (K2) > 0 or 1 = Pl (K3) > Bel (K3) ≥ 0.4,
for instance.
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Figure 3: Left: Bel 0.25
εsh

(I1) = 0.35, Pl 0.25
εsh

(I1) = 1, Bel 0.25
εsh

(I2) = 0.6, Pl 0.25
εsh

(I2) = 1.

Right: Bel 0.25
Jd

(I3) = 0, Pl0.25
Jd

(I3) = 1
.

6. Conclusions

The fuzzy set approach is standard and results in a number of model responses
associated with various models, α levels, and times. The fact that different models
of the long-term behavior of concrete are available is utilized for the combination of
their responses. Dempster–Shafer (evidence) theory offers tools for testing the degree
of compatibility of proposed intervals with the model responses that originate from
uncertainty in input data. The Belief and Plausibility values help the analyst to
identify a weighted extent of uncertainty in the combined outputs of several models.
Although the subjective role of the analyst is still present through the definition of
input membership functions and the weights of the models, the rest of the analysis
is algorithmic. Moreover, Dempster–Shafer theory allows the combination of results
obtained under different weights of the models [9, 10], which permits to take into
account different expert opinions on the weights of the models.
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