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Abstract: The mathematical model of a ball-type vibration absorber rep-
resents a non-linear differential system which includes non-holonomic con-
straints. When a random ambient excitation is taken into account, the system
has to be treated as a stochastic deferential equation. Depending on the level of
simplification, an analytical solution is not practicable and numerical solution
procedures have to be applied. The contribution presents a simple stochastic
analysis of a particular resonance effect which can negatively influence effi-
ciency of the absorber.
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1. Introduction

Ball-type passive tuned mass absorbers are popular means for reducing unwanted
structural motion when a conventional pendulum-type device cannot be used. Con-
temporary lightweight structures are prone to vibration caused by traffic induced
forces or natural ambient excitation. At the same time, new structures are often
designed to exhibit their slenderness and installation of a classical absorber is not
possible for aesthetic reasons. More compact ball-type absorbers are based on a free
movement of a heavy ball of radius r which rolls inside a spherical cavity of ra-
dius R > r. In opposite to pendulum-based absorbers, damping of a ball movement
can be adjusted to a prescribed value only with difficulties. Various techniques
which implement additional damping into the absorber — as a rubber coating or
liquid introduced in the cavity — entail a significant increase of maintenance costs.
Consequently, insufficient damping makes the ball-type absorbers substantially more
prone to objectionable effects stemming from a non-linear character of the system
than are the pendulums. Thus, the design of the structure and the damping device
has to be made so that the auto-parametric resonance states, occurrence of which
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depends on system parameters and properties of possible excitation, are avoided for
safety reasons.

The mathematical model of a ball pendulum represents a classical example of
a simple non-holonomic system and, as such, it is regularly addressed from different
points of view. The references date back to the beginning of 20th century, [14], up
to recent publications, e.g., [3]. On the other hand, usage of the ball pendulum as
a vibration absorber appears only recently, e.g., [8, 6]. Basic design guidelines of the
ball-type absorber in a linearised 2D analogy and the practical implementation ex-
perience was reported on in [12]. Further analysis and stability assessment based on
a non-linear 2D model was published later by the authors, [11]. The complete govern-
ing non-linear differential system derived using the Appell-Gibbs approach was used
by the authors for numerical identification of the auto-parametric resonance effects
in [9] and also for the stability analysis, [10]. It appeared that the auto-parametric
resonance state is characterised by two forbidden regimes: spatial movement of the
ball, when only an uni-directional excitation takes place, and multiple stable re-
sponse regimes (solutions) for one set of excitation parameters. Occurrence of the
both regimes is, however, limited to a narrow excitation frequency interval and/or
large excitation amplitudes.

The experimental investigation of a ball pendulum was conducted by Pirner, [12];
the authors realized experiments with a spherical pendulum, [13]. The both experi-
ments confirm appearance of the auto-parametric spatial response for deterministic
harmonic excitation, however, the stability issues discussed in this work were not
addressed. It appeared, however, that a behaviour of the ball pendulum and of the
spherical pendulum are similar in many aspects. Although, to the best of the au-
thors’ knowledge, a stochastic analysis of the ball pendulum is still missing in the
literature, there are several papers available which regard the stochastic analysis of
spherical pendulums. Due to a non-linear nature of the problem, mostly the Monte
Carlo simulation is used, see, e.g., [1] for an inverted pendulum case. More advanced
approaches appear only rarely. For example, Viet Duc La, [5], use a stochastic lineari-
sation technique which, however, requires a simplified problem. The rich literature
regarding stochastic analysis of a general class of tuned mass dampers mostly limits
its attention to damping efficiency maximization; the devices themselves are usually
assumed only as planar or in a linearised form. Also studies where the behaviour
of cranes with suspended payloads is modelled as a horizontally excited spherical
pendulum, e.g., [7], do not concentrate to stability with respect to a random load.

The current work presents a basic stochastic analysis of the full 3D non-linear
model of the ball-type absorber. Its aim is an assessment of a possibility to reach
the spatial or multivalued response, characteristic for the auto-parametric resonance
state, when narrow- or broadband stochastic excitation is assumed.

The paper is organized as follows. After this introduction, the non-linear model
of the ball-type vibration absorber is shortly introduced. Its properties in the state of
an auto-parametric resonance are described in Section 3. The analysis procedure and
results are presented in Sections 4 and 5, respectively. Finally, Section 6 concludes.
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2. Mathematical model

Figure 1: Overview of
the model

The governing differential systems used in this work is
based on the Appell-Gibbs function, which is often referred
to as an energy acceleration function:

S =
1

2
M(ü2

Gx + ü2
Gy + ü2

Gz) +
1

2
J(ω̇2

x + ω̇2
y + ω̇2

z), (1)

whereM – mass of the ball [kg], J = 2/5Mr2 – central inertia
moment of the homogeneous ball [kg m2], ωx, ωy, ωz, – angu-
lar velocities of the ball with respect to its centre [rad s−1],
uGx, uGy, uGz – displacement of the ball centre with respect
to absolute origin [m], uCx, uCy, uCz — displacement of the
contact point [m].

The Appell-Gibbs approach follows from the Gaussian fifth form of the basic
principle of dynamics. It works with accelerations instead of velocities and in many
cases it provides a simpler governing differential system than that obtained using
a more common Lagrangian approach. The basic governing system is derived using
the virtual-work principle and geometry relations and finally reads

Jsρω̇x = ( (üAy + ρ(ωzu̇Cx − ωxu̇Cz))(uCz −R)− uCy(g + ρ(ωxu̇Cy − ωyu̇Cx)))
Jsρω̇y = (−(üAx + ρ(ωyu̇Cz − ωzu̇Cy))(uCz −R) + uCx(g + ρ(ωxu̇Cy − ωyu̇Cx)))
Jsρω̇z = ( (üAx + ρ(ωyu̇Cz − ωzu̇Cy))uCy − (üAy + ρ(ωzu̇Cx − ωxu̇Cz))uCx) .

(2)

where it was substituted: Js = (J+Mρ2R2)
Mρ2

and ρ = 1 − r
R

, and uAx, uAy denotes

external kinematic excitation [m]. Additional non-holonomic constraints are based
on the assumption of slippingless rolling of the ball in the cavity (see [9] for detailed
derivation)

u̇Cx = ωy(uCz −R)− ωzuCy ,
u̇Cy = ωzuCx − ωx(uCz −R) ,

u̇Cz = ωxuCy − ωyuCx .
(3)

3. Behaviour in the resonance

The resonance properties of the system given by Eqs. (2,3) are generally studied
when the motion of the cavity, uAx, uAy, is prescribed as one harmonic component:

üAx = u0 ω
2 sinωt , üAy = 0 . (4)

When varying the excitation frequency, the maximal response amplitude of the set-
tled response in the state of resonance may attain different values for a single ex-
citation frequency. Also the transverse component of the response may become
non-negligible; its non-zero values represent spatial motion of the ball. The both
effects are directly related to an auto-parametric resonance, which emerges due to
a non-linear connection between two principal directions of the movement.
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Figure 2: Resonance plots for prescribed harmonic movement in x direction, Eq. (4).
Maximal amplitudes of the settled response reached for a given excitation frequency
are shown on the vertical axis. Longitudinal amplitude: solid, transversal amplitude:
dashed. Insets show projections of the trajectory for three particular frequencies.

The situation is illustrated in Fig. 2. The resonance area — the interval between
points A and D — is characterised by an overlapped resonance curve. Two levels
of the planar response are present between A–B, planar, chaotic or multiperiodic
response exists in the interval between B–C, planar or elliptic response appears be-
tween C–D. As it was presented by the authors in [10], the individual branches differ
also in terms of stability with respect to perturbation of the respective settled so-
lutions. The upper branch in interval A–B is planar (i.e., uCy = 0) and is sensitive
to any perturbation in the transverse direction. On the other hand, the circular
motion in interval C–D is stable with respect to perturbation in any direction in the
beginning of the interval, its stability gradually decreases with increasing excitation
frequency ω.

The stability of the individual response branches may be measured by a size
of the respective basin of attraction (BA). While the BA of the upper branch in
interval A–B forms a rank-2 set (uCx, ωy) in the complete 5-dimensional parameter
space (uCx, uCy, ωx, ωy, ωy), see [10] for details, in interval C–D the BA of the upper
branch fills a full-rank subset of the parameter space. Its volume decreases as the
excitation frequency increases. Thus, the access to the upper branch from general
initial conditions is becoming increasingly difficult for higher excitation frequencies.

The present analysis is targeted to the stability analysis of the upper (elliptic)
branch in the C–D interval with respect to stochastic excitation.

4. Random response analysis

The stationary random load is usually described by a spectral density matrix
and an underlining probability distribution (preferably Gaussian). The stationarity
assumption represents an acceptable simplification in this analysis.

As an example of the spectral density, which is frequently used in engineer-
ing applications corresponding to wind effects, servers the so-called Davenport’s
spectrum, [2], which represents the cross-spectrum of horizontal gustiness in two
points x1, x2 near the ground in high winds. It represents a narrow-band random
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process. On the other hand, the peak of the auto-parametric resonance of the ball
absorber is also quite narrow, cf. Fig. 2 and [10]. For this reason, two different
random input processes were taken into account: (i) a broadband approximation of
the white noise process, and (ii) a narrow-band process, spectral density of which is
concentrated in the resonance interval of the absorber. The former case of a purely
random excitation was used for assessment of the possibility of emergence of the
high-energy spatial response due to an ambient broadband noise. The latter case
was selected to assess stability of the spatial response with respect to random per-
turbations. In this latter case, two excitation variants were used, namely a harmonic
movement perturbed by a band-limited Gaussian noise with spectrum concentrated
around the harmonic movement frequency, ξ1(t), and a pure band-limited Gaussian
noise with a similar spectral density and greater intensity, ξ2(t).

(a) üAx1 = ξ1(t) + u0ω
2 sinωt , (b) üAx2 = ξ2(t) . (5)

Processes ξj, j = 1, 2 [m s−2] in the both variants were scaled to deliver an approxi-
mately equal energy to the model. To keep continuity of realizations üAxj, random
processes ξj are modelled in the form of

ξj =

√
∆t

T

M∑
i=1

uj,iw
2
j,i sin(wj,it) , j = 1, 2 , (6)

where ∆t is the time step used during integration [s], T = M ∆t is the total integra-
tion time [s] and uj,i, wj,i are normally distributed random variables representing am-
plitude [m] and frequency [rad s−1], respectively; uj,i ∈ N(0, σuj), wj,i ∈ N(ω, σωj

).
Relation (6) represents a continuous variant of the traditional algorithm due to Shi-
nozuka [15], which is originally based on FFT.

Two numerical methods were used for different random excitation processes. The
modified stochastic Euler method (Itô version), [4], was used for the white noise exci-
tation. This method uses a fixed step length, which can be problematic with respect
to integration accuracy, when the step is too long, and also to stochastic properties
of the response, if the step is too small. On the other hand, the Euler algorithm is
simple and convenient for parallelization, e.g., using GPU. In the case of the band-
limited excitation, the Monte Carlo simulation was used. The equations of motion
were repeatedly integrated using the second Gear’s method in an implementation
of the NDSolve function in Wolfram Mathematica. This method encompasses ad-
vanced features as accuracy checking and thus it assures credible results even for
long simulation times.

When dealing with non-linear models, the results of simulation are generally not
Gaussian even for normally distributed inputs. This applies also to this case and,
consequently, the results have to be represented by an estimate of a (time dependent)
probability distribution. Histograms are used for this purpose in the this work.

The movement of the ball may exhibit a very complicated trajectory, namely
when the chaotic or multi-periodic response occurs in interval B–C. The elliptical
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spatial response, on the other hand, is periodic and intersects the coordinate axes
always in the same points. When random excitation is assumed, the trajectory
deviates from an ideal ellipse depending on variance of the random process. The
presented histograms count values of the both spatial variables at the moments when
the trajectory intersects the respective axes, i.e., values |uCx(tx)|, |uCy(ty)|, where
uCx(ty) = 0, uCy(tx) = 0 and tx, ty > t0; the time threshold t0 > 0 is introduced to
pass over interval (0, t0) of the transient response. For deterministic excitation, the
histograms will be concentrated in values corresponding to intersection points of the
elliptic trajectory and both axes. When random perturbation of the harmonic input
increases, the centre of gravity of the histogram becomes blurred. A further increase
in the random perturbation intensity may cause a change of the type of the response
and a jump to the lower solution branch, which is characterised by a negligible value
of the transversal component and a small but non-zero value of the longitudinal
component.

5. Results

5.1. White noise excitation

The first test checks a possibility of the spherical absorber to enter the state of
a spatial response, i.e., that with non-zero amplitudes in the transversal direction uCy.
In the case of deterministic harmonic excitation and non-zero but negligible initial
conditions, the response state corresponding to the spatial branch of the resonance
curve in the C–D interval is not accessible.

It appears that in the case of broad-band white-noise excitation the spatial re-
sponse may emerge depending on the variance of the input random process. This
result follows from Fig. 3 which shows probability density estimates for components
uCx|y=0 and uCy|x=0 for an increasing white noise intensity; each simulation begins
from “small” initial conditions uCx(0) = uCy(0) = 0.01 and counts axes crossings for
the both components in time interval t ∈ (400, 600). Starting from the white noise in-
tensity σ = 0.15, the transversal component becomes positive and for σ ≥ 0.35 is the
random response almost symmetric in the both components. However, the elliptic
periodic response, which is typical for the upper spatial branch in the interval C–D,
does not appear dominant in any histogram.

The random simulation was performed using the modified stochastic Euler method
with ∆t = 2−6. The computation was restarted 240 times. Approximately 100 axes
crossings were counted in each simulation for t ∈ (400, 600), which number gives in
total ca. 2.4× 105 samples for each histogram.

5.2. Stability of the spatial movement

Stability of the periodic spatial movement was assessed using two slightly different
approaches. Firstly, a harmonic excitation with frequency corresponding to the pe-
riodic spatial response was applied together with a band-limited random noise, üAx1,
Eq. (5a). Secondly, a purely random process was considered with band-limited
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Figure 3: The probability density estimates for components uCx|y=0 and uCy|x=0 for
t ∈ (400, 600) and increasing white noise intensity σ, starting from “small” initial
conditions uCx(0) = uCy(0) = 0.01, σω = 0.5, σu = 0.02, M = 240, 105 realizations.

spectral density concentrated around the corresponding harmonic frequency, üAx2,
Eq. (5b). The both load cases resulted in random processes which were comparable
in terms of the spectral density and variance. The results were also similar to each
other. Thus, only results regarding the first case are presented.

Figure 4 shows changes in the response histograms for selected resonance frequen-
cies from the interval C–D in rows, the individual columns correspond to different
time instants in the simulation course t = 200, 400, 600, 800 for 105 realizations. The
first row in Fig. 4 indicates that for ω = 3 the response is spatial, the maximal val-
ues of histograms correspond to the deterministic periodic trajectory, however, the
variance of the response is high. Moreover, the profile of histograms does not change
significantly for increasing simulation time t. This fact indicates a high stability of
the spatial movement at the lower end of the resonance interval C–D.

The second and third rows in Fig. 4 shows, for ω = 4 and 5, two significant peaks
in the histograms for t = 200; the upper ones (for values 0.8 and 0.9, respectively)
correspond to the deterministic periodic trajectories. It seems that the lower peaks
reflect gradual convergence to the lower planar response, because they shift towards
the theoretical values for an increasing simulation time.
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Figure 4: The probability density estimates for components uCx|y=0 and uCy|x=0 for
ω = 3, 4, 5 rad s−1, and varying duration of random excitation, T = 200, . . . , 800 s,
σω = 0.5, σu = 0.02, M = 240, 105 realizations.

6. Conclusions

The ball-type passive tuned mass vibration absorber is an efficient damping device
which proved very well being used at slender structures exposed to wind excitation.
However, these devices are generally designed using a simplified 2D model derived
according to needs of the structural engineer. The device is supposed to work in
linear mode which neglects any type of the auto-parametric resonance effects. Due to
a relatively low structural damping, the absorber is theoretically prone to a stability
loss in a very particular loading case, i.e., when the load frequency coincide with the
narrow interval of the auto-parametric resonance.

The current work, however, revealed that the spatial response of the absorber
can emerge also due to a broadband random excitation, provided that the intensity
of the random noise exceeds certain limit. It was also shown that the periodic
spatial movement of the ball within the absorber is unfavourably stable with respect
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to band-limited random perturbations that correlate with the respective resonance
frequency.

The both results indicate a need for further investigation of the topic. A more
thorough parameter study should comprise different system parameters (e.g., damp-
ing values), longer integration times, selection of different integration step lengths,
etc. However, it can be concluded that occurrence of the auto-parametric effects in
practice is more probable than it was expected. This can be dangerous for structures
if adequate countermeasures are not applied.

Acknowledgements

The kind support of Czech Science Foundation project No. GA19-21817S and
the RVO 68378297 institutional support are gratefully acknowledged.

References

[1] Bar-Avi, P. and Benaroya, H.: Non-linear dynamics of an articulated tower in
the ocean. Journal of Sound and Vibration 190 (1996), 77–103.

[2] Davenport, A.G.: The spectrum of horizontal gustiness near the ground in
high winds. Quarterly Journal of the Royal Meteorological Society 87 (1961),
194–211.

[3] Hedrih, K.: Rolling heavy ball over the sphere in real Rn3 space. Nonlinear
Dynamics 97 (2019), 63–82.

[4] Kloeden, P. and Platen, E.: Numerical Solution of Stochastic Differential Equa-
tions. Springer, Berlin-Heidelberg, 1992.

[5] La, V.D.: Combination of partial stochastic linearization and Karhunen-Loeve
expansion to design Coriolis dynamic vibration absorber. Mathematical Prob-
lems in Engineering 2017 (2017), 1–11.

[6] Legeza, V., Dychka, I., Hadyniak, R., and Oleshchenko, L.: Mathematical model
of the dynamics in a one nonholonomic vibration protection system. Interna-
tional Journal of Intelligent Systems and Applications 10 (2018), 20–26.

[7] Litak, G., Margielewicz, J., Gaska, D., Yurchenko, D., and Dabek, K.: Dynamic
response of the spherical pendulum subjected to horizontal Lissajous excitation.
Nonlinear Dynamics 102 (2020), 2125–2142.

[8] Matta, E., De Stefano, A., and Spencer Jr., B.F.: A new passive rolling-
pendulum vibration absorber using a non-axial guide to achieve bidirectional
tuning. Earthquake Engineering and Structural Dynamics 38 (2009), 1729–1750.

48
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