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Abstract: Shape analyses and similarity measuring is a very often solved
problem in computer graphics. The shape distribution approach based on
shape functions is frequently used for this determination. The experience
from a comparison of ball-bar standard triangular meshes was used to match
hip bones triangular meshes. The aim is to find relation between similarity
measures obtained by shape distributions approach.
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1. Introduction

Application of shape distributions in shape analyses represents an efficient ap-
proach to compute similarity measures of 3D shapes. The digital shape character-
istics are represented as a probability distribution sampled from a suitable shape
function based on simple measurements of geometrical features, e.g. angles, dis-
tances, areas, volumes, mentioned in [3] and [4]. The probability distribution de-
picted in form of histogram polyline is called shape distribution is discussed [4]
and [5]. This approach reduces the shape matching problem to the relatively simpler
problem, i.e. comparison of two probability distributions instead of traditional shape
matching methods, e.g. parametrization, feature correspondence and model fitting.
The method for construction of shape distributions from 3D polygonal models to
compute a measure of their dissimilarities consists of these steps: shape function
selection, random points sampling, shape distributions calculation and shape distri-
butions comparison. Shape distributions calculated for a sufficiently large number
of random sample points of the surface are compared using Minkowski LN norm.

In this paper, the shape distributions method is used to determine similarity
between five triangular meshes of ball-bar standard in STL format obtained by optical
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scanning and between few selected meshes of pubic symphysis of hip bones in STL
format, too. The standard is made of two precise spheres connected by a cylinder
(Fig. 1) and is used for calibration of optical scanners. The goal of this paper is
to find the similarity measure between meshes obtained by the shape distributions
approach and to verify the usability of these shape functions in pubic symphysis
(part of hip bone, see Fig. 2) meshes similarity comparison.

Figure 1: Ball-bar standard and a detail of the triangular mesh.

2. Meshes pre-processing and shape functions selection

The ball-bar meshes were oriented and inappropriate parts belonging to the han-
dle of the sphere (Fig. 1) were removed as mentioned in [7].

In case of hip bones, the meshes were also aligned using Procrustes analysis (po-
sition and scale transformation for object alignment) to fit the scale and orientation
above the plane xy ((Fig. 2)).

Figure 2: Pubic symphysis mesh of the 30 years old women pubic symphysis and
2-neighbourhood for mesh vertex Vi.

The shape function selection is the first step for construction of shape distribu-
tions. The modifications of D1, D2 and D3 shape functions described in [4] were
used. The difference between modification and original shape function is as follows:
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the original function works with points calculated randomly on a smooth surface,
the modification works with input data (i.e. mesh vertices).

The modified shape function D1 measures the oriented distance of mesh vertex
from origin, i.e.

fi = sign(xi)
√

x2
i + y2

i + z2
i , i = 0, 1, . . . , n, (1)

where for sign(xi) = 0 the positive value is considered (the same in the following
formulae).

The modification of D2 shape function measures the oriented distance between
two mesh vertices, i.e.

f̂i = sign(xSi
)‖ai‖, i = 0, 1, . . . , k, (2)

where xSi
is the x-coordinate of midpoint S for line segment ViVi+1, represented by

vector ai.
And modification of D3 shape function measures the oriented square root of

triangle area with one vertex at origin and other vertices as mesh vertices, i.e.

f̃i = sign(xTi
)

√
‖ui + vi‖

2
, i = 0, 1, . . . , l, (3)

where xTi
is the x-coordinate of triangle centroid and vectors ui and vi are directional

vectors of two mesh vertices.
In order to use the shape function for hip bone, a new function C2 measuring the

oriented curvature at a vertex of triangular mesh is introduced in this paper and is
based upon the discrete Gaussian curvature from [1] or [2]. The oriented curvature
at a vertex is done by the least square fitting of a sphere in 2-neighbourhood of
the vertex (this neighbourhood is depicted in Fig. 2). This new shape function has
a formula:

ci = a(z)
1

rsphere

, i = 0, 1, . . . , n, (4)

where rsphere is the radius of fitted sphere and a(z) is a sign function, that returns −1
in case there are more points with lower z-coordinate than centre of sphere and +1
otherwise.

3. Shape distribution construction and its comparison

After shape function selection, a frequency histogram calculation was done, i.e.,
determination how many values fi fall into each of k fixed sized classes. The frequen-
cies were normalized by the number of mesh vertices n to eliminate the influence of
different number of meshes vertices. This piecewise linear function constructed from
the relative frequency histogram forms the representation for the shape distribution.
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In case the shape distribution is represented by the relative frequency histogram,
the similarity measurement is based on Minkowski L1 norm

D(f, g) =
k∑

i=1

|fi − gi|, (5)

where fi and gi calculated according to (1) represent the relative frequency of two
triangular meshes.

4. Experimental results

The shape distributions from D1-oriented shape function calculated for all tri-
angular ball-bar meshes M1, M2,. . . , M5 are depicted in Fig. 3 (for better colour
resolution of the individual series in the graphs, please see the online version). The
resemblance of characteristics is obvious. The more the curves overlap the greater
their similarity. And in correspondence: the grater the Minkowski L1 norm value of
two meshes the worse their similarity. The values of Minkowski L1 norms for these
shape distributions calculated according to (5) are displayed in Tab. 1: the minimal
nonzero value Dmin = 0.043506 indicates the best similarity between M3 and M4.
The maximal value Dmax = 0.069793 indicates the worst similarity of meshes M2
and M4 (both extrema are highlighted in bold in Tab. 1).

D1 M1 M2 M3 M4 M5
M1 0 0.055781 0.056787 0.066404 0.051121
M2 0.055781 0 0.059091 0.069793 0.053479
M3 0.056787 0.059091 0 0.043506 0.047324
M4 0.066404 0.069793 0.043506 0 0.053777
M5 0.051121 0.053479 0.047324 0.053777 0

Table 1: Comparison of D1-oriented shape distributions for ball-bar meshes.

D2 M1 M2 M3 M4 M5
M1 0 0.029904 0.030127 0.034288 0.020421
M2 0.029904 0 0.029683 0.052911 0.027332
M3 0.030127 0.029683 0 0.046253 0.019839
M4 0.034288 0.052911 0.046253 0 0.032937
M5 0.020421 0.027332 0.019839 0.032937 0

Table 2: Comparison of D2-oriented shape distributions for ball-bar meshes.

Resulted shape distributions from D2-oriented shape function of ball-bar trian-
gular meshes M1, M2, . . . , M5 are depicted in Fig. 3, too. The main values of
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Figure 3: D1-, D2- and D3-oriented shape function for ball-bar.

Minkowski L1 norms are: the minimal nonzero value Dmin = 0.019839 between M3
and M5 and the maximal value Dmax = 0.052911 between M2 and M4 (Tab. 2).

Similarly, the shape distributions from D3-oriented shape function calculated for
ball-bar meshes are depicted in Fig. 3. The symmetry of the ball-bar is not as visible
from these graphs as from the previous two. The important values of Minkowski L1

norms are: minimal nonzero value is Dmin = 0.068143 between M1 and M2 and the
maximal value is Dmax = 0.11956 between M4 and M5 (Tab. 3). The symmetry of
the objects is visible from the symmetry of the shape distribution curve in all these
graphs.
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Figure 4: D1-, D2- and D3-oriented shape function for hip bones.

From minimal and maximal values of Minkowski L1 norms and from the fact,
that the meshes are obtained from the scanning of the same object, we can deduce,
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D3 M1 M2 M3 M4 M5
M1 0 0.068143 0.095878 0.090844 0.10116
M2 0.068143 0 0.096972 0.11021 0.11049
M3 0.095878 0.096972 0 0.096862 0.1188
M4 0.090844 0.11021 0.096862 0 0.11956
M5 0.10116 0.11049 0.1188 0.11956 0

Table 3: Comparison of D3-oriented shape distributions for ball-bar meshes.

Figure 5: C2-oriented shape function for ball-bar and hip bones.

that the D3 function is not so suitable for measuring the similarities as functions D1
and D2, because of great difference between Dmax and Dmin (for the first two shape
functions the difference is about 0.03, but for the D3 it is almost 0.05). However,
this fact can be caused by the noise in the data, so the exact result proving this
deduction was made in [7] using MSA (Measurement System Analysis) method.

When using the C2-oriented shape function, the shape distributions of all ball-
bar meshes are sketched in Fig. 5. The symmetry of the ball-bar is in this graph also
very clearly visible. The values of Minkowski L1 norms are: minimal nonzero value
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C2 M1 M2 M3 M4 M5
M1 0 0.05552 0.14257 0.13542 0.18341
M2 0.05552 0 0.12706 0.13783 0.19473
M3 0.14257 0.12706 0 0.046764 0.29719
M4 0.13542 0.13783 0.046764 0 0.30438
M5 0.18341 0.19473 0.29719 0.30438 0

Table 4: Comparison of C2-oriented shape distributions for ball-bar meshes.

is Dmin = 0.046764 between M3 and M4 and the maximal value is Dmax = 0.30438
between M4 and M5 (Tab. 4).

The same procedure was applied to pubic symphysis meshes with results for D1
function depicted in Fig. 4, where the symmetry of the bones surfaces is obvious, but
the course of these graphs are various. The D2 function demonstrates the symmetry
of the bones, too. And for D3 function the symmetry and variance of bone surfaces
is apparent. The last C2 function is depicted in Fig. 5 (tables for these functions are
not included because of too many values). Its graphs show, that there is a tendency
of graphs peaks to decrease with increasing age, that is more visible from the graph
in Fig. 6. Additionally, the width of the peaks is getting wider when age increases.

Figure 6: Graph of age dependence on the curvature values.

The important values of Minkowski L1 norm for D1 function are: the lowest value
is Dmin = 0.05506 between bones of ages 40 and 58 and the highest is Dmax = 0.4272
between bones 62 and 72.

The values of Minkowski L1 norm for D2 function are: Dmin = 0.11208 between
bones of ages 54 and 73 and Dmax = 0.57928 between bones 83 and 89.

The values of Minkowski L1 norm for D3 function are: Dmin = 0.085187 between
bones of ages 62 and 73 and Dmax = 0.55654 between bones 30 and 62.
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And last values of Minkowski L1 norm for C2 function are: the lowest value is
Dmin = 0.07287 between bones of ages 62 and 83 and the highest is Dmax = 0.87035
between bones 30 and 90. These norms correspond with the fact, that age has an
impact on the structure of the pubic symphysis.

These values and shapes of graphs show, that function C2 is suitable for measur-
ing the structure of bone roughness.

5. Conclusion

Shapes of ball-bar and bones characteristics of shape distributions show the differ-
ence between ball-bar shape and bone shape unambiguously for each shape function.
It means, these functions are applicable to detect dissimilarity between different
shapes. But the best functions for detecting the similarity of meshes from the same
object are D1 and D2. For bone application, where the shapes are similar but the
surfaces have a bit various structure, the best shape function is C2 is the best since
it describes the roughness.
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