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Abstract: One of the important parts of railway signalling systems design
is the safety of communication, achievable — among others — with the error
detecting code. Getting evidence of quantitative safety targets, especially the
probability of undetected error of the code, is a surprisingly complicated is-
sue. We’ve analysed 2048 irreducible self-adjoint generator polynomials of the
degree 32. More than 70 of these have a maximum probability of failure lower
than the standard codes generally used. In this article we present the best of
all codes we’ve analysed.
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1. Introduction

Evidence of the fulfilment of quantitative safety objectives is required when as-
sessing the safety of railway signalling equipment, which is usually part of the doc-
umentation referred to as Safety Case. Quantitative targets are determined by the
tolerable intensity of the dangerous failure (see EN 50129 [5] – Tolerable Functional
(unsafe) Failure Rate TFFR).

Current European Standards ([5], [6]) recommend the use of formula (1) to esti-
mate the probability of failure of a detection code:

pud = 2−c, (1)

where c denotes the number of redundant (or control) bits.
This however assumes that the code used is shown to have a property denoted

as proper or good (for explanation see Paragraph 1.2 below). The examples given in

DOI: 10.21136/panm.2020.12

120

http://dx.doi.org/10.21136/panm.2020.12


Chapter 2 show that these assumptions do not apply to commonly used detection
codes (safety and transmission codes).

In the case of the second example below, for the Ethernet link layer, many articles
have been published that have tried to suggest improvements to the detection code
used. One interesting group of detection codes are codes generated using irreducible
self-adjoint polynomials. An analysis of the detection properties was performed for
all these codes with particular lengths. Chapter 3 gives the results for the best of
them, but even they do not meet the requirements for formula (1) to be applied. In
Chapter 4, the authors discuss the procedure for finding a detection code for which
this formula could be used with sufficiently small deviation.

1.1. Linear and cyclic codes

A linear binary (n, k)-code C is defined as an arbitrary k-dimensional subspace of
the n-dimensional linear space (Z2)n. Binary vectors are traditionally called words ;
words from the code C are codewords. Any linear (n, k)–code C can be described
by its generator matrix G of the dimension k× n, whose rows are exactly the words
forming some basis of the subspace C. A matrix H of the dimension (n− k)× n is
called parity-check matrix of the code C, if it has the following property: A word of
the length n is a codeword of the code C if and only if its product with matrix H is
zero word (i.e. zero vector).

The dual code C⊥ of a linear (n, k)-code C is the linear (n, n− k)-code, defined
as a set of all words of the length n being orthogonal to all codewords of the code C,
i.e. C⊥ = {u ∈ (Z2)n |

∑n
i=1 uivi = 0 ∀v ∈ C}. A generator matrix for the dual

code C⊥ is a parity-check matrix for the original code C and vice versa.

The cyclic code is a linear code closed in respect to the circular shifts. That
means, for every codeword (a0, a1, . . . , an−1) the word (an−1, a0, a1, . . . , an−2) is also
a codeword. Codewords of a cyclic code of the length n can be written as formal
polynomials p(x) of the degree lesser than n. Then multiplication by x corresponds
to a cyclic shift. Every nontrivial (i.e. containing more than one word) cyclic (n, k)-
code contains exactly one polynomial g(x) of the minimal possible degree among
all non-zero polynomials, its degree being n − k. The polynomial g(x) is generator
polynomial of the code C. The dual code to the cyclic code is cyclic code as well.

Let C be a linear binary (n, k)-code and M be some m-elements subset of the
set of indices {0, 1, 2, . . . , n−1}. Define a set C(M) of all codewords that have zeros
in all components from M : C(M) = {u ∈ C | ui = 0 ∀i ∈ M}. By omitting the
components from M we obtain a linear binary code Cn−m of the length n−m. The
code Cn−m is called shortened code of the code C.

If the code C is a cyclic code, its shortened codes are in practice referred to as
shortened cyclic codes, although they are almost never cyclic.

More details concerning cyclic codes and their construction can be found in
Berlekamp’s book [1] for example.
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1.2. Detection properties

The basic measure for detection ability of the code is its minimal distance. For
linear binary codes the minimal (Hamming’s) distance is defined as minimal weight
of nonzero codeword, where weight of the word is the number of its nonzero symbol.

It is a well known fact that undetected errors of the given linear (n, k)-code are all
its nonzero codewords. Consequently, the linear (n, k)-code with minimal distance
equal to d can detect all errors up to multiplicity d− 1 (i.e. up to d− 1 wrong bits).

Of course, this code can detect some of the errors of higher multiplicity, and at
this point there are big differences amongst codes with a certain minimal distance.
For a more detailed approach the binary symmetrical channel model is used.

A binary symmetrical channel (BSC) is a simple probability model based on an
independent transmission of single bits (binary symbols). The probability pe that
the bit changes its value during the transmission (bit error rate) is the same for both
possibilities (from 0 to 1 and vice versa).

The following formula (2) for the probability of undetected error pud is valid for
a linear (n, k)-code in the binary symmetrical channel:

pud(pe, n, A
n) =

n∑
i=1

An
i p

i
e (1− pe)

n−i (2)

where An
i is the number of codewords of the weight i. The vector An is called weight

distribution of the code.
The key problem is what maximum value the function pud(pe, n, A

n) can take.
Setting the value pe to one half, the formula (2) gives the following local upper
bound, valid on some neighbourhood of 1/2:

pud

(
1

2
, n, An

)
< 2−(n−k).

This upper bound is independent of the code weight distribution and even of the
codewords length n; it depends only on the number of redundant bits n− k.

Unfortunately, our intuitive expectation that with the decrease of bit error rate pe
the probability of undetected error pud decreases as well, is not always valid. In many
cases the value pud (1/2, n, An) is only a local maximum of the pud function on some
neighbourhood of the value 1/2.

The (n, k)-code is said to be proper if its function pud(pe, n, A
n) is monotone for pe

from the interval 〈0, 1/2〉. However, for the hazard rate calculation it is necessary
to know an upper bound of the pud only. The monotonicity of this function is not
crucial for this purpose. The (n, k)-code is called good if the value 2−(n−k) is the
upper bound of the function pud(pe, n, A

n) on the whole interval 〈0, 1/2〉.

1.3. Weight enumerator

To get more precise information about probability pud we focus on calculation of
the code weight distribution An. The weight enumerator pw(x, n,An) is essential for
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these calculations. It describes the distribution of codewords weights by the following
formal polynomial:

pw(x, n,An) =
n∑

i=0

An
i x

i. (3)

To get a more effective calculation, it is useful to implement the MacWilliams
Identity, which links the weight enumerators of the given code pw(x, n,An) and of
its dual code pw(x, n,Bn). The following formula (4) is the form of MacWilliams
Identity for binary codes:

2kpw(x, n,Bn) = (1 + x)npw

(
1− x

1 + x
, n,An

)
. (4)

The practical advantage of this procedure is that the dual code has far less code-
words (2n−k� 2k), and thus the computation of its weight distribution is significantly
faster.

2. Examples

Following graphs demonstrate properties of the BSC model for some linear binary
codes. What we call a code in technical practice, in fact is a family of shortened
cyclic codes of a single cyclic code, identified by its generator polynomial.

As a result, the following graphs are three-dimensional: the X-axis represents
length of the code n, the Y-axis represents bit error rate pe, and the (vertical) Z-axis
represents the respective probability of undetected error pud(pe, n, A

n). Note that
scales on the Y and Z axes are different.

2.1. Example 1: ETCS code

Because our research was motivated by the development of the railway signalling
systems, the first example is from this application area. The discussed code is used
for safety communication in the European Train Control System (ETCS). The code
was designed using BCH code construction (see e.g. [1]) with minimal distance equal
to 6 and construction length of 32767 bits. Its generator polynomial of the code is
x32 + x30 + x27 + x25 + x22 + x20 + x13 + x12 + x11 + x10 + x8 + x7 + x6 + x5 + x4 + 1.

The behavior of the function pud(pe, n, A
n) for the ETCS code is shown by the

graph in Fig. 1. Note that the value of the local upper bound at pe = 1/2 is
2−32 ≈ 2.3 ·10−10, which is (in the scale used in the graph) near to zero. It is obvious
that the ETCS code is neither good nor proper.

2.2. Example 2: Ethernet

The other heavily used code is transmission code of the Ethernet link layer
(IEEE 802.3). It is a shortened cyclic code with generator polynomial x32 + x26 +
x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x+ 1. This is a primitive
polynomial and generates a cyclic Hamming code (for explanation see [3]). Hamming
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Figure 1: Probability of undetected error for the ETCS code. (X-axis: length of the
code n, Y-axis: bit error rate pe, vertical axis: probability of undetected error pud.)

codes are proper, but shortened Hamming codes are not. Minimal distance of this
code drops to 5 for codeword length 269 bits already. Detection properties of this
code are shown by the graph in Fig. 2. The maximal values of the pud are lower
than those of the ETCS code, and they are only about three times higher than 2−32.
However, the code is not good nor proper.

3. Examined codes and results of calculations

Transmission codes with 32 bit redundancy are further discussed by Koopman
in his work [4]. His goal was to find transmission codes that maximise the minimal
distance for the largest possible code lengths. Two of discussed codes were generated
by irreducible self-adjoint polynomials. Shortened cyclic codes generated by this
group of non-primitive polynomials have a minimal distance equal to five up to
a codeword length of 65536 bits. This property allows correction of up to two bit
errors for the lengths mentioned. However, the maximum values of the pud for the
codes mentioned by Koopman are several times higher than for the codes referred in
Sections 2.1 and 2.2.

Another example of code generated by irreducible self-adjoint polynomial was
published by Castagnoli in [2]. The code proposed in his article is — regarding
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Figure 2: Probability of undetected error for the Ethernet link layer code. (X-axis:
length of the code n, Y-axis: bit error rate pe, vertical axis: probability of undetected
error pud.)

the pud function — a better choice than the polynomials proposed by Koopman, but
it does not reach the quality of the polynomial for Ethernet.

We were looking for codes with big minimal distance for long codewords, and
with best possible probabilistic results in the BSC model. Inspired by the mentioned
studies [4] and [2], we analysed 2048 irreducible self-adjoint generator polynomials of
the 32th degree. Considered codeword lengths were multiples of 8 from 40 to 65536.

Performed calculations pointed out that not one of these polynomials generate
proper code for every considered codeword length. However, many of them have a
lower maximum of the pud function than the Ethernet link layer code. The best of
them (denoted as c1798) is generated by the polynomial x32 +x31 +x30 +x29 +x23 +
x20 +x19 +x17 +x16 +x15 +x13 +x12 +x9 +x3 +x2 +x+1. Its detection properties are
shown by the graph in Fig. 3. The plateau of the graph is near value 2−32. Notice
two local maxima of the pud function.

Table Tab. 1 summarises more detailed information about properness of the
c1798 code. In the first column there are intervals of codeword lengths, for which the
shortened c1798 code is/isn’t proper. The fourth column indicates codeword length
(in this interval) with the highest value of the maximum of the pud function. The
ratio between this value max(pud) and the value of pud(1/2) is given in the third
column of the table.
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Figure 3: Probability of undetected error for the code c1798. (X-axis: length of the
code n, Y-axis: bit error rate pe, vertical axis: probability of undetected error pud.)

As the case turns out to be so far, the properness of shortened cyclic codes for all
required lengths is a very rare feature. It has been found from previous analyses of 8th
and 16th degree primitive polynomials, that there are some 8th degree polynomials
with this property, but not a single 16th degree polynomial. Nevertheless, these
polynomials (cyclic Hamming codes) are most often used in current error correcting
codes in SRAM memories.

After all, the c1798 code is not too far from the proper code. For comparison,
the following figure Fig. 4 demonstrates the pud function of the proper code (graph
on the left) and of the c1798 code (graph on the right) with the same scale on the
vertical axis.

4. Further research

We will focus on the extensive search of suitable generator polynomials among
primitive polynomials of the 32th degree in the nearest future. Since there are
67108864 primitive polynomials of the 32th degree, first there must be procedures
designed for reducing the number of examined polynomials. In addition, it is neces-
sary to make maximum use of the current possibilities of calculations parallelisation.

In the long run, we want to improve techniques being used so that the area of
generator polynomials of the 48th degree is accessible for computing. The current
obstacle is the long computational time of the weight distribution, and huge amount
of explored polynomials.
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Interval (n) Proper code max(pud)/pud(1/2) Worst length

40 NO 1.002039674108 40

48 - 64 YES 1 —

72 - 160 NO 1.042927066522 112

168 - 232 YES 1 —

240 - 13000 NO 1.054302693462 408

13008 - 65536 YES 1 —

Table 1: Lengths of codewords, where the code c1798 is proper.

Figure 4: Comparison of the probability of undetected error for the proper code
(on the left) and for the code c1798 (on the right).
(X-axis: length of the code n, Y-axis: bit error rate pe, vertical axis: probability of
undetected error pud.)

5. Conclusion

Probabilities of undetectable errors of cyclic codes with generator polynomials of
the 32nd degree were calculated using a BSC model. A set of codes with irreducible
and self-adjoint generator polynomials have been investigated.

These codes have a large minimal distance for codeword lengths up to 65536 bits.
None of them are good nor proper for the entire range of lengths analysed, but some
of them have a maximum probability of failure lesser than the standard codes used.
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