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Abstract: We present a mathematical description of wetting and drying
stone pores, where the resulting mathematical model contains hysteresis oper-
ators. We describe these hysteresis operators and present a numerical solution
for a simplified problem.
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1. Introduction

Stone monuments, either stone statues as well as stone buildings, are endangered
by corroding processes. To slow down these processes, it is possible to inject calcium
hydroxide into the stone object, where it reacts with the carbon dioxide contained
in the pores producing small limestone grains

Ca(OH)2 + CO2 → CaCO3 + H2O. (1)

These limestone grains inside the pores improve the resistance of the stone objects
to corroding processes.

Nevertheless, it is a very difficult task to manage the wetting and drying of the
stone object correctly to obtain uniform distribution of limestone grains. To this
end, there is a strong demand on the numerical modeling of this problem. Moreover,
the process of pores wetting and drying exhibits hysteresis behavior. The aim of this
paper is to briefly describe the mathematical model (for the more detailed description
see [1], [4] and the citations therein), briefly introduce hysteresis operators involved
in the problem and present a numerical solution for a simplified problem.

2. Balance laws

This section is based on [1]. Let us consider a time interval (0, T ) and a domain
Ω ⊂ R3 containing a solid deformable material with pores that contain a mixture
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of liquid and gas. We describe the balance laws in the Lagrangean setting for the
following state variables: u – the displacement vector, ε = ∇su – the strain tensor,
σ – the stress tensor, p – the capillary pressure, θ – the temperature, W – the relative
liquid content, A – the relative gas content, CS – the relative solid content (1−CS is
the porosity).

Let us assume the control volume V0 = V (0) ⊂ Ω. Then

V (t) = {y : y = x+ u(x, t), x ∈ V0}. (2)

V
x y

V (t)
u(x, t)

Figure 1: Evolution of the control volume.

We assume that the relative solid content is constant

lim
|V0|→0, x∈V0

|VS(t)|
|V0|

= CS (3)

and the relative liquid and gas contents are

lim
|V0|→0, x∈V0

|VW (t)|
|V0|

= W (x, t), lim
|V0|→0, x∈V0

|VA(t)|
|V0|

= A(x, t), (4)

respectively. Moreover, assuming small deformations we gain

lim
|V0|→0, x∈V0

|V (t)|
|V0|

≈ 1 + divu(x, t). (5)

From this immediately follows

A+W ≈ 1− CS + divu. (6)

2.1. Mass balance

Following the empirical observations, we have a constitutive relation for the gas
content A

A = G[p], (7)

where G[p] is the hysteresis operator. Let us assume that the liquid flux has the form

ξ = µ(p)∇p, (8)
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where µ(p) is the permeability coefficient. We denote by ρL the liquid density. Then
the mass balance reads

d

dt

∫
V

ρLWdx+

∫
∂V

ξ · nds = 0. (9)

From (6) and (9) we gain∫
V

d

dt
(1− CS −G[p] + divu) +

1

ρL
div(µ(p)∇p)dx = 0 (10)

for every control volume V . From this the differential relation

G[p]′ − divu′ − 1

ρL
div(µ(p)∇p) = 0 (11)

follows.

2.2. Momentum balance

The momentum balance for solids reads

ρSu
′′ = divσ + g, (12)

where ρS is the solid density, g represents volume forces (e.g. the gravity) and σ is
given by an empirical constitutive relation

σ = Bε′ + P [ε] + (p− β(θ − θC))1, (13)

whereB is the constant symmetric positive definite tensor, β is the thermal expansion
coefficient, θC is the reference temperature and P is the hysteresis operator describing
elasto-plastic responds of solids. From (12) and (13) the differential relation

ρSu
′′ = divBε′ + divP [ε] +∇p− β∇θ + g (14)

follows.

2.3. Energy and entropy balance

Assuming Fourier’s law

q = −κ∇θ, (15)

where κ is the heat conductivity constant and q is the heat flux. The first law of
thermodynamics gives

U ′ + div q = U ′ − κ∆θ = σ : ε′ +
1

ρL
div(pµ(p)∇p), (16)
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where U is the energy density. The second law of thermodynamics gives

S ′ + div
q

θ
≥ 0, (17)

where S is the entropy density. Let us assume that the hysteresis operators satisfy

P [ε] : ε′ − VP [ε]′ = ‖DP [ε]′‖∗, G[p]′p− VG[p]′ = |DG[p]′|, (18)

where VP and VG are the corresponding potential operators, DP and DG are the
corresponding dissipation operators and ‖.‖∗ is a seminorm. Moreover, setting the
free energy

F = U − θS, (19)

then according to (16) and (17) it is sufficient to satisfy

F ′ + θ′S ≤ σ : ε′ +
1

ρL
div(pµ(p)∇p). (20)

It is possible to show that the relation (20) holds true for

F = Vp[ε] + VG[p]− β(θ − θC)divu+ F0(θ). (21)

Assuming

F0(θ) = −c0 ln(θ) + c0 ln(θC), (22)

we gain

c0θ
′ − κ∆θ = ‖DP [ε]′‖∗ + |DG[p]′|+B∇su

′ : ∇su
′ +

1

ρL
µ(p)|∇p|2 − βθdivu′. (23)

2.4. Solution existence for the isothermal case

Let us assume that the temperature θ remains constant, i.e. that there exist
negative heat forces that prevent the temperature from changing. The complete
system (11), (14), (23) simplifies to

G[p]′ = divu′ +
1

ρL
div(µ(p)∇p), (24)

ρSu
′′ = divBε′ + divP [ε] +∇p+ g.

We add the boundary conditions

u|∂Ω = 0, µ(p)∇p · n|∂Ω = γ(x)(p∗ − p), (25)

where γ is the permeability of the domain’s boundary and p∗ is the outer pressure.
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Assuming that the domain Ω is bounded with regular boundary, all the data
are bounded and sufficiently regular, the hysteresis operator G satisfies G[p] =
G0[p] + f(p), where G0 is the Preisach operator and the function f is close to the
function arctg, the hysteresis operator P satisfies P [ε] = Aeε + P0[ε], where Ae is
a symmetric positive definite constant tensor and P0 is a hysteresis operator satis-
fying certain continuity and balance relations, then it is possible to show that there
exists a solution (u, p) of the problem (24). For more detailed description of the
assumptions as well as for the complete proof see [1]. The uniqueness of the solution
of the problem (24) remains open.

3. Hysteresis operators

The aim of this section is to describe some scalar hysteresis operators. For more
detailed mathematical analysis of the hysteresis phenomenon see, e.g., [2] and [3].

3.1. Scalar Play operator

The Play operator is well known from mechanics, where this simple operator
describes the delay in the response of mechanical parts. Let us assume the under-
lying function p ∈ W 1,1(0, T ) and the threshold r > 0. Then the Play operator
pr : W 1,1(0, T )→ W 1,1(0, T ) can be defined by the differential inequality

|p(t)− pr[p](t)| ≤ r ∀t ∈ [0, T ], (26)

pr[p]
′(t)(p(t)− pr[p](t)− z) ≥ 0 for a.e. z ∈ [−r, r],

pr[p](0) ∈ [p(0)− r, p(0) + r].

r

r

p(t)

pr[p](t)

Figure 2: Application of the Play operator p on given function p.

We can observe from Figure 2 that the Play operator works as the identity or it
stagnates with the threshold given by r around the points of monotonicity change of
the underlying function.
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Figure 3: G0[p](t1).
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Figure 4: G0[p](t2).
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Figure 5: G0[p](t3).
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Figure 6: G0[p](t4).

3.2. Preisach operator

The Preisach operator G0 : W 1,1(0, T )→ W 1,1(0, T ) first described in [5] can be
defined with the aid of Play operators by

G0[p](t) =

∫ ∞
0

∫ pr[p](t)

0

ρ(r, s) ds dr, (27)

where the function ρ ∈ L1((0,∞)× (−∞,∞)) is the Preisach density. It is possible
to describe this operator as a generalization of the sum of Play operators weighted
by the density ρ. Let us define the transformation of the density ρ̂(α, β) = ρ(r, s),
where the transformation relation between (α, β) and (r, s) is

r =
β − α

2
, s =

α + β

2
. (28)

Let us describe the evaluation of the Preisach operator on a simple example, where
the underlying function p is piecewise monotone, increasing on the interval [t0, t1]
from 0 to 3, on the interval [t2, t3] from 1 to 2 and on the interval [t3, t4] from 2 to 4
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and decreasing on the interval [t1, t2] from 3 to 1, where t0 < t1 < t2 < t3 < t4.
For simplicity, let us assume that G0[p](t0) = 0. Then the value of G0[p](t1) can
be computed as the area of the right-angled triangle with the vertices (0, 0), (3, 3)
and (0, 3). The value of G0[p](t2) can be computed by subtracting the area of the
right-angled triangle with the vertices (1, 1), (3, 3) and (1, 3) from G0[p](t1). The
value of G0[p](t3) can be computed by adding the area of the right-angled triangle
with the vertices (1, 1), (2, 2) and (1, 2) toG0[p](t2). And finally, the value ofG0[p](t4)
can be computed as the area of the right-angled triangle with the vertices (0, 0), (4, 4)
and (0, 4). Moreover, all the areas are weighted by the density ρ̂. For the illustration
see Figures 3–6.

4. Numerical experiment

In this section we describe the numerical solution of the simplified problem to
the system (11), (14), (23) mimicking the simplified system (24) analyzed in [1].

4.1. Problem setting

We assume the problem

ρSu
′′ + cu′ = ν∆u+ (ν + λ)∇divu+∇p, (29)

G[p]′ = divu′ +
µ

ρL
∆p

with the boundary conditions

u|∂Ω = 0, µ∇p · n|∂Ω = γ(1− p) (30)

and the initial conditions

u(x, 0) = (sin(πx1) sin(πx2), 16x1x2(1− x1)(1− x2))T , (31)

u′(x, 0) = (0, 0)T ,

p(x, 0) = 1.

We assume the domain is a unit square Ω = (0, 1)2, the time interval is (0, 5) and

G[p] = G0[p] + arctg(p), (32)

where G0 is the Preisach operator described in Sec. 3.2. We assume that the param-
eters of the problem are chosen in the following way

ρS = ν = λ = µ = ρL = γ = 1, c = 0. (33)
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4.2. Discretization

The space discretization is carried out with the aid of the classical finite ele-
ment method on the uniform mesh with the mesh size h = 0.025, a piecewise linear
approximation for the pressure p and a piecewise quadratic approximation for the
displacement u. The resulting ODE system is discretized by the finite difference
method with the uniform time step τ = 0.005, where

u′′(t) ≈ u(t)− 2u(t− τ) + u(t− 2τ)

τ 2
. (34)

The implicit approximation of u′′(t) is only of the first order, but it improves the
stability of the resulting scheme with respect to the choice of the step-size τ .

Moreover, it is necessary to discretize G[p]′ term. To achieve good stability
properties with respect to the step-size τ and to avoid the solution of nonlinear
problems, we apply a semi-implicit discretization. According to the assumption (32),
we approximate

G[p]′(t) ≈
(
G′0[p](t− τ) +

1

p(t− τ)2 + 1

)
p(t)− p(t− τ)

τ
, (35)

where G′0[p] represents the infinitesimal increment of the Preisach operator G0[p].
With the aid of the ideas from Sec. 3.2, we can evaluate the value of G′0[p](t−τ) as the
length of the last line (weighted by the density ρ̂) infinitesimally added to/subtracted
from the final area for evaluation of G0[p](t− τ), see Figures 3–6.

4.3. Results

The evolution of the capillary pressure p is displayed in Figures 7–12, where the
higher values are in red and the lower values are in blue. It is possible to observe that
the pressure p oscillates. This oscillation is much stronger in (0, 0) and (1, 1) corners.
On the contrary, the solution p almost stagnates along the diagonal x1 + x2 = 1.
Moreover, these oscillations are damped as time evolves. This is due to the strong
damping properties of the ∆p term in (29).

Figure 7: p(t = 0.175). Figure 8: p(t = 0.35). Figure 9: p(t = 0.525).

We are interested in the evolution of the Preisach operator G[p(0.9, 0.9)] in time,
i.e., at the point x = (0.9, 0.9), where p has large oscillations. The results are shown
in Figure 13. The corresponding hysteresis loops, i.e., the dependence of the Preisach
operator G[p(0.9, 0.9)] on the value of p(0.9, 0.9), are visualized in Figure 14.
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Figure 10: p(t = 0.7). Figure 11: p(t = 0.875). Figure 12: p(t = 1.05).

Figure 13: Evolution in time: p(0.9, 0.9)
– the upper curve, G[p(0.9, 0.9)] – the
lower curve.

Figure 14: Dependence of G[p(0.9, 0.9)]
on p(0.9, 0.9).
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