Jan Hejcman
Dimensions and partitions of unity

In: Zdeněk Frolík (ed.): Seminar Uniform Spaces. , 1975. pp. 195-200.

Persistent URL: http://dml.cz/dmlcz/703129

Terms of use:

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

$$
\begin{aligned}
& \text { DDIESIOLS AND PARTITIONS OF UNITY } \\
& \text { JAN HEJCME }
\end{aligned}
$$

A characterization of covering dimenaion by means of partitions of unity is given. Namely, the dimension can be derived from values of a certain aimple quantitative characteristic of the partitions of unity which is closely related to the Lebeague number of uniform covers.

Let we begin with the 00 called large and small uniform (covering) dimensions Δd and ofd of uniform spaces. Recall their definition. Firat, if \mathcal{E} is collection of aets, the order of \mathscr{C} is the least cardinal number, which will be denoted by ord \mathscr{C}, such that coud $\boldsymbol{a} \leqslant$ ord \mathscr{C} whenever $\boldsymbol{a} \subset \mathscr{C}, \cap a \neq \boldsymbol{D} \neq$ If X is uniform apace then $\Delta d X \leq m$, $\delta d x \leq m$, meano that each uniform, each finite uniform reepectively, cover of X can be refined by a uniform cover whose order te at most $n+1$. Then $\Delta d X$, and aimilarly δ od X, is the amallest integer m for which the Inequality holde. If it holde for no m, we set $\Delta d X=\infty$. If $X=\varnothing$ then $\Delta d X=\sigma^{\prime} d X=-1$. We chall use the folqawing almost evident fact: for $\delta^{\circ} d X \in m$, the refining cover may either be ouppoed finite or not. Notice that the definition of dod 1a quite aimilar to the definition of the topologioal covering dimenoion dins open covers are replam ced by uniform covere.

If ρ is paoudomotisic on act $X, \varepsilon>0$ then wo put $S_{\rho, c}=\{(x, y) \in X \times X \mid \rho(x, y)<c\} ;$ thue $S_{\rho, c}[H]$
is the ε-neighbourhood of H.
A partition of unity on a topological space X is a famill $\left\{f_{a}\right\}$ of continuous non-negative real-valued function on X such that $\sum_{a} f_{a} x=1$ for each x. Given such a partition of unity, put

$$
\lambda\left\{f_{a}\right\}=\inf _{x \in X}\left\{\sup f_{a} \times\right\} .
$$

We say that the partition is subordinated to a cover \mathcal{G}, if the family $\left\{\cos f_{a}\right\}$ refines \mathcal{G}; here cox f denotes the cozero set of the function f, i.e. $\operatorname{cox} f=\{x \in X \mid f x \neq 0\}$. A partition $\left\{f_{a}\right\}$ of unity is said to be finite if the famill $\left\{f_{a}\right\}$ is finite. Let X be a uniform space. A partlion $\left\{f_{a}\right\}$ of unity on X is said to be uniform if each function f_{a} is uniformly continuous; it is said to be equiuniform if $\left\{f_{a}\right\}$ is a uniformly equicontinuous family of functions.

Theorem 1. Let X be a uniform space, Ω be the collection of all uniform covers of X. For g in Ω put $c(G)=\sup \lambda\left\{f_{a}\right\}$ where the supremum is taken over all equiuniform partitions $\left\{f_{a}\right\}$ of unity on X which are subordinated to \mathcal{G}. Then

$$
\inf _{g e \Omega} c(g)=\frac{1}{\Delta d x+1} .
$$

Remark. The formula above is to be understood with the usual conventions like $1 / \infty=0$ etc. If X is void then some care of a convenient definition of all needed symbole is still in place.

Proof. I. Suppose $\Delta d X \leqq n<\infty$. Let $g \in \Omega$ 。

Choose a family $\left\{U_{a}\right\}$ from Ω such that it refines g and ord $\left\{U_{a}\right\} \leqq n+1$. Let a cover $\left\{H_{a}\right\}$ be a strict shrinking of $\left\{U_{a}\right\}$, we may suppose that $S_{\rho, 1}\left[H_{a}\right] \subset U_{a}$ for each a for some uniformly continuous pseudometric ρ on X. Put, for each X in X and each a,

$$
g_{a} x=\min \left\{1, \operatorname{dist}_{\rho}\left(x, x \backslash u_{a}\right)\right\}
$$

Since $\left|g_{a} x-g_{a} y\right| \leqslant \rho(x, y),\left\{\gamma_{a}\right\}$ is a uniformly equicontinuous family of non-negative functions. Put $g x=$ $=\sum_{a} \gamma_{a} x$. Evidently $g_{a} x=1$ for $x \in H_{a}, \cos \gamma_{a} \subset U_{a}$; thus, for each $x, g_{a} x>0$ for $n+1$ indices at most. Therefore $1 \leqslant g x \leqslant n+1, \lg x-g y \mid \leqslant(2 n+2) \rho(x, y)$ which implies that g and $1 / g$ are bounded and uniformly continuous. A simple calculation shows that the family $\left\{f_{a}\right\}$ where $f_{a}=g_{a} / g$ is uniformly equicontinuous; moreover $\sum_{a} f_{a} x=1$. As con $f_{a}=\cot g_{a} \subset U_{a}$ this partition of unity is subordinated to g. For each x, $f_{a} x>0$ for $n+1$ indices a at most, $\sum_{a} f_{a} x=1$, thus $f_{a} x \geqq \frac{1}{n+1}$ for one a at least. As x was arbitrary, $\lambda\left\{f_{a}\right\} \geqq \frac{1}{n+1}$. Thus we have proved $c(\mathcal{G}) \geqq \frac{1}{n+1}$ for each cover \mathcal{G}, hence $\inf _{\mathcal{G} \in \Omega} c(g) \geqq$ $\geq \frac{1}{m+1}$ as well.
II. Suppose $\Delta d X \geq n$. Choose \mathcal{H} in Ω for which there is no refinement whose order is most $n+$ +1 . Let $\left\{f_{a}\right\}$ be an arbitrary equiuniform partition of unity which is subordinsCted to \mathscr{H}. Let us estimate
$\lambda\left\{f_{a}\right\}$. Suppose $\lambda\left\{f_{a}\right\}>\frac{1}{n+1}$. of course,
$\lambda\left\{f_{a}\right\}>\frac{1}{m+1}+\varepsilon \quad$ for some positive ε. This means for each $x \in X \quad$ there exists a such that $f_{a} \times>\frac{1}{n+1}+$ $+\varepsilon$. Now put, for each a,
$V_{a}=\left\{x \in X \left\lvert\, f_{a} x>\frac{1}{m+1}\right.\right\}, F_{a}=\left\{x \in X \left\lvert\, f_{a} x>\frac{1}{m+1}+\varepsilon\right.\right\}$.

As $\left\{f_{a}\right\}$ is uniformly equicontinuous, the formula

$$
\varphi(x, y)=\operatorname{sun}_{a}\left|f_{a} x-f_{a} y\right|
$$

defines a uniformly continuous pseudometric on X. Since $\cup_{a} F_{a}=X$ and $V_{a}=S_{\rho, \varepsilon}\left[F_{a}\right]$ for each a, the famidy $\left\{V_{a}\right\}$ is a uniform cover of X. It refines \mathscr{H} because $V_{a} \subset \cos f_{a}$. Thus ord $\left\{V_{a}\right\}>m+1$. Take a point x which belongs to more than $m+1$ sets V_{a}. Then $f_{a} x>$ $>\frac{1}{n+1}$ for $n+2$ indices a at least, hence $\sum_{a} f_{a} x>$ >1 which is a contradiction. We have proved $c(\mathscr{H}) \leq$ $\leqq \frac{1}{n+1}$, thus $\inf _{g \in \Omega} c(g) \leqq \frac{1}{n+1}$ which completes the proof.

Theorem 2. Let X be a uniform space, Ω_{0} be the collection of all finite uniform covers of X. For g in Ω_{0} let $c\left(g_{g}\right), c_{0}(G)$ be the supremum of $\lambda\left\{f_{a}\right\}$ over all equiuniform, finite uniform respectively, partitions $\left\{f_{a}\right\}$ of unity on X which are subordinated to \mathcal{G}. Then

$$
\inf _{g \in \Omega_{0}} c(g)=\inf _{g \in \Omega_{0}} c_{0}(g)=\frac{1}{\delta d X+1}
$$

Proof. Repeat the proof of Theorem l with Ω_{0} instead of Ω and δ d instead of Δd; it may be slightly simplified in some places. The partition of unity obtained in the first part of the proof is always finite. The partition of unity considered in the second part may be either arbitrary equiuniform or arbitrary finite uniform (which is necessarily equiuniform, too).

Notice that the second equality in the formula in Theorem 2 also follows from Theorem 1 applied to the totally bounded modification of X.

Let us present still a similar characterization of topological covering dimension.

Theorem 3. Let X be a normal topological space, Ω be the collection of all locally finite open covers of X, Ω_{0} be the collection of all finite open covers of X. For g in Ω let $c(g), c_{0}(g)$ be the supremum of $\lambda\left\{f_{a}\right\}$ over all, all finite respectively, partitions $\left\{f_{a}\right\}$ of unity on X which are subordinated to \mathcal{G}. Then

$$
\inf _{g \in \Omega} c(g)=\inf _{g \in \Omega_{0}} c(g)=\inf _{g \in \Omega_{0}} c_{0}(g)=\frac{1}{\operatorname{dim} X+1} .
$$

Proof. It is again possible to repeat essentially the proof of Theorem l. For locally finite covers, the well-known Dowker theorem (Every locally finite open cover can be refined by a cover with order at most dim $X+$ +1) must be used. No pseudometric is needed, if H_{a} were closed the functions g_{a} may be constructed directly;
$\left\{V_{a}\right\}$ is evidently an open cover.

In another way, Theorem 3 also follows from Theorems 1 and 2 if: X is endowed with the fine uniformity. Then $\Delta d X=\delta \sim d X=\operatorname{dim} X$. It suffices that Ω is only a base of all uniform covers. The equiunif'ormity of the partitions of unity is easy (prove the continuity of the pseudometric ρ defined by $\rho(x, y)=\sum_{a}\left|f_{a} x-f_{a} y\right|$, see also Z. Frolik, this volume, p. 8 .

Notice that Theorem 3 might be still generalized for non-normal spaces if a suitable definition of the covering dimension were used.

