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Reflections not preserving completeness
Je Pelant
(presented in April 1975)

Introduction: A problem whether each uniform space hss
a point-finite or equ1Valent1y; uniformly locally finite base
of uniform covers, was solved negatively in [P). This problem
was first raised in [S] and further questions related to this
problem have been discovered since 1960 (see e.g. [V;]1,[I7,
p. 142). One of these questions is the following (see [I],
[RR]):

Let X be a complete uniform space with a base of non-mea-
surable covers. pl denot es a separable modification. Is it
true that p'X must be complete? If X has a point-finite base
then the answer is yes (see [RR]) and so an e ‘“ence of a
counterexample again implies an existence of a uniform space
having no point-finite bése. We are going to give such a coun-
terexample. We will show even more: Let m be an ordinal num-
ber. There is & complete uniform space X, card X = (2‘»""9+ )
such that me is not complete.

( p° is defined as a uniformity formed by all pseudometrics
induced by X such thét any uniformly discrete set has cardi-
.nality = @, ) | |

It implies that if r is a modification preserving completeness
then rX = X for‘any uniformly discrete'sp&ce Xa |

Further modifications, formed by covers with a point-cha~

racter less than some cardinal m, will be discussed.
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I wish to thank Z. Frolik who turned my attention to the

above problems.

Construction: Let m be a cardinal number. Hn = -(——- \i

is an integér, 02122%% for n=0,1,2,... , H -Muo H, .
Put M(m) =4{f: H—> exp m > exp m ]_(prl £(p) o pr, £(p) for
each peH ) and (pr, £(p) > pry £(q) for each p>q)}.
( exp m denotes a sei‘. of all nonempty subsets of m , although
it is not ususl.)
We define s pseudometric uniformity on M(m). Put %(m,zn) =
= 4f: Hy -40%—> exp m>x exp m ] there is P € M(m) such that
F/H, =40} = £3 . For Ue % (m,2") define T =4ife um) |
pr, f(p) 2 pry U(pl) o pT, u(p) o pry f(p - 2.’"‘) for each p €

H -$£0%3 . Define an = l‘ﬁ}Uex(m,Z.m)’ £QLn§n=0 is a

base of a uniform space U(m) on an underlying set M(m) .

Remark: Clearly, U(m) is complete and non-~Hausdorff (the
last property does not represent any problem with respect to
our aim). In the sequel, only U(w;) will be examined,as a

procedure for other cardinals is quite similar.

Observation: For & uniform cover ¢ =4s 3 of U(w,)

a€A
which is refined by UWU_ ( ’ZLJ does not refine & for

n
j<n), define Vg Kw,,2 2")—> exp & by v(K) ={ae & |
Kes,}.prut % () = Uivg(K) | £ eX and KeX(w,,2M}
for fe M( a)l). Clearly, Sg 2 vsl( {CcA)la €C}) and a point-
character of ¢4 1is not greater than supd{card '6'3» (f.).l feM( 01)}.
A well-known result of [VZ.] can be reformulated: there is &

base § of countable uniform covers of U(®,) (or any other

uniform space) such that each member of J3 is of the form
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{'5-_1(-{ Cc co°| je c})dé‘% where v is a mapping from

w (col,zn) into exp ¢ , such that:
(1) card V(f) < @, for each fe M) ,
v(K)$ @& for each KeX (Acol,zn) .
v(K)o v(L) if T2 K for each K, L ,e’x.(‘a)l,Z-n) .
Notation: Let Ve :n('wl,z“) such that card prJV(p) =
= @) for each pe& Hy - -10% , J=1,2 . Let £xi}1_l R
{Yiz’g;-[:l be sequences of countable subsets of @ .

N
v -{Xi,Yj}Q;_:l denotes a member of W (w;,2") defined as

follows: .
Py OV = X, Lo ) = e W) = (U X o
zln'
v 4 a4 i) ’
t 2™
prz((v {Xi,Yi?s)( = )) = proV VA -2-;'” ) - (i«=t Xy v
Q_m
vV O\ .
Pt ¥y)

Lemma: For each f e M(w;) such that card 2 £(p) =
= “’1 for each pe H end j=1,2 , and for each‘mapp‘ing
vi ®(@;,2") —» exp @, satisfying (1) from Observation, the
followving formula holds (all sets Xj, ¥; are countable):

dpre @ VEjm 3Ym 2 Xy VEypm o3 Lym 12 Lpmgeee
) «n
where £®) = £/H, -40% .

Proof: Suppose the contrary, i.e.
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(2) Vpew,IXga Vi, 312..,’4\/Y2..“: Xym goeeAX VY, 2 X,

viet™ Lg%, 14 p .

For each p & @, choose ng according to (2). Put YQ."" =

= U{X’g_m, |p € @y % Choose Xym 4 sccording to (2) for each
P € COO o Put Yg.m,’q = U {Xg,”,_" ' jo) 5003 ese o Choose ng

for each p € &, . Put Y; =U{XI{ lp e @, % « Define an ele-

0
ment Ve X(c,2") by pryV()) =pr£(J) = Uil |peaw ,
t _
I Y = 33, pryV(j) = prlv(,j) N przf(,j) for each je H,
Then Vo f(n) --iXi,Yﬁ for each p e e, hence v(V) c

c M Lyt -_--iX{,Yi,’sai;l)‘ p €@ ¥=0¢ which is a contradic-

tion ( v(V) must be nonempty).

Remark: Lemma remains valid if we replace @, by any
other regulaxi;ncountable cardinal @, and o, by any
Cﬁ)d‘ < cox °

v nlv’

Fact: For each v: H(ew;,2 V) — exp < from Obser-
vation, denote p from Lemms by p, . Define a collection
. ~ . m
F ={UK | v(K) p, » KeH(w;,27") . It follows from

Lemma that & 4is a filter (it is easy to show that for any

4./: 4,-00'32

vi(g) 2 py, for each ge K, i=1,...,J ,J 4is - an integer.
Evidently, % is a Ceauchy filter in p" U(e)) . Lemma implies

ViseeesVy there is X edC(col,Zn) » B =, max . n,. such that

that this filter cannot converge in the induced topology, QED.

Corollary: pl does not preserve completeness.
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Notation: Let o¢ be an ordinal number. Let X be a uni-

form space. b¥® X denotes a uniformity formed by all pseudo~-
metrics induced by X which have a point-character less than
a)x ®

Note: 1) b°™ 1is a modification for each oc .

2) v° X 1s formed by all point-finite covers of X .

Coroliary: b° does not preserve completeness.

Proof: The statement follows from Rice-Reynolds: theorem:
X is complete. If X is non-measurable, then plX is complde iff
b°% is complete (see LRR1). |

As mentioned a‘oove, one can prove by the same way

Theorem: Let o¢ be an ordinal number. Then p%®{U(oct))

is not complete.

Concluding remark: We would like to mention one interes-
ting fact: using a method from [RRJ and Theorem B (see below)
derived by B. Balcar from Pf*ikrj's results, one can prove that
it is consistent with ZFC to suppose that there is no ordinal
number o such that b preserves completeness. We are not
going to put it down as there is a possibility to prove the
last statement using only usual axioms of 2ZFC: Observation and
Lemma can be easily restated in such & way that a theorem for

B car be derived.

’I‘heorem B : It is consistent with ZFC to suppese that the
| following aessertion holds: |
'Let o Dbe a regular cardinale Let 9 be a uniform ultrafilter
(i.e. card F 8(3 for each F € & ) on a cardinal 3= o .



- 240~
Then there is a partition 4R 3 . _ of o~ such that a filter
defined by F = {{L e oc,]?n R % ¢H€e&“ is a uniform

ultraf:llter on o .
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