Jan Pelant Reflections not preserving completeness

In: Zdeněk Frolík (ed.): Seminar Uniform Spaces., 1975. pp. 235–240.

Persistent URL: http://dml.cz/dmlcz/703133

Terms of use:

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://dml.cz

- 235-Reflections not preserving completeness

J. Pelant (presented in April 1975)

Introduction: A problem whether each uniform space has a point-finite or equivalently, uniformly locally finite base of uniform covers, was solved negatively in [P]. This problem was first raised in [S] and further questions related to this problem have been discovered since 1960 (see e.g. $[V_1], [I]$, p. 142). One of these questions is the following (see [I], [RR]):

Let X be a complete uniform space with a base of non-measurable covers. p^1 denotes a separable modification. Is it true that p^1X must be complete? If X has a point-finite base then the answer is yes (see [RR]) and so an e: tence of a counterexample again implies an existence of a uniform space having no point-finite base. We are going to give such a counterexample. We will show even more: Let m be an ordinal number. There is a complete uniform space X, card $X = (2^{\omega_m})^+$, such that p^mX is not complete.

($p^m X$ is defined as a uniformity formed by all pseudometrics induced by X such that any uniformly discrete set has cardinality $< \omega_m$.)

It implies that if r is a modification preserving completeness then rX = X for any uniformly discrete space X.

Further modifications, formed by covers with a point-character less than some cardinal m, will be discussed. I wish to thank Z. Frolik who turned my attention to the above problems.

Construction: Let m be a cardinal number. $H_n = \{\frac{i}{2m} \mid i \}$ is an integer, $0 \le i \le 2^n \}$ for $n = 0, 1, 2, ..., H = \underset{m=0}{\overset{\circ}{\longrightarrow}} H_n$. Put $M(m) = \{f: H \longrightarrow \exp m \times \exp m \mid (pr_1 f(p) \supset pr_2 f(p) \ for$ each $p \in H$) and $(pr_2 f(p) \supset pr_1 f(q) \ for each \ p > q) \}$. (exp m denotes a set of all nonempty subsets of m, although it is not usual.)

We define a pseudometric uniformity on M(m). Put $\mathscr{K}(m, 2^n) =$ = {f: $H_n - \{0\} \rightarrow \exp m \times \exp m$ | there is $F \in M(m)$ such that $F/H_n - \{0\} = f\}$. For $U \in \mathscr{K}(m, 2^n)$ define $\widetilde{U} = \{f \in M(m) | pr_2 f(p) \supset pr_1 U(p) \supset pr_2 U(p) \supset pr_1 f(p - \frac{1}{2^m}) \text{ for each } p \in$ $\in H_n - \{0\}\}$. Define $\mathcal{U}_n = \{\widetilde{U}\}_{U \in \mathfrak{K}(m, 2^m)}, \{\mathcal{U}_n\}_{n=0}^\infty$ is a base of a uniform space U(m) on an underlying set M(m).

Remark: Clearly, U(m) is complete and non-Hausdorff (the last property does not represent any problem with respect to our aim). In the sequel, only $U(\omega_1)$ will be examined, as a procedure for other cardinals is quite similar.

Observation: For a uniform cover $\mathscr{G} = \{\mathsf{S}_{\mathfrak{A}}^{\mathfrak{F}} \mathsf{a} \in \mathsf{A} \in \mathsf{A} \in \mathsf{I}\}$ which is refined by \mathscr{U}_{n} (\mathscr{U}_{j} does not refine \mathscr{G} for j < n), define $v_{\mathscr{G}} : \mathscr{K}(\omega_{1}, 2^{n}) \longrightarrow \exp \mathsf{A}$ by $v(\mathsf{K}) = \{\mathsf{a} \in \mathsf{A} \mid \mathbb{K} \in \mathsf{S}_{\mathfrak{a}}\}$. Put $\widetilde{v}_{\mathscr{G}}(\mathsf{f}) = \bigcup \{v_{\mathscr{G}}(\mathsf{K}) \mid \mathsf{f} \in \widetilde{\mathsf{K}} \text{ and } \mathsf{K} \in \mathscr{K}(\omega_{1}, 2^{n})\}$ for $\mathsf{f} \in \mathsf{M}(\omega_{1})$. Clearly, $\mathsf{S}_{\mathfrak{a}} \supset \widetilde{v}_{\mathscr{G}}^{-1}(\{\mathsf{C} \in \mathsf{A} \mid \mathsf{a} \in \mathsf{C}\})$ and a pointcharacter of \mathscr{G} is not greater than $\sup\{\mathsf{card} \ \widetilde{v}_{\mathscr{G}}(\mathsf{f}) \mid \mathsf{f} \in \mathsf{M}(\omega_{1})\}$. A well-known result of $[\mathsf{V}_{2}]$ can be reformulated: there is a base \mathscr{B} of countable uniform covers of $\mathsf{U}(\omega_{1})$ (or any other uniform space) such that each member of \mathscr{B} is of the form $\begin{array}{c} -23 \neq -\\ \{\widetilde{v}^{-1}(\{C \subset \omega_0 \mid j \in C\})_{j \in \omega_0} \quad \text{where } v \text{ is a mapping from} \\ \mathcal{K}(\omega_1, 2^n) \text{ into } \exp \omega_0 \quad \text{such that:} \end{array}$

(1)
$$\operatorname{card} \widetilde{v}(f) < \omega_0$$
 for each $f \in M(\omega_0)$,
 $v(K) \neq \emptyset$ for each $K \in \mathcal{K}(\omega_1, 2^n)$,
 $v(K) \supset v(L)$ if $\widetilde{L} \supset \widetilde{K}$ for each $K, L \in \mathcal{K}(\omega_1, 2^n)$.

Notation: Let $\mathbb{V} \in \mathcal{K}(\omega_1, 2^n)$ such that card $\operatorname{pr}_{j} \mathbb{V}(p) = \omega_1$ for each $p \in \mathbb{H}_n - \{0\}$, j = 1, 2. Let $\{X_i\}_{i=1}^{2^m}$, $\{Y_i\}_{i=1}^{2^m}$ be sequences of countable subsets of ω_1 . $\mathbb{V} - \{X_i, Y_i\}_{i=1}^{2^m}$ denotes a member of $\mathcal{K}(\omega_1, 2^n)$ defined as follows:

$$pr_{1}((v - \{x_{i}, y_{i}\})(\frac{t}{2^{m}})) = pr_{1}v(\frac{t}{2^{m}}) - (\bigcup_{i=t}^{2^{m}} x_{i} \cup \bigcup_{i=t}^{2^{m}} x_{i}),$$

$$pr_{2}((v - \{x_{i}, y_{i}\})(\frac{t}{2^{m}})) = pr_{2}v(\frac{t}{2^{m}}) - (\bigcup_{i=t}^{2^{m}} x_{i} \cup \bigcup_{i=t}^{2^{m}} x_{i}),$$

Lemma: For each $f \in M(\omega_1)$ such that card $pr_j f(p) = \omega_1$ for each $p \in H$ and j = 1, 2, and for each mapping $v: \mathcal{K}(\omega_1, 2^n) \longrightarrow \exp \omega_1$ satisfying (1) from Observation, the following formula holds (all sets X_i , Y_i are countable):

$$\exists p \in \omega_0 \forall X_{2^m} \exists Y_{2^m} \supset X_{2^m} \forall X_{2^{m-1}} \exists Y_{2^{m-1}} \supset X_{2^{m-1}} \\ \cdots \forall X_1 \exists Y_1 \supset X_1: \forall (f^{(n)} - \{X_1, Y_1\}_{i=1}^{2^m}) \ni p , \\ \text{where } f^{(n)} = f/H_n - \{0\} .$$

Proof: Suppose the contrary, i.e.

(2)
$$\forall p \in \omega_0 \exists x_{2n} \forall y_{2n} \exists x_{2m_1} \forall Y_{2m_1} \exists x_{2m_1} \cdots \exists x_1 \forall Y_1 \exists x_1;$$

 $v(r^{(n)} - \{x_1, Y_1\}) \Rightarrow p$.

For each $p \in \omega_0$ choose $X_{2^m}^p$ according to (2). Put $Y_{2^m} = = \bigcup \{ X_{2^m}^p \mid p \in \omega_0 \}$. Choose $X_{2^{m-4}}^p$ seconding to (2) for each $p \in \omega_0$. Put $Y_{2^{m-4}} = \bigcup \{ X_{2^{m-4}}^p \mid p \in \omega_0 \}$. Choose X_1^p for each $p \in \omega_0$. Put $Y_1 = \bigcup \{ X_1^p \mid p \in \omega_0 \}$. Define an element $\forall \in \mathcal{K}(\omega_1, 2^n)$ by $pr_1 \forall (j) = pr_1 f(j) - \bigcup \{ X_t^p \mid p \in \omega_0 \}$, $1 \ge \frac{t}{2^m} \ge j_1^3$, $pr_2 \forall (j) = pr_1 \forall (j) \cap pr_2 f(j)$ for each $j \in H$. Then $\forall \supset f^{(n)} - i X_1^p, Y_1 \end{cases}$ for each $p \in \omega_0$ hence $\forall (\forall) \subset C \cap \{ \forall (f^{(n)} - f X_1^p, Y_1\}_{i=1}^2) \mid p \in \omega_0 \rbrace = \emptyset$ which is a contradiction ($\forall (\forall)$ must be nonempty).

Remark: Lemma remains valid if we replace ω_1 by any other regular uncountable cardinal ω_{∞} and ω_0 by any $\omega_0 < \omega_{\infty}$.

Fact: For each $v: \mathcal{K}(\omega_1, 2^{n_v}) \longrightarrow \exp \omega_0$ from Observation, denote p from Lemma by p_v . Define a collection $\mathcal{F} = \{\bigcup_{i=1}^{\infty} | v(K) \ni p_v, K \in \mathcal{K}(\omega_1, 2^{n_v})_v$. It follows from Lemma that \mathcal{F} is a filter (it is easy to show that for any v_1, \dots, v_j there is $K \in \mathcal{K}(\omega_1, 2^n)$, $n = \max_{i=1,\dots,j} n_{v_i}$ such that $\widetilde{v}_i(g) \ni p_{v_i}$ for each $g \in \widetilde{K}$, $i = 1, \dots, j$, j is an integer. Evidently, \mathcal{F} is a Cauchy filter in $p^1 \cup (\omega_1)$. Lemma implies that this filter cannot converge in the induced topology, QED.

Corollary: p¹ does not preserve completeness.

Notation: Let ∞ be an ordinal number. Let X be a uniform space. $b^{\infty} X$ denotes a uniformity formed by all pseudometrics induced by X which have a point-character less than ω_{∞} .

Note: 1) b^{∞} is a modification for each ∞ .

2) $b^{0} X$ is formed by all point-finite covers of X .

Corollary: b^o does not preserve completeness.

Proof: The statement follows from Rice-Reynolds theorem: X is complete. If X is non-measurable, then $p^{1}X$ is complete iff $b^{0}X$ is complete (see LRRJ).

As mentioned above, one can prove by the same way

Theorem: Let ∞ be an ordinal number. Then $p^{\infty}(U(\infty^+))$ is not complete.

Concluding remark: We would like to mention one interesting fact: using a method from [RR] and Theorem B (see below) derived by B. Balcar from Příkrý's results, one can prove that it is consistent with ZFC to suppose that there is no ordinal number ∞ such that b^{∞} preserves completeness. We are not going to put it down as there is a possibility to prove the last statement using only usual axioms of ZFC: Observation and Lemma can be easily restated in such a way that a theorem for b^{∞} car be derived.

Theorem B : It is consistent with ZFC to suppose that the following assertion holds:

Let ∞ be a regular cardinal. Let \mathscr{F} be a uniform ultrafilter (i.e. card $F = \beta$ for each $F \in \mathscr{F}$) on a cardinal $\beta \ge \infty$. Then there is a partition $\{R_{\iota}\}_{\iota \in \alpha}$ of ∞ such that a filter defined by $\widetilde{\mathscr{F}} = \{\{\iota \in \alpha \mid F \cap R_{\iota} \neq \emptyset\}_{f \in \widetilde{\mathscr{F}}}$ is a uniform ultrafilter on ∞ .

References:

- [I] J.R. Isbell: Uniform spaces, Mathematical Surveys, 1964.
- [P] J. Pelant: Cardinal reflections and point-character of uniformities, this volume, p.149-158.
- [V₁] G. Vidossich: A note on cardinal reflections in the category of unif. spaces, Proc.A.M.S. 23(1969), 55-58.
- [V₂] G. Vidossich: Uniform spaces of countable type, Proc.A.M.S., 25(1970),pp.551-553.
- [RR] G.D. Reynolds, M.D. Rice: Completeness and covering proparties of uniform spaces, preprint.
- [S] A.H. Stone: Universal spaces for some metrizable uniformities, Quart. J. Math. 11(1960),105-115.