Jan Pelant
Point character of uniformities and completeness

In: Zdeněk Frolík (ed.): Seminar Uniform Spaces. , 1976. pp. 55-61.
Persistent URL: http://dml.cz/dmlcz/703143

Terms of use:

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

-55-

SE:INAR UNIfORM SPACES $1975-76$

Point-character of uniformities and completeness J. Feint

Introduction 0 : Results contained in this paper generalive results from $\left[P_{1}\right],\left[P_{3}\right]$ and $[S]$.

Definition l: Let K b an infinite cardinal. Let n be a positive integer. We define $\mathcal{K}(K, n)$ as a set of all alemints V of $(\exp K)^{n}$ such that $\mathrm{pr}_{1} V \subset \mathrm{pr}_{2} V \subset \ldots \subset \mathrm{pr}_{\mathrm{n}} V$ and $\mathrm{pr}_{1} \mathrm{~V} \neq \varnothing$ 。

Notation 2: Let $n>1$ be a positive integer. For $V \boldsymbol{\epsilon}$ $\in \mathcal{K}(K, n-1)$, put $\mathcal{U}(V)=\left\{U \in \mathcal{K}(K, n) \mid \mathrm{pr}_{1} U \subset \mathrm{pr}_{1} V \subset\right.$ く. $\left.\operatorname{pr}_{2} \cup \subset \ldots \subset \operatorname{pr}_{\mathrm{n}-1} \mathrm{~V} \subset \mathrm{pr}_{\mathrm{n}}^{\mathrm{U}}\right\}$.

Construction 3: Let \propto be an infinite cardinal. Denote $H_{k}=\left\{\left.-\frac{i}{2^{k}} \right\rvert\, i=0,1, \ldots, 2^{k}\right\}$ for k nonnegative integer, $H=$ $=\cup\left\{H_{k} \mid k=0,1,2, \ldots\right\}$. Put $\mathbb{A}(\propto)=\{f: H \rightarrow$ $\rightarrow \operatorname{cxp} \propto \mid\left(t^{\prime}\left(h_{1}\right) \supset r^{\prime}\left(h_{2}\right)\right.$ for any $h_{1}, h_{2} \in H$ such that $\left.h_{1}>h_{2}\right)$ and $f(0) \neq \varnothing$. For $\left.\mathrm{f}^{\prime} \in \mathbb{R}^{\prime \prime} \propto\right)$, $£ \mathcal{H}_{k}$ is an element of $\mathcal{K}\left(\alpha, 2^{k}+1\right)$ in the Pact. For $V \in \mathbb{K}\left(\alpha, 2^{k}\right)$ we define $\forall_{\text {now }}$ base or a pseudometric uniformity $V^{\prime \prime}$ on $M(\alpha): \mathcal{B}_{i}=\{\tilde{V} \mid V \in$ $\left.\in \mathcal{K}\left(\infty, 2^{i}\right)\right\}, i=0,1,2, \ldots$.

Fut $(U(\alpha), \mathcal{V})$ for the Hausdorff reflection of the just defined pseudometric uniformity. Clearly, each point of U($\boldsymbol{\alpha}$) can be represented by some point of $M(\alpha)$ and we shall suppose it.

Notation 4: Given a cardinal $m, S^{+}(m)$ denotes the posifive part of the unit sphere in $\ell_{\infty}(m)$ with the uniformity induced by ℓ_{∞}-norm, (ic. $S^{+}(m)=f f \in \ell_{\infty}(m) \mid \sup f=?$ and $f(i) \geq 0$ for all $i \in m\})$.

Proposition 5: $(U(m), V)$ is uniformly homeomorphic to $S^{+}(\mathrm{m})$. Proof will be clear from the following: Notation: For $a \in \mathbb{B}$, define $\mathbb{M}(a)=\left\{f \in S^{+}\left(n_{1}\right) \mid a \in \operatorname{coz} \pm\right\}$. Fut $B_{0}=\{\min (a) \mid a \in m\}$. For $V_{1} \subset V_{2} \subset \ldots \subset V_{n} \subset m$, define $\operatorname{M}\left\{\left\{V_{i}\right\}_{i=1}^{n}\right)=\left\{f \in S^{+}(m) \left\lvert\, f^{-1}\left(\left[\begin{array}{c}n+1-i \\ m\end{array}, 1\right]\right) \subset V_{i} \subset I^{-1}\left(\left(\frac{n-\tau}{n}, 1\right]\right)\right.\right.$, $\forall \tilde{V}=\left\{f \in M(\alpha) \mid f \mu H_{8 s} \in U(V)\right\}$. We define
$1=1, \ldots, n\}$
Put $\bar{B}_{n}=\left\{M\left(\left\{V_{i}\right\}_{i=1}^{n} \mid V_{1} \subset V_{2} \subset \ldots \subset V_{n} \subset m\right\}\right.$
Lemma 6: \mathcal{B}_{n} forms a base of S^{+}(m).
Proof of Lemming 6: For $f \in S^{+}(m)$, put $B_{\varepsilon}(f)=\{g \in$ $\left.\in S^{+}(m) \sup _{x \in \operatorname{m}}|f(x)-g(x)| \leq \varepsilon\right\}$.

$f \in S^{+}(m)$, define $V_{i}(\rho)=f^{-1}\left(C^{2} \frac{(m-i)}{2} \frac{1}{m}, 11\right)$
${ }^{B} \varepsilon(f) \subset M\left(\left\{V_{1}(f)\right\}_{i}^{n}\right)$ as if $g \in B(f)$ then $|f(x)-g(x)|<$
$<\frac{1}{2 m}$ for each $x \in m$ and so $g^{-1}\left(\left[\frac{n+1-i}{m}, 1\right]\right) c f^{-i}\left(\left(^{2\left(\frac{m-i}{2}\right)+}\right.\right.$ $=g^{-1}\left(\left(\frac{n-i}{n}, 11\right)\right.$
2) $\bar{B}_{n}<\left\{B_{\varepsilon}(f) \mid \rho \in S^{+}(m)\right\}$ for any $n>{ }^{2}$:
for $M\left(\left\{V_{i}\right\}_{i-1}^{n}\right) \in \mathcal{B}_{n}$ take any $f_{0} \in S^{+}(m)$ such that
$f_{0}^{-l}\left(c_{n-i}^{m}, 1 I\right)=V_{i}, i=1,2, \ldots, n$
hence $f_{0}^{-1}(0)=m-V_{n}$. Then $M\left(\left\{V_{i}\right\}_{i=1}^{n}\right) \subset B_{\varepsilon}\left(f_{0}\right)$: take $f \in$ $\in M\left(\left\{V_{i}\right\}_{i=1}^{n}\right.$) and $x \in m_{\text {. Find }} i$ such that $x \in V_{i+1}-V_{i}$ (we put $\left.V_{n+1}=m\right)$. Then $f_{0}(x) \in\left(\begin{array}{c}n-(i+1) \\ n\end{array}, \frac{n-i}{n}\right]$.
So dist $\left(f_{0}, f\right) \leq \frac{2}{n}<\varepsilon$.
Definition 7: If \boldsymbol{a} is a family of sets, an order 0 a is defined ord $a=\sup \left\{|D|^{+} \mid D \subset a \quad\right.$ and $\cap D \neq\{ \}$ For a uniform space (X, \mathcal{U}) a point-character $p c(X, \mathcal{U})$ is defined as the least cardinal $\propto \mathfrak{s u c h}$ that there is a bas \mathcal{B} of U such that an order of each cover from \mathcal{B} is le or equal to α.
Theorem 8: pc $U(m)>\sup \{\xi \in \mathcal{L} \mid \xi$ is a regular cardinal $\}$ for each infinite cardinal m.
Corollary 9: The uniformity on $l_{\infty}\left(k_{1}^{\prime}\right)$ induced by supnorm has not any point-finite base.
Remark 10: Corollary 9 improves results from $\left[P_{1}\right]$ and $[9$ Outline of the proof of Theorem 8:

Notation: Suppose $W \in \mathscr{K}(K, n-1),\left\{Y_{i}\right\} \underset{i=0}{J}$ is a se-
quince of subsets of $K, j \leq n-1 . W-\left\{Y_{i}\right\} \underset{i=1}{j}$ is an lewent of $\mathcal{K}(K, n-1)$ such that $\operatorname{pr}_{t}\left(W-\left\{Y_{i}\right\}_{i=1}^{j}\right)=p r_{t} W-$ - $\bigcup_{i=t}^{U} Y_{i}, t=1, \ldots, n-1$.
 $\ldots, j\}$ •

Lemma 11: $\because \mathrm{ie}$ are given: 1$)$ a mapping $c: ~ \mathscr{K}(m, n) \rightarrow$ $\rightarrow \mathcal{P}(\mathbb{m})$ such that $c(V) \neq \varnothing$ and $V(I) \subset c(V) \subset V(n)$ for each V. ($\mathcal{D}(m)$ is the set of all subsets of m)
2) an infinite cardinal m
3) a regular infinite cardinal $\xi<m$.

Notation: For $\mathscr{D} \subset \mathcal{P}(m),|D|<\xi, j \in\{1, \ldots, n-1\}$ $V \in \mathcal{K}(m, n-1), F(\mathscr{D}, j, V)$ denotes the following formula: $\exists x_{j} \forall y_{j}, Y_{j} \supset X_{j} \nexists X_{j-1} \forall y_{j-1}, Y_{j-1} \supset X_{j-1} \ldots \exists x_{1} \forall Y_{1}$, $Y_{1} \supset X_{1} \exists Y_{0}:\left(V \nabla\left\{Y_{i}\right\} \underset{i=0}{j}\right)-\mathscr{D}=\varnothing \quad\left(X_{i}\right.$ and Y_{i} denote members of $[\mathrm{m}] \leqslant \xi)$. If there are $V \in \mathcal{K}(m, n-1)$ such that $|V(1)|=m$ and $j \in\{1,2, \ldots, n-1\}$ such that $F(\mathscr{D}, j, V)$ does not hold for any $D \in[m]^{<\xi}$ then there is $W \in \mathcal{K}(m, n-1)$ such that $\quad|c(U(W))| \geqslant \xi$.

Remark 12: Lemma 11 is Lemma in $\left[P_{1}\right]$, p. 150.
For proving Theorem 8, it is enough to show that the $\mathrm{U}(\mathrm{m})$-uniform cover \mathcal{B}_{o} (see Construction 3) has no $U(\mathrm{~m})$ uniform refinement of order less than ξ^{+}. We can employ Lemma 11 and the following definition:

Construction 13: We are going to construct a mapping c for Lemma 11. Suppose W is $U(m)$-uniform cover such that $W<\beta$ and an order of W is less than m. Choose a mapping $d: W \longrightarrow \mathcal{B}_{0}$ such that $d(P) \supset P$ for each $P \in W$. W is refined by some \mathcal{B}_{q}. Choose $f: B q \rightarrow$ $\rightarrow W$ such that $f(P) \supset P$ for each $P \in \mathcal{B}_{q}$. Define $\bar{c}: B_{q} \longrightarrow B_{0}$ by $\bar{c}=d \circ f$. Now define $c: \mathcal{K}\left(m, 2^{q}+2\right) \rightarrow$ $\longrightarrow \mathcal{P}(\mathrm{m})$ by

$$
c \overline{c\left(\left(v_{1}, \ldots, v_{2} q_{+2}\right)\right)}=\bar{c}\left(\left(v_{2}, \ldots, v_{2} q_{+1}\right)\right)
$$

Comment 14: Uniform spaces of point-character less than an infinite cardinal α form an epireflective clas in UNIF containing all praecompact spaces, b^{α} denotes the corresponding modification. In $\left[P_{3}\right]$, I promised to prove that b^{α} does not preserve Cauchy filters. Now I going to do it.

Notation 15: Inv* (Cauchy) denotes the class of all functors $F:$ UNIF \rightarrow UNIF such that id $: X \rightarrow F(X)$ is uniformly continuous for each uniform space X and X and $F(X)$ have the same set of Cauchy filters for each

Problem 16: The question was raised by Z.Frolik whe' her there is a member of Inv ${ }^{+}$(Cauchy) distinct from the identical functor. This problem remains to be open and the following theorem shows that a non-identical member 0 Inv ${ }^{+}$(Cauchy) should be pretty wild.

Theorem 17: If $F \in I n v^{+}$(Cauchy) then $p c F(U(m))>\xi$ for each infinite regular cardinal $\xi<m$.

Corollary 18: $b^{\alpha} \notin \operatorname{Inv}^{+}$(Cauchy) for any cardinal α.
Remark 19: is the identical functor is contained in Inv ${ }^{+}$(Cauchy), Theorem 17 may generalize Theorem 8 (see Problem 16). So proving Theorem 17 we shall reprove Theo rem 8.

Proof of Theorem 17: The basic fact is the validity of the following formula T :
T: There is a point $f \in U(m),|f(h)|=m$ for each $h \in \sharp$ such that for each cover $\mathcal{P} \in(U(\mathbb{m}), V)$, ord $\mathcal{P}<\xi$, the re is a member P of \mathcal{P} such that there is an integer n_{0} such that for all integers n greater than n_{0}, the following holds: $\forall D_{2^{n}} \forall{ }_{2^{n}-1}, H_{2^{n}-1} \supset D_{2^{n}} \forall D_{2^{n}-1}$, $D_{2^{n}-1} \supset H_{2^{n}-1} \cdots\left(f^{(n)} \nabla\left\{D_{i}\right\}_{i=1}^{2^{n}}\right) \subset P \cdot\left(D_{i}, H_{i} \in[m] \leqslant \xi\right)$, $f^{(n)}=f \wedge\left(H_{n}-\{0\}\right)$. Really, if T holds then one can construct a filter $\quad \mathbb{r}$ that is Cauchy w.r.t. $\quad b \xi(\mathbb{H}(\mathrm{~m}), \mathcal{V}$ and does not converge to any point in $U(m)$ but $U(m)$
a complete uniform space．
Proof of t will be done by the way of contradiction．
Put $Z(m)=\{f \in U(m)| | f(h) \mid=m$ for each $h \in H\}$ ． Choose a（m）－uniform cover \mathcal{D} such that $B_{n_{0}}<\mathcal{D}$ （see Construction and each member of $\mathcal{B}_{n_{0}}$ intersects Less than m members of \mathcal{D}, so ord $P<\xi$ ． xix an integer $n>r_{0}$ ．Define $i \subset \mathcal{P}(U(m)) \times \hat{\mathcal{P}}$ by $i(A)=$ $=\{P \in \mathcal{P} \mid P \supset A\}$ ．veculuse of（2），the following formula公（I）hold is：$\forall f \in Z(\mathrm{~m}) \exists \mathrm{x}_{1} \subset$ 认 ，$\left|\mathrm{X}_{1}\right|<\xi \forall \mathrm{D}_{1} \exists \mathrm{H}_{1}$ ， $\left.i_{1} \partial D_{1}: i\left(f^{(n)} \quad\left\{H_{1}\right\}\right) \nabla\left\{D_{1}\right\}\right)-X_{1}$ ．
$\tau(2)$＇s a corot lay of the following formula forced by（2）： $\forall f \in Z(\mathrm{~m}) \exists \mathrm{Y}_{1} \subset \mathcal{P},\left|\mathrm{Y}_{1}\right|<\xi \forall \mathrm{D}_{1} \exists \mathrm{H}_{1}, H_{1} \supset \mathrm{D}_{1}:$ $\left.: i\left(f^{(n)}-\left\{H_{1}\right\}\right) \nabla\left\{D_{1}\right\}\right) \subset Y_{1}$
and the fact that for each $f \in Z(m), Y_{1}$ can be divided in－ so two disjoint sets Y_{I}^{l}, Y_{I}^{2} so that：
（1）：$\left.\forall E \in Y_{1}^{1} \forall D_{1} \exists H_{1}, H_{1} \supset D_{1}: i\left(f^{(n)}-\left\{H_{1}\right\}\right) \nabla\left\{D_{1}\right\}\right) \ni$ $\ni \mathrm{P}$
$\forall D \in V_{1}^{2} \exists D_{I} \forall H_{I}, H_{I} \supset D_{1}: i\left(f(n)-\left\{H_{I}\right\}\right) \nabla\left\{D_{1}\right\} j \neq P$, and the regularity of is very useful，as well． For each $p \in\left\{1, \ldots, 2^{n}\right\}$ denote by $\tau(p)$ the following formula：$\forall f \in Z(m) \exists K_{p} \subset P,\left|X_{p}\right|<\xi \forall D_{p} \exists H_{P}, H_{p} \supset D_{p} \ldots$ $\cdots \forall D_{1} \exists H_{1}, H_{1} \supset D_{1}: i\left(\left(f,(n)-\left(\left\{H_{i}\right\} \underset{i=1}{P}\right) \nabla\left\{D_{i}\right\}_{i=1}^{P}\right)\right)=$ $=X_{Q}$ ．

We will show that $\tau(p)$ implies $\tau(p+1)$ for $p=1, \ldots$ $\ldots, 2^{n}-1$ ．
We an use again the formula
（3）$\forall f \in Z(m) \exists Y_{p+1} \subset \mathcal{P},\left|Y_{p+1}\right|<\xi \forall D_{p+1} \exists H_{p+1}$ ， $H_{p} \supset D_{p} \cdots \exists H_{1}, H_{2} \supset D_{1}: i\left(f^{(n)}-\left\{H_{i}\right\} \underset{i=1}{p+1}, \nabla\left\{D_{i}\right\} \because=\right.$ ） $\subset Y_{p+1}$－
The formula（ ${ }^{2}$ ）i true as $\tau(p$ and（2）hold．

-60-

Now divide Y_{p+1} into two classes Y_{p+1}^{1} and 80 that a condition similar to (l) is satisfied. Clearly, $\tau\left(2^{n}\right)$ implies T.

Remark 20: 1) We conclude again the paper by promi. seas: there is a reasonable hope to remove "cornets" from the above proofs. We can do it even so that we are able to prove more general statements concerning point--character of uniformities: (All spaces are assumed not to be O-dimensional.)
If ξ is a regular infinite cardinal less than
and $\alpha \leq|I|$ then the point-character of $\prod_{a^{+}}^{u}(X)_{I}$ is grea. ter than ξ. Moreover, if $\alpha \geqslant \omega_{1}, \xi<\alpha, \xi$ regular and $\alpha \leq|I|$ then the point-character of $\prod_{\alpha^{+}}\left\{x_{i}\right\}_{i \in I}$ is greater than ξ. $\prod_{\alpha}^{u}(X)_{I}\left(\prod_{\alpha}\left\{X_{i}\right\}_{i \in I}\right.$, resp.) is a uniform space on an underlying set $X^{I} \underset{i \in I}{ } \prod_{i} X_{i}$, resp.) whose base is formed by all covers of the form $\bigcap_{i \in A} \Pi_{i}^{-1}(U) \quad\left(\bigcap_{i \in A} \prod_{i}^{-1}\left(U_{i}\right)\right.$, resp. $)$ where U (resp. U_{i}) is a uniform cover of $X\left(X_{i}, r e s p.\right)$ and A is a subset of I such that $|A|<\alpha$.

References

	Pelant J.: Cardinal reflections and pointcharacter of uniformities, Seminar Uniform Spaces 1973-1974 directed by Z.Frolik, Natematický ústav ČSíV
$\left[\mathrm{P}_{2}\right.$ $\left[\mathrm{P}_{3}\right.$	Pelant J.: Universal metric spaces, this volume Pelant J.: Keflections not preserving completeness, Seminar Uniform Spaces 1973-1974 directed by Z.Frolik, Matematický ústav CXSAV
	Šcepin V.: Ob odnoj probleme Isbella (Russian), Lokl. AN SSSK, 1975

