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SEMTHAR URIPORM SPACES 1975 - 76
General hedgehogs in general topology

Jan Pelant

It was proved by several authors that each uniform space with

@ -discrete base has a point-finite buse (see e.g. [RK], [_P]);

it is shown in [®<], that this fuct is an immediate corollary of
results in [V] . We will show that the converse fails to be true
even if ane replaces ﬂ); by any higher cardinal. So one can see
that the class of spaces with point-finite base that -could be re-
garded as a class of nice spaces is wild enough in fact. Our mair
theorem is connected with &an &analysis of the following theorem

(see [I], [H],): Let (X,f) be a pseudometric space, m be a na-
tural number. If & collection H of subsets of X 1is a l=-cover
of a« set ZCX and ord H&p for some natural p%m then therc

p 2
exist Té—discrete collections Kl""’Kp such that U Ky is

a T;-cover of 2 and refines H. (For notation see bellow.)‘_It
would be very pleasant and surprising if Lebesgue number of UK,‘
did not depend on an orcder of H. Using Ramsey theorem we shall .
show that it is not the case.

1 wish to thank V.Muller for discussions that clarified some re-
lated problems and J.hejcman for helpful criticism.

Notation:

Let K be a cardinal. - collection of sets is said to be K-dis-
joint iff it can be decomposed into K disjoint subfamilies (or
less of course).

Let (X !) be a pseudometric space,“e be & positive rsal numbe:
A collection 3' of subsets of X is said to be ]E cover of Z,
z€X, if for each x@?Z there i8 G 1in ” such that db(x)c.G

G 1is saicd to be g -discrete if dist(G,H)>g for each two ci:
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tinct members ,d of G.

Given a collection 3 of sets, %tze craer of 3 is cefinec Sy

ora G = sup {cdrd .é.lac Gy, N\ # ﬁ}.

The closed interval [0,1] will be cenotez oy I.

l. Notation:

Let @ o0e a cardinal. gy £, ) (Fp'(d), P 18 an integer, resp.

we denote the set of all mupnings 2 :g—»I 3such that

coz £ = (aex\f(a) 7 O} is 4 rinite set ([coz | £ p, resp.)

r‘u(d) and Fp(ﬁ) will denote uniform spaces with the uniformity

inauced by Lag (@), as well.

2.Remark:

Fp(p) is a cube of dimension p. £ (&) is an Aheczehog anc

as such very importaat (see LFll, [FZ])c fhe zreat dimension

Ad (see [1]) of Fp%) is equal to p. #finally, let us obser-

ve that Ww. Kulpa used spaces rp(x) tc construct universal spa-

ces in [Xx] -

3.Notation:

Given a set B and a cardinal p, [b‘]p = {AC dunl =p} . for car-
a

dinal numbers &,b,K and éositive integer p a symbnl a{-—’ b

denotes that for any mapping r : [b]p—)K there is & set aC b

of cardinality & such that r 1is constant on [a]p .

4.Construction:

For x@a , put ¥ = {fc r‘uu)lt(x) 7 0}. Put PA) = {?c'lxed,}

v 51(0). P@d) is a %-cover of Fu(i). P@) restriced to Ep(&)

is a cover of the order p+l.

5.Lemma:

1l If ZPI% o, then PW) on Fp(d,) has no K-disjoint g-re-

~-inement when.ver §£'> i R

P



~1¥%-

o4 zpi-—-,& for all integers p, then the cover P(&) -
#,\0) hes no K-cisjoint uniform refinement.

rroof:

1) for a set V = {vl,v&,...,vp}cd,, vlc v2< ...<vp , Gefine
a function ‘fV :aA—+1 Dby:

1) Yv'(x) = for xe@L-V

ii) a) if p=ck put ‘fV(Vi)

yv(vi) 5—2;35—} for ke ie2k

21

P

1

for l& i=%k

o) if p=ck+l put yv(vi) =5—1%l for letimgk+l

Pylvy) = =8 for keleimakel .
Jor suvsets V,4 of @& where V = {vl,...,vp} ,

w = {va,...,vp+l} s v1<va(.,..<vp*,1 it 18 eusy to prove that
ue(yv)nue(y“-) & .

Suppose, & is a K-disjoint E£-refinement of PW@) on Ep(ﬁ),
i.e. V= U{EPJLGK}, SoLs is disjoint fuwily for each (& ke
Choose & mapping T :[d.]p-—)}’. such that for each Ve[x]p, the-

re is (necessarily unique) svey’r(v) containing mg(¢fy)e

2y the hypothesis, there is i {vl,vz,...,vzp}ca’, such that

(Dﬂ]p) = Lyo For j=C,e..;p put

e {v,j+l""’vj+p} . A8 noted above, Ba‘b’vj’m*,e(?"v } £ @

+

v is constant on (1] . Put

i
tor j=0yece,p=1 o SO.LO is & disjoint family, so S; = Svl 2 ses =
o
) h th i ge;tf containing both Bl ) ang
= Sy ence ere 1s g £ YVOI

P
pel ) but coz O\ coz =@ and B,(0) cecntains nec
e v v, P, &

YV hence there is no member of P@&) containing S- & coniru-
J

diction,

2) If ¥ is u K-disjoint uniform refinement of P(€) then °

_is an @ecover for some &> U. £ind mow p such that €> %
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and restrict P(6#) to Fp(ﬂ). 1) yields a contradiction.

6 « Remark:

Rumsey theorem Di] asserts: for each integers k,m,n there
an integer R(k,m,n) such that: kﬁ-—# rilk,m,n) (80 wo%’
for each integers m,n).

Erdos-Rado theorem asserts: K’%’E-]—r (2(2(,11))+ for euch inte
n and cardinal K (2(K,n) is defined by induction: 2{K,0) =
2(K,n+l) = 22(K,n) )« These two theorems assure that for each
integer p and each cardinal K there is @& such that 2pg
7.Corollary: _
There is no real number €/> 0 such that P(Qo) on Fp(R(Zpﬁ

is refined by (p+l)-disjoint ¢~cover for each integer p.

Proof: |
Use Lemma 5 and Raméey theorem in Remark 5.
8.Remark: |
Maybe, someone would like to replace FP(R(Zp,p-rl,p)) by Fp
it can be done, of course, but the asserticn is then weaker t
that in Corollary 7.

9.Theorem:

For each cardinal X, there is a cardinal @ such that Fuﬂr’
has no K-disjoint base although it has a point-finite base. |
Proof:

Use lLemma 5 and Erdos-Rado theorem in Remark 6.

10.Concluding remarks:
1) I do not know whether Ramsey type theorems are the best to
for fxnd:mg counterexamplee as above. Is it pmmble that eve

F (ﬂl) has no @ -discrete base ?
2) Let (X,U) be a unlfom apace. The collécti&n Dg(U) of
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€ -disjoint covers from U forms a buse of & uniformity.
Proof:

Clearly, if P,q@Dg(U) then PAq& Lg(U). Let Pg Dg{U). So

P = U{Pnlnc ")o} » P is a disjoint family for each n. Find
a€ U such that q‘é P. for ne@ .’o’ Pan and Je n, define
™(n,J,P) =U{ngl (n = min{mlBP’e P : st Q,9)e P’} ) &

& (J = {jen\ Ire Pj QcP’} ) & (st (Q,q)cP)} )e Put R(n,
- {T(n,J,P)[PePn} , R = U{R(n,J)lJcne oo} . Clearly,
RE€Dg(U). It remains to prove that R¥%¢ P.

Take xeX. rind P’g Pn’ such that st(x,q)€ P* and n’ is
minimal such = n. Suppose, x@ T(n,J,P), i.e. there is Q’€ q suc
that x€Q’ &and s8st(Q’,q)€P hence n2n’. Q! must be contui-
ne¢ in P’ . By definition of T(n,J,P), T(n,J,P) must be a sab-
set of P? as well.

Hence the rule (X,U)—»(X,Lg(U)) defines a functor from U. 1.
to Unlf. Let us denote it by 8y Obviously, 8y is a modificu=~
tion. 3y Theorem 9, 84 is not identical on point-Finite unifor
spaces. Nevertheless, if all cardinals are non-measurable then
8, preserves Cauchy filters on point-finite uniformities (see
[#1])). There is @ problem how s, behaves if there exists a mesu
surable cardinal.

3) Under Generalized Continuum Hypothesis, for each cardinal K
and each uniform space (X,U), the collection of all g-disjoint
uniform .covers (d'@ K) formse a base of uniformity.

I do not know what situation occurs without assuming GCH.
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