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S�atianáry sets ano paracompactness in oro reó paces: a s rvey 

by 

BoJo Lutzer 

This is the text of the first cf three s vey ta ks pres r.t2� 

auring the spri� o.f 1977 when I was a guest of the Czechosl uk .nCé:

demy o:f Scienoes, under &n exchange program aponsorea by the !'ic n 

M.�.s. and the ČSAV. I wish to express my gratitude to these wo er

g niz tions for their support. 

ln t.his fir t lecture I will introduce the notion of a stationé:a

ry set ana give several examples of one way that stationary sets can 

be used in topology. In addition, I hope to explain the motivation 

ror the results described in the second lecture. 

Throu&hout this talk, � will denote a regular uncountable car

dinal, i.e., an initial ordinal satisfying f = cf(i )> IJ"
0

• 1 will 

usually identify K wi th the set [O, K ) o:f all ordinals smaller 

than k. , and that set of' ordinals will al.ways carry the usual order 

topology. A subset S oí" K will be topologized by the relative (or 

sut>space) �opolog.y; that topology is usually different from the order 

topology which would be generated by the ordering which S inherits 

from k. o 

by cub { k. ) I mean the set of all closed unbounded subsets 

ot K .  rlecause � is regular, a subset S of K is unbounded 

{= eofinal) exactly when card{S) = � • A subset S of v is sta

tionary in ( provideo sn C # � for each CE cub ( ) • Bec use 

k = e:f( �) > /,r , i t is clear that any two m€:nt: -,··s ,�f c b( K ) hb-
o 

ve nonvoid intersection so that any (superset o� a) nember of cubtK 

ia stationary. Indeed, any intersection of· fewe �han K members 

of cub( � ) belongs to cub{ "- ) 1 a fact. which wi l be usea later. 
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One immediate consequence is. the obaervatiam that it" U{ s
., 

: •« .AJ 
ia a stationary subset ot t I wher-e card{A.), t:. , then s.011re 

S" is stationary. 

Thoae elementary obaervationa can ·'be ua-e'Ci to gi v•e an eaar pr-oo-f' 

that in 41:-1 Utere are stationary seta which aa-e much 110r-e om;pll.-

cated than superaeta ot members of cub( .. 1). Thia proo.t i• u
Mary Ellen Rudin [ R]. 

A. Theorem: There ia a subaet S � � such: taat bcth S a:nd

�l • S ar.e et.at.ion� • 

Proot: Suppose not. Then fo.r each Se li1'i, 1 either S or "'i_ - s

contains a member ot cuo(tr
1

). 

Fix any 1-1 tunction f f'rom "5. into J. 1 the u&uaJ. apa

ce of r·eal numbers. For eaeh n let @(n) be a count ble CO-'V'•riQg 

ot 1t by seta ot diameter < l/n. 

Let n� l. I assert that for some GE @(n) , f'-1[GJ cont.&ins 

a member of cub{ tcr
1

). 'i'or otherwise, for eac-h G: @(n) I co'i\ld 

choose a set C (G) e cu.b( /q"l) having C (G) C ttr1 - f'""l.[G] • But tlNtll.,

@Cn) being countable, 

ti 'I n{cco>IGE @<n>}c ld-'1
• "i - t-\Jt] a f . 

Therefore I ma:y choose · Gn 4 @(n) and Cn cub( tr1 ) such that.

cnc f'-1[GJ. But then the set. n{ c
8

in� 1} at leaat t.wo po.brts 

{i t oelongs to cub ( 4r 1}) and yet

n{c
n
ln� 1} C n { f'-1(GnJ ln� l J a r�1rn{ GnJn� 1)]

wbieh is impossible because t ia. 1.-l and n{ Gn,a� 1) i• ••t. .JlllllK

a single point. O. 

Subseta S of K such that both S and k. - S are •taitio-

nary in k are called bistati'Onary seta. The pr0ot' ot Theorem .A 
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elJy:i� g.en.el\aluee t.-o certai.n higher cardinals, but there is 
. . 

amm.ber 60,\lrC.e f'or- bjt,·ta 1.ionary aeta in any cardinal - the Ulam-
theorem ( U]{SJ •. 

Soe iheaP(tln: �t S oe a stationary subset of a regular cardinal k.. 

T!l.-a tbel"e ia a c-ollection (i) oť subsets of S sa

t.iaf'y i.ng� 

(l) ©

(2) each

is a pairwiae disjoint collection; 

Te@ 

{3) card(e) = 

is s tationary in 

"· 

IC ; 

That theo.;-em will l>e uaed once in this first lecture (to aplit a sta

tiOnaZ7 set in.t,.o two dia.joint stationaey aubsets) and in ita full 

f0rc.e d.urin.g the &&cond lect.ure. 

Tbe most. import.ant t.ool in wořlcing with stationary seta i.s the 

Pre.aaina-Down Lemma {�) .• This lemma grew out of a long chain of 

r-esu.lt.a � t.o AlezanGrO:f'f', Urysohn, Neumer and Fodor (see [JJ) and 

i.a ot'ten called PDL.., proba:bl.y to avoid disagreements over i ts paren

tage. 'fh«'-e is an •Sf' px-oot"., whieh I will give in my second lecture.

·C. P!Nl&� Down Lemma: Stippoae S is atationary in � and f :

S-+� ia a tunction satisfying ť(x) < x for each 

x& S - {o} • Then for some ye. I( 

a at.a-tionary subset of K • 

A. f1.1n<:tion f having ť(x) <.x is of'ten called a regressive

f.unctiQn� ln applicat,ions it is often anough to know that r-
1{Y}

i.s f'i,nal in ac. bu.t there are timr-s when the full force of the

PDL is nee-de-d ( e. g .-, see Theox-ern i below) p 



The applications which I will describe today are all based on 

a theorem proved in 1974 by Ryszard Engellcing and m.yself characteri

zing paracompaetneaa in gen�raliied ?rdered spaces. aecall that. a 

generalize.d ·or�ered (GO) apace is an, topologie-al space X which can 

be topologically embedded in a linea-r1y o·rdered topologica.l space

(LOTS} Y, i.e., Y is a linearly ordered_aet equipped with the usual 

order topology. The characterization theorem giY in [EL) ia: 

D. Theorem: A generalized ordered spac·e X ia not parru.,011pact. if

and only if some closed sub pace of X i hotneomQ�phic 

to a stationary set in some regular uncountable c rdi

nal k. • 

Halt ot the proof of Theorem D (constructing the cloaed aubaet 

oť X, given that X is not paracompact) follows �rom the �p 

theory of Gillman and Henriksen [GH] and requir 

t.ions to explain here. The other halí" o� the proot ia a ni<>e intro

duction to the use of' PDL and might be worth a minute o-t our tiae. 

We all know that i:f' a space X is paracompact then u ia MCh of 

i ts closed subspaces. Theref'ore i t is enougn to p-rove: 

E. Lemma: U S is stationary in k.• then S is not paracompact.

Proot: It is easily seen tbat if' S is stationary in I:. , then so

ia sd , the set -of' non-ie�lated point.s ot the spa-c,e S. (Thia elemen

tary_ :ťact will be used repeatedly in this :f'irst lec·ture.)

Now consider @ = {sn(o,x)lxES}, an open cover of the apa-

ce S • Suppose t.hat G) ia a locally fini te open refinement o:r @. 

For each x&Sd choose V(x)E © wit.h xE V(x). Since xe.S d

there .is a :f'irst o-rdinal í'(x)e S such that f(x) < x and 

[.f(x), xJnsc V(x}. The :ťunction f is regressive so that for some 



YE. S the set f-l{Y) is stationary in K (cof'inal will .do). But

then the point y of S belongs to � distinct members of © 

becaus-e no member of @ is cofinal in k., and that i . impossíble 

since © is a locally finite collection. O • · 

Now I'll present some applications. The first two, along with

some more teehnical resul ts, appear in the_ paper [ELJ. I· know the 

fond-nesa that topologists bere in Pra.gue have for uniform spaces, so 

it is appropriate that the first application relate somehow to such 

spaces. Let u.s say that a topologieal space is Dieudonné complete 

if it ha.s a Cauchy-c·omplete uniformity compatible with its topology. 

(I think of uniformities as certain collections of subsets of X•X, 

each of whieh is a neighborhood of the diagonal. A :filter-base © 
in X ia Cauchy with resp�ct to a uniformity @ iť :for each 

U E. @) some P-e (i) has F&F c U , and the uniformity @ is �-

1 et-e if n© # , whenever ® is a tilter base ot closed sets 

which is @-Cauchy.) The next result was obtained by Ishii (IJ fo� 

LOTS. 

F. Theorem: Any Dieudonné-complete generalized ordered space X is

paracompact. 

Proot: Suppose not. Then some stationary set S in a regular wicoun

table cardinal � is homeomorphic to a closed subspace of X. But 

then S is also Dieůdonné-complete, .say with.respect to the unifor

mit7 @. lc"'ix Uc (y). As in Lemma E, the set sd of non--isolated 

pointa of S is stationary in K , and for each x E s d there is 

a firn ordinal r0(x) 6 s iiuch that r0(x) < x and ((fu(x), x)fl s) 2c. ·

cU. The fu.nction :f• is regreasive so that, by_PDL, there is a

Yu a S such that fu
l{Yu} is S'.;.ationary in t (cofinal in ( would

be eno-ugh). But then ( CYu• k ) n S) 2 c. U. Theref'ore the coll ection
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® ={tx, ar. )n·s : x(t s} is a @-cau.chy t'ilterb�se ot' -clos-e-ci s,et<s, 

and yet n@ ·= ., , wbich i.s impossibl•• 0 . 

· The second application also uae PDL and also the �ao� that Ul�

cardinal K in Theorem D naa c:t." ( � ) > Vo • Recall that a srpaee X 

ia perfect if each closed aubset of X is a a., -set. The ne·s:t P&

sul t was proved in (Li} , but by a mucb llarder proof. 

G. Theorem: Any per:fect GO apace is paracompact.

Proo:t: Suppose not. Then, by Theorem Il, &oiae atationa.ry s,et S in

a regular uncountable cardinal � is a perf-ect space. W;i th sd a•

above, s
d must be a 06 -set, say s

d = li{G(n)ln� 1} wner-e each

G(n) is open in s. For each n� 1 and each XE sd let fn (x) be

the t'irst element ot S having :tn{x)<x and [t
11

{x) ,- xJns-cG(n) ..

According to PDL, there is a point Yn a S such thát r;1{.1rJ i•

atationary in k • Then [Yn• IC. )() S c G(n). Because cf ( k.')> W-
0 

, 

some zE-S has z >Y(n) for every n�l. But then sn (z, k }c 

c () {G{n) ln� 1} • s d and that is obviously impoasible. Q . 

lou will note the alemen·t.ary pattern ot tbe last t.o pro,ots: 

i:f a GO space X can have property © and ye.t :f'a il t.o t>e para

compact, then for some " , there is a stationary S c:. � havin.g 

property ©, �d that is impossible,. usually by PDL. What malces 

this pattern viable is the fact that most propertie. Which impl.3 pa

racompactness are closed-hereditary. But that is not always the ca

se, and just to show thet we have learn-ed somet.hing aince 1974,, let 

me tel1 you about a lemma in a reeent paper b.y Bennett and myael:f. 

The paper [BL1) studies the notion o:t a cr-minimal base in a 00 ·spaceo

Recall that a collect.ion @ of su'b&et.• ot X ia minimal or 

irreducible i:t U@ � U@ � whenever @ ' @. Equhtalently, 
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© ia minimal i:f each CE.([) -containa a point .x(C) belonging 

to no o.tner �ber •ot ©. lt i.a crucial to real"i�e ·that © is not 

1'(11.1 r . to- cover ··X • Th,e not.ion o.f a e--minimal bas t (i.,., a ba-

which is a: count.able union of minimal collectiona) ·was introduced 

by C·.E.Aull t:Au'] wbo asked about the relation ot o--minimal bases to 

quaaideveloptlbility [B]. 'fhe paper (BL:i_] grew out of t.he surprising 

c:Jbeervat.io-n (surpria-ing _to me,, at lea.at) • that -the lexico.graphically 

oraer·ed aquare has a r-mi.ni:mal base (Btij .• I� is known, and easily

praved, that the lexicographic square cannot have a fr.-minimal base 

whcee members are interva�s, however, and this pathology must be_kept 

in mind. It ia also �own that· the property of having a ťr-minimal

ba:&e is not closed-hereditary. (The Alexandro.ff "double arrow" 

A =· (O,l),c{o,1) ia a clos·ed subspaee ot the lexicographic square and 

do·e.s not have a \f' -minimal base f.or i ta eubspace topology.) Nonethe-

less, cme can prove: 

H. Theorem: Any GO spaee X with a cr-minimal base is (hereditari-

ly) paracom.pa-ct. 

Proo�: Hereditary paracompactneas in such a space follows �rom para

cozapactneas of the apace o_nce it is prov�d that X is f'irst-coúntab

le .(an easy lemma) [L2 , Prop. C). Let me sketch the proof for ·para

compactness of X .  If X is not paracompact then there is a K and

a stationary set S in IC. which is homeomorphic tq a closed subspa

ce of X. Furthermore (and this was not mentioned in my sta�ement of 

Theorem D but is noted in [ELJ) the homeomerphism can be taken to be 

etrictly mon•otonic. There�ore we may assume · S c X and that the order 

inherited by s fr·om X coincides with the ·-·uel ordering of s • .

Alao, since s is closed in X , s has no sup emum in X ' w.e wri-

te k. for·the i-de 1 element of X (i.e.·, for the gap of X) which

lies at the " p of s For X s le X' . be the first element • 
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of S wbich is larger than x. 

Now let @ s U{@Cn) In� 1} 'be a �-minimal base tor X. 

For each n� l let S' (n) = { xc S \some fixed Bn (x)E@ (.n) has

x E Bn (x) c ( .-,x• )} • ( Here I am wri ting_ {.-, x•) to mean {ye X I

y < x'}.) Let li = { n� l \s• (n) is stationary) • Se.cause S • U{ S1 (n) I

n � 1} (which follows f'rom the fact that @ is a base), M � f . 

For each n6: M and each XE sd (notation as in Lemma E) let 

fn (x) be the first point of S having fn (x) < x and [fn (x) ,xJc

c cin�xJ. According to the PDL there is a Yn• S such that t�1{Yn}

is stationary. Because cf( () > l&r
0 

tbere is a s& S ha-ving z> y
0

for each n& ll. 

Define T = Cz', I(.)(\ S and let 

T
0 

= { xe T ltor some f'ixed

Again because @ is a base, 

C(x)e @Cn), xc.C(x)c (z,x')}. 

T = U{T0 ln� l} so that, T being 

stationary, some Tm is stationary. Becauae Tmc Sm , mc M

ce the function t'm and the point Ym are det'ined. Fix any

and h.en

xc T m 

and consider any point y of C(x) which belongs to no other mem

ber ot @(m)� Since Tm is stationary there are points z
1

,z
2

cT
m

with Y'< z1 < Zi_ .::z
2 

• But then Bm(z1) and Bm(z2) are distinct

mer .:>ers of @(m) and both contain y, which is impossible. O •

As a ťinal application, let me describe a lemma �rom another 

pap�� by Bennett and myself (BL2] in which we study GO apaces which

are hereditarily p-spaces in the sense of Arhangeťskii (Ar] (i.e., 

GO spaces whose every subspace is a p-space). In our paper we need 

to study a conaiderably weaker property, introdu�ed by Hodel in (H) 

where a space 

Bn X-+©

(X,©) is called a �-s.pace it' there i.s a sequence 

o� functions satisf'ying:

l) x• Bn (x) for aach x& X· and each n� l;
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2) if < xn > is a sequence in X ?or which

(){an(xn)ln�l} I� then <xn> has a cluster po':1t

in X.

The theorem which I want to describe is 

I. Theerem: Let X be a GO space. lf X is hereditarily a p-sp&.ce 

(= each subspace of X is a � -space) then · X ís p1:2.ra

compact. 

Proo.f: Suppose not. Then there is a statíonary set S in some � 

such that S is hereditarily a �-space. Next, I invoke a lemma which 

reducea the problem to the first-countable case. 

J. Lemma: Suppose S is stationary in � and ia a t,-space. Then the

re is a first-countable subspace T of S which is also 

stationary in k.. 

Proof: Suppose < Bn > is the sequence of functions which makes 5

a p-space, and let s á be the set of non-isolated points of the

space S. Let T = S d
o For each 

ment of s such that .f l (x) < X 

is regressive, the PDL yields a

xE. T0 let f'l(x) be the first

and (f1 (x), x]('\Sc cl1 (x). Since

point Y1 
ES such that the set

ele-

·1

T
1 

= {x&T
0

\f
1 

(x) = y
1

} is stationary. Inductively find stationary 

sets T0:, T1:, T2:, ... , f'unctions f'n+l: Tn-. S and point s

such that Tn = {�e Tn-l lf'n (x) = Yn} • Since cf('-)> 4r
0

YnE S 

there is

a z� S having z >Yn for every 

is stationary and if tne T� then

n. Let T' = T n [ z , � ) • Ea ch
n n 

the sequence < t0 )' must have a cluster point in S. Now define 

T = { X€ s d \cf'{x} = Lcr0} • Clearly T is a first�•countable subspace

of' s. I assert that T is stationary. For let C�cub(K). Because 

each of the sets T' n is stationary, there are sequences and 

for "!ach n • · 
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Fr.om above, the sequence <tn> must ha:ve a cluste-r poin:t. in s,

say U • Bat then UC Tne &8 �equired. □ ·.

I can now ret um to the proof' ot �eoř"• I. S:inee S is s't&

t ionary in K and heredi tarily a �-apa.ee, tb♦ i.s a st ,tiW1a,r-y, 

tirst-countable subspac� T cď S whi�h aiao ia h�ditaril)t a 

f>-space. According to the Ulam�1)lovay tnem,--• ťl'heora B, a'bo.ve), 

there are two disjoint at.at.iQDal"Y nbapa,,cee U and V ot T-. C.on--

aider the space O, and let < 8n > b-e tne &eq ce Q-f .functions ._ 

__ k��---:M' --:
.:
::
�·· ,��pa!;�,. Ae -�. -�mma .i .. , th.erre ana •tat..iomaey si,,baet.a

u
1 
::,-u2 �-·-;.. ot U having tbe property tlat. iL X.• un then the N

quence < xn > must cluster in the aubap:ace U. Le:t O -= {»• 'l' ·l

there are pointa � s Un such that < xn > conv� t.o x } •

Secauae T ia firat-countable, the et .e i �i?el.y clo&ed in 

T. Because ot the special properties oť the

in T and Ce u. But then · C n v = ,, which is i ipO-ssi}:)le sine V

is also atationary. O •

In cloaing, let me make a little list of' thin.p whic:h you migtrt 

try to pr.ove uaing atationary sets an4 the �em·b-Gm [EL]. l.e� X

be a GO apace: 

1) 11." every open cover o� X na• a point-eountabls ?'Cfi

nement, then X is paraaa pact.

2) 11." 't(.B] is a aorel &e-t in X whenever B is a :ao

rel aubeet of the space X.X (Wh.e:r-e 11" i:s pr jeet ion

onto the f'irat coordinate) tben X is hereait..aři.ly

paracompact.

J) If S is a stationary subs,et ot K =,u.ch Ulat S is

tirat-countable and such that, ťo.r eae·h o:-cdiaal l:<-1::.

having cf( �) > 4r0 , snto, �) is not
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l. _. . ·t.hen S ia JDetri zable.

4) $ . e tlta t X ia a D-·space, i. e. , tha t whenever

{u;c�)lxa X} is an open covering of' X having xe-U(x)

1',o� Rdi x, then there is a closed discrete subset

D of X su.ch that { U(x) \xe D} covers X. Then X

ia p&l'&COmp&Ct •

5) If' X ia realcompact then X ia paracompact.

ltie f''iN't reaul:t ia ...U....tnown $n<il the f'if'th is very easy. The third 

J� a ,the:n,a «� Jwa;a&� while the $econd and f'ourth are unpublished

i .. , aw. t.s � mi.ne_. 

l'i.M.Uy., l.ttt ee poae a much more difficult queation. Theorem C, 

��, ,.p._ a •�e ,ca.-. of .a-.paces which contains, in aome sense,

� inetriab-U.it7? I can prove [BL2] that if X is a non

•met.ri:z.tr.l:e GG ...,ee, tben so-me suospace o:f X is not a p-space 

(Ar],, bu·t that PeáW.t i.a not suf'ficiently concrete. 

References 

[u] A.V. AJ'h�at:ii., On he_reditary properties, GeR.Top.Appl. 3 

(1973), 3�46. 

(Au] C.E„ .Aull, Quasi-{;leVel.opments and ó'8-bases, J .London Math.Soc. 

,!(1974), 197-204 • 

(B] H„R.. 8enn.'8'tt, On 'QlJ8.Si-developable spac•es, Gen.Top.Appl. 2:_'1971), 

253-262. 

(� H.&..Bcm:ett and E.S. B<erney, Spaces with 6"-�ir.imal bases, Proc. 

I,,.S. U. 'ropol.ogr Conf'. 1977, to appear- .. 

{1U� H.R. Benn tt 8ft4 D.J. Lutze.r, Ordered spaces with o-minimal

baae-s, Proc.L.S.U. Topology Conf'. 1977, to appear. 



11.1 -

[BL�H.R. Bennett and D.J. Lutzer, Certain hereditary properties 

and metrizability in generalized ordered spaces, to ap

pear. 

[EL] H. Engelking and D.J. Lutzer, Paracompactness in ordered spaces, 

Fund.M.ath., to appear. 

[GH] L. Gillman and M. Henriksen, Concerning rings of continuous 

func�ions, Trans.Amer.Math.Soc. 77(1954), 340-362. 

[H] R. Hodel, Moore spaces and lc,6.-spaces, Pacific J.Math. 38(1971),

641-652.

[I) T. Ishii, A new characterization of paracompactness, Proc.Japan 

Acad. 35 (1959), 435-436 • 

[J] I. Juhasz, On Neumer's theorem, Proc.Amer.Math.Soc. �{1976),

453-454 •

[½_] D.J. Lutzer, On gener alized ordered spaces, Diasertationes Math. 

LXXXIX, 1971 • 

[L2] D.J. Lutzer, Ordinals and paracompactness in ordered spaces,

TOPO 72, Proceedings ot the Second Pittsburgh Topology 

Conrerence, Lecture Notes in Mathematics 370, 248-256. 

[R] M.E. Rudin, A subset of the countable ordinals, Amer.llath.

llonthly � (1957), .351 • 

[s] R. Solovay, On the solution ot a problem of Fodor and Haynal,

Proc.Sommer Inst. on Axiomatic Set Theory, A.M.S.Proco 

Symp. Pure Jlath., vol XIII• 

[uJ s. Ulam, Zur Masstheorie in der allgemeinen Mengenlehre, Fund. 

Math. !2_(1930), 141-150. 


