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Stationary sets anG paracompactness in oruered spaces: a syrvey

by

L.Jdo Lutzer

This is the text of the first of three survey talks presentec
ouring the spring of 1977 when I was a guest of the Czechosloyuk ace-
cemy of Sciences, under an exchange program 8sponsored by the americzn
NeieS. and the §SAV. I wish to express my gratitude to those iwo or-
ganizations for their support.

In this first lecture I will introduce the notion of &a stationa-
ry set and give several examples of one way that stationary sets can
be used in topology. In addition, I hope to explain the motivation
for the results described in the second lecture.

Throughout this talk, K will denote a regular uncountadle car-

dinal, i.e., an initial ordinal satisfying ¥ = ef(K )> w,. 1 will

usually identify K with the set [0,K ) of all ordinals smaller
than K , and that set of ordinals will always carry the usual order
topology. A subset S of K will be topologized by the relative (or
subspace) topology; that topology is usually different from the order
topology which would be generated by the ordering which S 1inherits
from Kk .

By cub(K ) I mean the set of all closed unbounded subsets
of K . Because K 1is regular, a subset S of K 1is unboundec
(= cofinal) exactly when card(S) = K . 4 subset 5 of K 1is sta-

e

tionary in K providea SNC # @ for each Cé€ cub{K ). because

K = cf(K)> W, , it is clear that any two mexbe-s of cub(K ) he-

-
-

ve nonvoid intersection so that any (superset ol 2) =member of cub(K
is stationary. Indeed, any intersection of fewel than K members

of cub(K ) belongs to cub{k ), a fact which will be usea later.

)
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One immediate consequence is the observation that if U{S‘ T3 A}
is a stationary subset of K , where cerd(iA)< K , then some set
S¢ is stationary.

Those elementary observations can be used to give an easy proef
that in ld'i there are stationary sets which are much more campli-
cated than supersets of members of cub(v‘i). This proof is due teo
Mary Ellen Rudin [R].

A. Theorem: There is a subaet S of h{ such that both S and
((:'1 - S are stationary.

M_: Suppose not. Then for each SC N‘i , either S or Ui - S

contains & member of cub(&7).

Fix any 1-1 function f from &4 into R , the usual spe-
ce of real numbers. For each n 1let @(n) be a countable covering
of R by sets of diameter < 1/n.

Let nal. I assert that for some Ge @(n) - f-]'[G] contains
a member of cub(lﬂ’l). For otherwise, for each GG@(n) I could
choose a set C(G)e cub(w'l) having C(G)€ w7 - f'l[G] . But thea,
(©(n) being countable,

g # N{c@lce @m}c &y - U{r {cllce @w)} =

= W -t R] =0
Therefore I may choocse 'Gn& @ (n) and C,€ cub(lr;) such that
CnC f'll'_Gn]. But then the set ﬂ{cnlni 1} has at least two points
(it belongs to cub(ﬁfl)) and yet

nfc ina1}c n{r2(e |n21)} = £72(N{G, |nn1))
which is impossible because f is l1-1 and ﬁ{Gninél} is at most

a single point. D .

Subsets S of K s8such that both S and x-S are statio-

nary in K are called bistationary sets. The proof of Theorem 4
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obviously genersligee to certain higher cardinals, but there is
anotber source for bistationary sets in any cardinal - the Ulam-
-Solovay theorem [ UJ[S] ..

B. ‘E‘_h_;ogrggx: Let S be a stationary subset of & regular cardinal K.
Then there is a eollection @ of subsets of S sa-
tisfying:

(1) @ is a pairwise disjoint collection;
(2) each Te@ is stationary in K ;
(3) cara((®) = «x.

That theorem will be used once in this first lecture (to split a sta=-
tionary set into two disjoint stationary subsets) and in its full

force during the second lecture.

The most importaamt tool in working with stationary sets is the
Pressing-Down Lemma (PDL). This lemma grew out of a long chain of
results Gue to Alexandroff, Urysohn, Neumer and Fodor (see [J]) and
is often called PDL, probably to avoid disagreements over its paren-

tage. There is an easy proof, whiech I will give in my second lecture.

C. Pressing Down Lemma: Suppose S 1is stationary in K and f :

S—+ Kk 1is a function satisfying f(x)<x for each
x€S - {0} . Then for some yeK the set f'l{y} is

a stationary subset of K.

A function f having f(x)<x is often cslled a regressive

function. In applications it is often anough to know that f’l{y}

is epfin2l in K but there are times when the full force of the

PDL is needed (2.8.; see Theorem I, beolow).



The applications which I will describe today are all based on
a theorem proved in 1974 by Ryszard Engelking und myself characteri=-
zing paracompactness in generalized ordered spaces. decall that a

generalized ordered (GO) space is any topological space X which can

be topologically embedded in a linearly ordered topological space
(LOTS) Y , i.ee, Y 1is a linearly ordered set equipped with the usual

order topology. The characterization theorem given in [BL] is:

D. Theorem: A generalized ordered space X i3 not paracompact if
and only if some closed subspace of X is homeomorphic
to a stationary set in some regular uncountable cardi-

nal K .

Half of the proof of Theorem D (constructing the closed subaet
of X , given that X 1is not paracompact) follows from the Q-gap
theory of Gillman and Henriksen [GH] and requires too many defini-
tions to explain here. The other half of the proof is a nice intro-
duction to the use of PDL and might be worth a minute of our time,
We all know that if a space X 1is paracompact then 80 is each of

its closed subspaces. Therefore it is enough to prove:

E. Lemma: If S is stationary in K, then S 1is not paracompaci.

Proof: It is easily seen that if S 1is stationary in K, then so

is Sd, the set of non-isolated points of the space S. (This elemen-
tary fact will be used repeatedly in this first lecture.)

Now consider @ = {Sn[O,x)lxeS} , an open cover of the spa-
ce S . Suppose that @ is a locally finite open refinement of @.
For each xeSd choose V(x)e€ @ with x€ V(x). Since xgsd
there is a first ordinal £(x)e S such that f(x)<x and

(£(x),xQJNSc V(x). The function f is regressive so that for some
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yeS the set f’l{y) is stationary in K (cofinal will do). But
then the point y of S belongs to K distinct members of @
because no member of @ is cofinal in K, and that i impossible

since @ is a locally finite collection. [J.

Now I?1]1 present some applications. The first two, along with
some more technical results, appear in the paper [EL]. I know the
fondness that topologists here in Prague have for uniform spaces, SO
it is appropriate that the first application relate somehow to such
spaces. Let us say that a topological space is Dieudonné complete
if it has a Cauchy-complete uniformity compatible with its topology.
(I think of uniformities as certain collections of subsets of XxX,
each of which is a neighborhood of the diagonal. 4 filter-base @
in X is Cauchy with respect to a uniformity @ if for each
Ue@ some Pe @ has FxFcU , and the uniformity @ is comp-
lete if n@ # @ whenever ® is a filter base of closed sets
which is @-Caucrw.) The next result was obtained by Ishii [I] for
LOTS.

F. Theorem: Any Dieudonné-complete generalized ordered space X 1is
paracompact.

Proof: Suppose not. Then some stationary set S5 in a regular uncoun=-

table cardinal K is homeomorphic to a closed subspace of X. But

then S is also Dieudonné-complete, say with respect to the unifor-

mity @. Fix Ue @. As in Lemms E, the set s¢ of non-isolated

points of S 1is stationary in K , and for each xeSd there is

a first ordinal fU(x)eS such that fu(x)<x and (l'_fU(x),x'Jl'\S)zc

cU. The function fy is regressive so that, by FDL, there is a

-1 C s : : .
yy€S such that £, {yU) is s.ationary in Kk (cofinal in K would

be enough). But then ([yy» k)N S)%c U. Therefore the collection
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@ ={['_x, K)NS : xe S} is a @-Cauclw filterbase of closed sets,
and yet N@ = # , which is impossible. [] .

The second application also uses PDL and also the fact that the
cardinal K in Theorem D has ¢f(K)> & . Recall that a space X
is perfect if each closed subset of X is a G‘. -set. The next re-
sult was proved in l'_Ll] , but by a much harder proof.

Ge Theorem: Any perfect GO space is paracompact.

irgt_)f_: Suppose not. Then, by Theorem L, some stationary set S 1in
a regular uncountable cardinal K is a perfect space. With gd as
above, S¢ must be a Gy -set, say s¢ = N{G(n)|n21} where sach
G{n) 1is open in S. For each n21 and each xes? 1let £, (x) be
the first element of S having f (x)<x and [fn(x),x]ﬂScG(n).
According to PDL, there is a point y @S such that f;l{yn} is
stationary in K . Then [y ,K )JNScG(n). Because cf(K)> @, ,
some z€S has z>y(n) for every nal. But then SN[z,K)c

c n{G(n)Ini 1} = S9 and that is obviously impoasible.D .

You will note the elementary pattern of the last two proofs:
if a GO space X can have property @ and yet fail to be para-
compact, then for some K , there is a stationary S&K  having
property @, and that is impossible, usually by PDL. What makes
this pattern viable is the fact that most properties which imply pa-
racompactness are closed-hereditary. But that is not always the ca-
se, and just to show that we have learned something aince 1974, let
me tell you about a lemma in a recent paper by Bennett and myself.
The paper EBLII studies the notion of a 6-minimal base in a GO space.

Recall that a collection @ of sudbeets of X is minimal or

irreducible if U@ # U@ . whenever @ §- @. Equivalently,
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@ is minimal if each Ce@ contains a point x(C) belonging

to no other member of (C). It is crucial to realize that (C) is no

required to cover X . The notion of a &-minimal base, (i.e., a ba-

[ad

se which is & countable union of minimal collections) was introduced
by C.E.aull [Au] who asked about the relation of @ -minimal bases to
quasidevelopability [B]. The paper [BLl] grew out of the surprising
obeervation (surprising to me, at least) that the lexicographically
ordered square has a O -minimal base [BB]}. It is known, and easily
proved, that the lexicographic square cannot have a 6 -minimal base
whose members are intervals, however, and this pathology must be kept
in mind. It is also known that the property of having a 6 -minimal
base is 2}_ closed-hereditary. (The Alexandroff "double arrow"

A= [O,I]I{O,l} is a closed subspace of the lexicographic square and

does not have a § -minimal base for its subspace topology.) Nonethe-

less, one can prove:

H. Theorem: Any GO space X with a @-minimal base is (hereditari-
ly) paracompact.
Proof: Hereditary paracompactness in such a space follows from para-

compactness of the space once it is proved that X is first-countab-

le (an easy lemma) [Lz yProp. C]. Let me sketch the proof for para-
compactness of X . If X is not paracompact then there is a K eand
a stationary set S in &k which is homeomorphic to a closed subspa-
ce of X. Furthermore (and this was not mentioned in my statement of
Theorem D but is noted in [EL]) the homeomerphism can be taken to be
strictly monotonic. Therefore we may assume ScCX and that the order
inherited by S from X coincides with the usual,ordering of S.
Also, since S 1is closed in X , S has no supremum in X ; we wri-
te K for the ideal element of X (i.e., for the gap of X) which

lies at the "tup" of S . For x&S, let x? be the first element
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of S which is larger than x.
Now let = U{(n)lna 1} be a 6 -minimal base for X.
For each nal let S?(n) ={xc S|some fixed Bn(x)€®(n) has
x€B (x)c (¢,x* )}. ( Here I am writing (e,x’) to mean {ye X|
y<x’}.) Let M= {n21]S?(n) is stationary} . Because S = U{S?(n)|
n.—‘:l} (which follows from the fact that is a base), M # @ .

d (notation as in Lemma E) let

For each ngM and each xS
fn(x) be the first point of S having fn(x)<x and [fn(x),xjc
C B, \x). According to the PDL there is a ¥, & S such that f;]'{yn}
is stationary. Because cf(K)> & there is a 2& S having z>y,
for each neM.

Define T = [z’, K)NS and let

T, = {xeTIfor some fixed C(x)e (n), xg C(x)c (z,x’)} .
Again because is a base, T = U{Tnlné 1} so that, T being
stationary, some Tm is stationary. Because Tmc Sm s &M and hen-
ce the function fm and the point y, are defined. Fix any xe Tm
and consider any point y of C(x) which belongs to no other mem-
ber of @(m)., Since Tm is stationary there are points 2),2,& 'I'In
with y’« z2, < zi<22 . But then an(zl) and Bm(zz) are distinct

mer Jers of (m) and both contain y, which is impossible. 0.

As a final application, let me describe a lemma from another
paper by Bennett and myself [BL2] in which we study GO spaces which
are herediturily p-spaces in the sense of Arhangelskil Car] (i.e.,
GO gpaces whose every subspace is a p-space). In our paper we need
to study a considerably weaker property, introduced by Hodel in [H]
where a space (x,(i)) is called a é—space if there is a sequence
B x-—»(:) of functions satisfying:

n
1) x& B (x) for each xeX and each nR1;
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2) if <x,” is a sequence in X Jor which
5 N - > are
ﬂ{dn(xn)ln-l} # 9 then <x > has a cluster point
in X.

Tne theorem which I want to describe is

l. Theorem: Let X be a GO space. If X 1is hereditarily a /s-space
(= each subspace of X is a p-space) then X isc pura-
compact.

Proof: Suppose not. Then there is a stationary set S in some K

such that S 1is hereditarily a p-space. Next, I invoke a lemma which

reduces the problem to the first-countable case.

J. Lemma: Suppose S 1is stationary in K and is a /5-space. Then the-
re is a first-countable subspace T of S which is also
stationary in K.

Proof: Suppose ¢ Bn> is the sequence of functions which makes 3

a /3-space, and let S‘i be the set of non-isolated points of the

space S. Let 'I‘o = Sdo For each xe’I‘o let fl(x) be the first ele-

ment of S such that’ f,(x)<x and [fl(x),x]ﬂSc. By (x). Since %)

is regressive, the PDL yields a point yleS such that the set

Tl = {xe Tolfl (x) = yl} is stationary. Inductively find stationary

sets T, o T1:T2>... y, functions ¢

n+l
such that 'I‘n = {.?:e Tn-l |fn(x) = yn] e Since cf(K)> Wy there is

:'I‘n—’S and points yneS
& 2€S having z >y, for every n. Let EoNE Tnﬂ [z, k). Each T}
is stationary and if t € 'l‘x’1 then ze[yn,tn)ﬂSc Bn(tn) so that
the sequence (tn> must have a cluster point in S. Now define
T = {xe sd lef(x) = w'o} . Clearly T is a first-countable subspace
of S. I assert that T is stationary. For let Ce&cub(K). Because

each of the sets T is stationary, there are sequences <t > and

<c¢,» having c,&C , t,e€Ty and ea<tp<en,; for each n o
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From above, the sequence <t,> must have a cluster point in S,

say u . But then ue€TNC as required. [J.

I can now return to the proof of Theorem I. Since S is sta-
tionary in K and hereditarily a A-apsc-e, there is a statienary,
first-countable subspace T of S which also is hereditarily a
ﬁ-space. According to the Ulam-Solovay theorem (Theorem B, above),
there are two disjoint staticnary subspaces U and V of T. Con-
aider the space U, and let <Bn> be the sequemce of functions ma-
" king U_.a A-space. 4e in Lemma J, there are stationary subsets
U;> U2:>';.. of U having the property that if x, € U, then the se-
quence < x > must cluster in the subspace U. Let C = {xe1|
there are points x U, such that <X > converges to x}.
Because T 1is first-countable, the set .C is relatively closed im
T. Because of the special properties of the sets Un » C is cofinal
in T and Cc U. But then CAV = @, which is impossible sinece V

is also stationary. D .

In closing, let me make a little list of thinge which you might
try to prove using stationary sets and the theorem from [EL]. lLet X
be a GO space:

1) If every open cover of X has a point-countable refi-
nement, then X 1is paracompact.

2) If ®[(B]l is a Borel set in X whenever B is a Bo-
rel subset of the aspace XxX (where W is prejection
onto the first coordinate) then X is hereditarily
paracompact.

3) If S 1is a statiomary subset of K such that S is
first-countable and such that, for each ordinal 2a<K

having cf(X)> &, » SNLO, ) ie not stationary in
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N\ » then S is metrizable.
4) Suppose that X is a D-space, i.e., that whenever

{uix)1xe X} is an open covering of X having =xe U(x)
for each x, then there is a closed ciscrete subset

D of X such that {U(x)|xeD} covers X. Then X
is paracompact.

5) If X 1is realcompact then X is paracompact.

tne firgt result is well-known and the fifth is very easy. The third
19 @ theotem of Juhasgz, while the second and fourth are unpublished
results of mine.

Pinally, let me pose a much more difficult question. Theorem C,
abowe, gives a single class of spaces which contains, in some sense,
an example of ewery nom-paracompact GO space. Is there an analogous
theorem for metrisability? I can prove [BLz] that if X is a non-
-metrizabdble GO epace, then some subspace of X is not a p-space
{Ar), but that result is not sufficiently concrete.
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