David J. Lutzer Stationary sets and paracompactness in ordered spaces: a survey

In: Zdeněk Frolík (ed.): Seminar Uniform Spaces. , 1978. pp. 1–12.

Persistent URL: http://dml.cz/dmlcz/703161

Terms of use:

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://dml.cz

Stationary sets and paracompactness in ordered spaces: a survey

by

- 1-

D.J. Lutzer

This is the text of the first of three survey talks presented during the spring of 1977 when I was a guest of the Czechoslovak Acedemy of Sciences, under an exchange program sponsored by the American N.A.S. and the ČSAV. I wish to express my gratitude to those two organizations for their support.

In this first lecture I will introduce the notion of a stationary set and give several examples of one way that stationary sets can be used in topology. In addition, I hope to explain the motivation for the results described in the second lecture.

Throughout this talk, <u>K</u> will denote a regular uncountable cardinal, i.e., an initial ordinal satisfying $K = cf(K) > W_0$. I will usually identify K with the set [0, K) of all ordinals smaller than K, and that set of ordinals will always carry the usual order topology. A subset S of K will be topologized by the relative (or subspace) topology; that topology is usually different from the order topology which would be generated by the ordering which S inherits from K.

By $\operatorname{cub}(K)$ I mean the set of all closed unbounded subsets of K. Because K is regular, a subset S of K is unbounded (= cofinal) exactly when $\operatorname{card}(S) = K$. A subset S of K is <u>sta-</u> <u>tionary in K</u> provided $S \cap C \neq \emptyset$ for each $C \in \operatorname{cub}(K)$. Because $K = \operatorname{cf}(K) > \omega_0$, it is clear that any two members of $\operatorname{cub}(K)$ have we nonvoid intersection so that any (superset of a) member of $\operatorname{cub}(K)$) is stationary. Indeed, any intersection of fewer than K members of $\operatorname{cub}(K)$ belongs to $\operatorname{cub}(K)$, a fact which will be used later. One immediate consequence is the observation that if $U\{S_{\epsilon}: \epsilon \in A\}$ is a stationary subset of K, where card(A) < K, then some set S_{ct} is stationary.

Those elementary observations can be used to give an easy proof that in ψ_1 there are stationary sets which are much more complicated than supersets of members of $\operatorname{cub}(\psi_1)$. This proof is due to Mary Ellen Rudin [R].

A. Theorem: There is a subset S of $4t_1'$ such that both S and $4t_2' - S$ are stationary.

Proof: Suppose not. Then for each $S \subset W_1$, either S or $W_1 - S$ contains a member of $cub(W_1)$.

Fix any 1-1 function f from \mathscr{U}_1 into \mathbb{R} , the usual space of real numbers. For each n let $\mathfrak{G}(n)$ be a countable covering of \mathbb{R} by sets of diameter < 1/n.

Let $n \ge 1$. I assert that for some $G \in (G)(n)$, $f^{-1}[G]$ contains a member of $cub(w_1)$. For otherwise, for each $G \in (G)(n)$ I could choose a set $C(G) \in cub(w_1)$ having $C(G) \subset w_1 - f^{-1}[G]$. But then, (G)(n) being countable,

 $\emptyset \neq \bigcap \{ C(G) | G \in \widehat{G}(n) \} \subset \mathscr{W}_1 - \bigcup \{ f^{-1}[G] | G \in \widehat{G}(n) \} = \\ = \mathscr{U}_1 - f^{-1}[R] = \emptyset.$

Therefore I may choose $G_n \in \bigcirc (n)$ and $C_n \in \operatorname{cub}(\mathscr{U}_1)$ such that $C_n \subset f^{-1}[G_n]$. But then the set $\bigcap \{C_n \mid n \ge 1\}$ has at least two points (it belongs to $\operatorname{cub}(\mathscr{U}_1)$) and yet

 $\bigcap \{C_n \mid n \ge 1\} \subset \bigcap \{f^{-1}[G_n] \mid n \ge 1\} = f^{-1}[\bigcap \{G_n \mid n \ge 1\}]$ which is impossible because f is 1-1 and $\bigcap \{G_n \mid n \ge 1\}$ is at most a single point. \square .

Subsets S of K such that both S and K - S are stationary in K are called bistationary sets. The proof of Theorem A obviously generalizes to certain higher cardinals, but there is another source for bistationary sets in any cardinal - the Ulam--Solovay theorem [U][S] .

B. Theorem: Let S be a stationary subset of a regular cardinal k.
Then there is a collection ① of subsets of S satisfying:

(1) ⑦ is a pairwise disjoint collection;
(2) each T (⑦) is stationary in K;
(3) card(⑦) = K.

That theorem will be used once in this first lecture (to split a stationary set into two disjoint stationary subsets) and in its full force during the second lecture.

The most important tool in working with stationary sets is the Pressing-Down Lemma (PDL). This lemma grew out of a long chain of results due to Alexandroff, Urysohn, Neumer and Fodor (see [J]) and is often called FDL, probably to avoid disagreements over its parentage. There is an easy proof, which I will give in my second lecture.

C. Preasing Down Lemma: Suppose S is stationary in K and f: $S \rightarrow K$ is a function satisfying f(x) < x for each $x \in S - \{0\}$. Then for some $y \in K$ the set $f^{-1}\{y\}$ is a stationary subset of K.

A function f having f(x) < x is often called a <u>regressive</u> <u>function</u>. In applications it is often enough to know that $f^{-1}\{y\}$ is cofinal in K but there are times when the full force of the PDL is needed (e.g., see Theorem I, below). The applications which I will describe today are all based on a theorem proved in 1974 by Ryszard Engelking and myself characterizing paracompactness in generalized ordered spaces. Aecall that a generalized ordered (GO) <u>space</u> is any topological space X which can be topologically embedded in a linearly ordered topological space (LOTS) Y, i.e., Y is a linearly ordered set equipped with the usual order topology. The characterization theorem given in [EL] is:

D. Theorem: A generalized ordered space X is not paracompact if and only if some closed subspace of X is homeomorphic to a stationary set in some regular uncountable cardinal K.

Half of the proof of Theorem D (constructing the closed subset of X, given that X is not paracompact) follows from the Q-gap theory of Gillman and Henriksen [GH] and requires too many definitions to explain here. The other half of the proof is a nice introduction to the use of PDL and might be worth a minute of our time. We all know that if a space X is paracompact then so is each of its closed subspaces. Therefore it is enough to prove:

E. Lemma: If S is stationary in K, then S is not paracompact. Proof: It is easily seen that if S is stationary in K, then so is S^d, the set of non-isolated points of the space S. (This elementary fact will be used repeatedly in this first lecture.)

Now consider $(U) = \{S \cap [0,x) | x \in S\}$, an open cover of the space S. Suppose that (V) is a locally finite open refinement of (U). For each $x \in S^d$ choose $V(x) \in (V)$ with $x \in V(x)$. Since $x \in S^d$ there is a first ordinal $f(x) \in S$ such that f(x) < x and $[f(x),x] \cap S \subset V(x)$. The function f is regressive so that for some

- 4 -

 $y \in S$ the set $f^{-1}\{y\}$ is stationary in K (cofinal will do). But then the point y of S belongs to K distinct members of \heartsuit because no member of \heartsuit is cofinal in K, and that i impossible since \heartsuit is a locally finite collection. \square .

Now I'll present some applications. The first two, along with some more technical results, appear in the paper [EL]. I know the fondness that topologists here in Prague have for uniform spaces, so it is appropriate that the first application relate somehow to such spaces. Let us say that a topological space is Dieudonné complete if it has a Cauchy-complete uniformity compatible with its topology. (I think of uniformities as certain collections of subsets of X=X, each of which is a neighborhood of the diagonal. A filter-base (F) in X is Cauchy with respect to a uniformity (U) if for each $U \in (U)$ some $F \in (F)$ has $F \times F \subset U$, and the uniformity (U) is complete if $\cap (F) \neq \emptyset$ whenever (F) is a filter base of closed sets which is (U)-Cauchy.) The next result was obtained by Ishii [I] for LOTS.

F. Theorem: Any Dieudonné-complete generalized ordered space X is paracompact.

Proof: Suppose not. Then some stationary set S in a regular uncountable cardinal K is homeomorphic to a closed subspace of X. But then S is also Dieudonné-complete, say with respect to the uniformity (U). Fix $U \in (U)$. As in Lemma E, the set S^d of non-isolated points of S is stationary in K, and for each $x \in S^d$ there is a first ordinal $f_U(x) \in S$ such that $f_U(x) < x$ and $([f_U(x),x] \cap S)^2 \subset U$. The function f_u is regressive so that, by PDL, there is a $y_U \in S$ such that $f_U(y_U)$ is stationary in K (cofinal in K would be enough). But then $([y_U, \kappa) \cap S)^2 \subset U$. Therefore the collection

- 5 -

 $(\mathbf{F} = \{[\mathbf{x}, \mathbf{k}) \cap \mathbf{S} : \mathbf{x} \in \mathbf{S}\}$ is a (D-Cauchy filterbase of closed sets, and yet $\cap (\mathbf{F} = \emptyset$, which is impossible. \square .

- 6 -

The second application also uses PDL and also the fact that the cardinal K in Theorem D has $cf(K) > w_o$. Recall that a space X is perfect if each closed subset of X is a G -set. The next result was proved in [L], but by a much harder proof.

G. Theorem: Any perfect GO space is paracompact.

Proof: Suppose not. Then, by Theorem D, some stationary set S in a regular uncountable cardinal K is a perfect space. With S^d as above, S^d must be a G_{σ} -set, say $S^d = \bigcap \{G(n) \mid n \ge 1\}$ where each G(n) is open in S. For each $n \ge 1$ and each $x \in S^d$ let $f_n(x)$ be the first element of S having $f_n(x) < x$ and $[f_n(x), x] \cap S \subset G(n)$. According to PDL, there is a point $y_n \in S$ such that $f_n^{-1}\{y_n\}$ is stationary in K. Then $[y_n, K) \cap S \subset G(n)$. Because $cf(K) > \omega_o$, some $z \in S$ has z > y(n) for every $n \ge 1$. But then $S \cap [z, K] \subset \cap \{G(n) \mid n \ge 1\} = S^d$ and that is obviously impossible. \Box .

You will note the elementary pattern of the last two proofs: if a GO space X can have property P and yet fail to be paracompact, then for some K, there is a stationary SCK having property P, and that is impossible, usually by PDL. What makes this pattern viable is the fact that most properties which imply paracompactness are closed-hereditary. But that is not always the case, and just to show that we have learned something since 1974, let me tell you about a lemma in a recent paper by Bennett and myself. The paper [BL₁] studies the notion of a *G*-minimal base in a GO space. Recall that a collection O of subsets of X is minimal or irreducible if UD \neq UO, whenever D S O. Equivalently, ⓒ is minimal if each $C \in \bigcirc$ contains a point x(C) belonging to no other member of \bigcirc . It is crucial to realize that \bigcirc is not required to cover X. The notion of a <u>G-minimal base</u>, (i.e., a base which is a countable union of minimal collections) was introduced by C.E.Aull [Au] who asked about the relation of G-minimal bases to quasidevelopability [B]. The paper [BL₁] grew out of the surprising observation (surprising to me, at least) that the lexicographically ordered square has a G-minimal base [BE]. It is known, and easily proved, that the lexicographic square cannot have a G-minimal base whose members are intervals, however, and this pathology must be kept in mind. It is also known that the property of having a G-minimal base is not closed-hereditary. (The Alexandroff "double arrow" $A = [0,1] \cdot \{0,1\}$ is a closed subspace of the lexicographic square and does not have a G-minimal base for its subspace topology.) Nonetheless, one can prove:

H. <u>Theorem</u>: Any GO space X with a **C**-minimal base is (hereditarily) paracompact.

<u>Proof: Hereditary</u> paracompactness in such a space follows from paracompactness of the space once it is proved that X is first-countable (an easy lemma) [L₂, Prop. C]. Let me sketch the proof for paracompactness of X. If X is not paracompact then there is a K and a stationary set S in K which is homeomorphic to a closed subspace of X. Furthermore (and this was not mentioned in my statement of Theorem D but is noted in [EL]) the homeomorphism can be taken to be strictly monotonic. Therefore we may assume $S \subset X$ and that the order inherited by S from X coincides with the usual ordering of S. Also, since S is closed in X, S has no supremum in X; we write K for the ideal element of X (i.e., for the gap of X) which lies at the "top" of S. For $x \in S$, let x, be the first element of S which is larger than x.

Now let $\mathbb{B} = \bigcup \{ \mathbb{B}(n) | n \ge 1 \}$ be a \mathcal{C} -minimal base for X. For each $n \ge 1$ let $S'(n) = \{ x \in S | \text{some fixed } \mathbb{B}_n(x) \in \mathbb{B}(n) \text{ has}$ $x \in \mathbb{B}_n(x) \subset (\leftarrow, x^*) \}$. (Here I am writing (\leftarrow, x^*) to mean $\{ y \in X | y < x^* \}$.) Let $\mathbb{M} = \{ n \ge 1 | S'(n) \text{ is stationary} \}$. Because $S = \bigcup \{ S'(n) | n \ge 1 \}$ (which follows from the fact that \mathbb{B} is a base), $\mathbb{M} \neq \emptyset$.

For each $n \in M$ and each $x \in S^d$ (notation as in Lemma E) let $f_n(x)$ be the first point of S having $f_n(x) < x$ and $[f_n(x), x] < C = C = n(x)$. According to the PDL there is a $y_n \in S$ such that $f_n^{-1} \{y_n\}$ is stationary. Because $cf(K) > \omega_0$ there is a $z \in S$ having $z > y_n$ for each $n \in M$.

Define $T = [z', \kappa) \cap S$ and let

 $T_{n} = \left\{ x \in T | \text{for some fixed } C(x) \in (B)(n), x \in C(x) \in (z, x') \right\}.$ Again because (B) is a base, $T = \bigcup \{T_{n} | n \ge 1\}$ so that, T being stationary, some T_{m} is stationary. Because $T_{m} \in S_{m}$, m (M) and hence the function f_{m} and the point y_{m} are defined. Fix any $x \in T_{m}$ and consider any point y of C(x) which belongs to no other member of (B)(m). Since T_{m} is stationary there are points $z_{1}, z_{2} \in T_{m}$ with $y' < z_{1} < z_{1}^{2} < z_{2}$. But then $B_{m}(z_{1})$ and $B_{m}(z_{2})$ are distinct merpers of (B)(m) and both contain y, which is impossible. [].

As a final application, let me describe a lemma from another paper by Bennett and myself $[BL_2]$ in which we study GO spaces which are hereditarily p-spaces in the sense of Arhangelskii [Ar] (i.e., GO spaces whose every subspace is a p-space). In our paper we need to study a considerably weaker property, introduced by Hodel in [H] where a space (X, \bigoplus) is called a $\underline{\beta}$ -space if there is a sequence $B_n \quad X \rightarrow \bigoplus$ of functions satisfying:

1) $x \in B_n(x)$ for each $x \in X$ and each $n \ge 1$;

2) if $\langle x_n \rangle$ is a sequence in X for which $\bigcap \{ B_n(x_n) | n \ge 1 \} \neq \emptyset$ then $\langle x_n \rangle$ has a cluster point in X.

The theorem which I want to describe is

I. Theorem: Let X be a GO space. If X is hereditarily a β -space (= each subspace of X is a β -space) then X is paracompact.

- 9 -

<u>Proof</u>: Suppose not. Then there is a stationary set S in some κ such that S is hereditarily a β -space. Next, I invoke a lemma which reduces the problem to the first-countable case.

J. Lemma: Suppose S is stationary in K and is a *A*-space. Then there is a first-countable subspace T of S which is also stationary in K.

<u>Proof:</u> Suppose $\langle B_n \rangle$ is the sequence of functions which makes S a β -space, and let S^d be the set of non-isolated points of the space S. Let $T_o = S^d$. For each $x \in T_o$ let $f_1(x)$ be the first element of S such that $f_1(x) < x$ and $[f_1(x), x] \cap S \subset B_1(x)$. Since f_1 is regressive, the PDL yields a point $y_1 \in S$ such that the set $T_1 = \{x \in T_o | f_1(x) = y_1\}$ is stationary. Inductively find stationary sets $T_o \supset T_1 \supset T_2 \supset \ldots$, functions $f_{n+1} \colon T_m \supset S$ and points $y_n \in S$ such that $T_n = \{x \in T_{n-1} | f_n(x) = y_n\}$. Since $cf(\kappa) > \omega_o$ there is a $z \in S$ having $z > y_n$ for every n. Let $T_n^* = T_n \cap [z, \kappa]$. Each T_n^* is stationary and if $t_n \in T_n^*$ then $z \in [y_n, t_n) \cap S \subset B_n(t_n)$ so that the sequence $\langle t_n \rangle$ must have a cluster point in S. Now define $T = \{x \in S^d | cf(x) = \omega_o\}$. Clearly T is a first-countable subspace of S. I assert that T is stationary. For let $C \in cub(\kappa)$. Because each of the sets T_n^* is stationary, there are sequences $\langle t_n \rangle$ and $\langle c_n \rangle$ having $c_n \in C$, $t_n \in T_n^*$ and $c_n < t_n < c_{n+1}$ for each n. From above, the sequence $\langle t_n \rangle$ must have a cluster point in S, say u. But then $u \in T \cap C$ as required. \square .

I can now return to the proof of Theorem I. Since S is stationary in K and hereditarily a β -space, there is a stationary, first-countable subspace T of S which also is hereditarily a β -space. According to the Ulam-Solovay theorem (Theorem E, above), there are two disjoint stationary subspaces U and V of T. Consider the space U, and let $\langle B_n \rangle$ be the sequence of functions making U a β -space. As in Lemma J, there are stationary subsets $U_1 \supset U_2 \supset \ldots$ of U having the property that if $x_n \in U_n$ then the sequence $\langle x_n \rangle$ must cluster in the subspace U. Let $C = \{x \in T \mid$ there are points $x_n \in U_n$ such that $\langle x_n \rangle$ converges to $x \}$. Because T is first-countable, the set C is relatively closed in T. Because of the special properties of the sets U_n , C is cofinal in T and C<U. But then $C \cap V = \emptyset$, which is impossible since V is also stationary.

In closing, let me make a little list of things which you might try to prove using stationary sets and the theorem from [EL]. Let X be a GO space:

- 1) If every open cover of X has a point-countable refinement, then X is paracompact.
- 2) If **↑**[B] is a Borel set in X whenever B is a Borel subset of the space X=X (where **T** is projection onto the first coordinate) then X is hereditarily paracompact.
- 3) If S is a stationary subset of K such that S is first-countable and such that, for each ordinal $\lambda < K$ having $cf(\lambda) > \omega_0$, $S \cap [0, \lambda)$ is not stationary in

 λ , then S is metrizable.

4) Suppose that X is a D-space, i.e., that whenever {U(x) | x ∈ X} is an open covering of X having x ∈ U(x) for each x, then there is a closed discrete subset D of X such that {U(x) | x ∈ D} covers X. Then X is paracompact.

5) If X is realcompact then X is paracompact.

The first result is well-known and the fifth is very easy. The third is a theorem of Junasz, while the second and fourth are unpublished results of mine.

Finally, let me pose a much more difficult question. Theorem C, above, gives a single class of spaces which contains, in some sense, an example of every non-paracompact GO space. Is there an analogous theorem for metrisability? I can prove [BL₂] that if X is a non--metrizable GO space, then some subspace of X is not a p-space [Ar], but that result is not sufficiently concrete.

References

- [Ar] A.V. Arhangelskii, On hereditary properties, Gen.Top.Appl. 3 (1973), 39-46.
- [Au] C.E. Aull, Quasi-developments and 69-bases, J.London Math.Soc. 9(1974), 197-204.
- [B] H.R. Bennett, On quasi-developable spaces, Gen.Top.Appl. 1(1971), 253-262.
- [BB] H.R. Berney, Spaces with G-minimal bases, Proc. L.S.U. Topology Conf. 1977, to appear.
- H.R. Bennett and D.J. Lutzer, Ordered spaces with 6-minimal bases, Proc.L.S.U. Topology Conf. 1977, to appear.

- [BL2] H.R. Bennett and D.J. Lutzer, Certain hereditary properties and metrizability in generalized ordered spaces, to appear.
- [EL] R. Engelking and D.J. Lutzer, Paracompactness in ordered spaces, Fund.Math., to appear.
- [GH] L. Gillman and M. Henriksen, Concerning rings of continuous functions, Trans.Amer.Math.Soc. 77(1954), 340-362.
- [H] R. Hodel, Moore spaces and a△-spaces, Pacific J.Math. 38(1971), 641-652.
- [I] T. Ishii, A new characterization of paracompactness, Proc.Japan Acad. <u>35</u>(1959), 435-436.
- [J] I. Juhasz, On Neumer's theorem, Proc.Amer.Math.Soc. <u>54</u>(1976), 453-454.
- [L] D.J. Lutzer, On generalized ordered spaces, Dissertationes Math. LXXXIX, 1971.
- [L₂] D.J. Lutzer, Ordinals and paracompactness in ordered spaces, TOPO 72, Proceedings of the Second Pittsburgh Topology Conference, Lecture Notes in Mathematics 370, 248-256.
- [R] M.E. Rudin, A subset of the countable ordinals, Amer.Math. Monthly <u>64</u>(1957), 351.
- [S] R. Solovay, On the solution of a problem of Fodor and Haynal, Proc.Sommer Inst. on Axiomatic Set Theory, A.M.S.Proc. Symp. Pure Math., vol XIII.
- [U] S. Ulam, Zur Masstheorie in der allgemeinen Mengenlehre, Fund. Math. 16(1930), 141-150.