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SEVERAL CLASSES OF UNIFORM SPACES CONNECTED ITH BANACH 

VALUED MAP.PINOS 

Jiří Vil_ímovský 

In 1975, Z.Frolík, J.Pelant and the author wrote a paper concer

ning ringa of uniformly continuous funotions and extensions of uni

:ťormly continuous (real valued) functions ( [7] )_, which eppeared in

the last volume of Seminar Un�form Spa(?es. The aim o.f' this note is to 

examine to what extent similar results are valid for wiiformly conti

nuous f'unctions into infinite dimenaional Banach spáces. 

All un'iform spaces are supposed to be separated, a-11 locally con

vex (topological vector) spaces are supposed to be over the field of 

reals endowed with .its natural translation invariant uniformity. By 

U(X,Y) we denot� the. set of' all unif'ormly continuous mappings from 

X into Y; if Y is the real line (with its· naturel �etri�able uni

formity), we write simply ·u(X). Further we use the_follow�ng symbols: 

R for the. real 1-ine, I for a compact interval, H(A) for a hedge

hog over a set A •. ·Recall that . H(A) is th·e set of' all <a,x> j 

aEA , oSx S1 ,. where we identify o = <.a,o> .= <b,O> 'for all 

a,bEA , with the· metrie 

• 

We recall that H (A). ·is an inj ective uniform space ( [J.�), hich 

means that all uniformly con-tínuous mappings rangin.g in H(A) extend

f'ro� arbitrary · subspaces to- a uni�ormly continuo·us mapping. If X is

a unif'orm space, by X-�f we shall understand the class of all uni

f"orm spaces Y such that each fEU(Y,X} remains uni:f·ormly continu-

oua into the corresponding (toPológical_y) fine uniformity t.pX •. It

follows from [1� that X-tr always forms a core.flective subcategory 

of unii"orm spaces. 
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At first we recall the main result of paper [1]: 

Theerem O: The following properties oť a uniform space X are equi-
.... -..------------

valent.: 

(1) X is H( AJ )-tf

(2) X is H(m)-tf for arbitrary infinite cardinal m

(3) X is hereditarily R-tf
(4) X is hereditarily Ifl-tf for any natural number n

(5) For each subspace y of X, U(Y) is a ring (under

pointwise operations)

(6) If { fn;n E w} is a countable family of bounded uni

formly continuous· functions on X such ·that the ·fami

.ly { c_o.z · f n; n E w } is unif ormly dis-crete in_. X , then

,_.1,.�=✓--e _f���\�-�z:i 6{fn;nE w} is uniformly continuous.

( In other words the fami ly { f n; n E w } is unif orxnly

equicontinuous.) 

( 7) If the families { Bn; n ·E w} , { An. ; i=l, 2, ••• ,k
0 

} are
1 

both uniformly discrete in X, B =U{�n_;i=1.2, ...n . 1 . 
• . ,kn} , then the family { �. ;n E w , i=l, 2,, ••• ,k

n
}

1 
is uniformly discrete in X 

(8) U(X) is a ring and each uniformly continuous function

on a subspace of X has a uniform extension over X.

Moreover the described class is.the largest coreflective subclass 

contained in the class Ext consisting of all X such that for each 

subspace Y of X and .·fEU(Y), there is fEU(X) extending ·f. 

The· �resent paper is divided into three parts. The first one will 

generólize tte property (7) to countable uniformly discrete unions of 

· aroi tra:'y :j_n.:.:·orml:y discrete families and show that i t is an impor

tant prop8r:y fo� some 0anach valued mappings to be distally continu

OJS. The Šecond part will ex&mine those spaces X, for which U(X,E) 

is a modU:e over U(X) for any Banach space E. It will appear that 
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spaces having hereditariiy this property have a very nice description 

in terms ·or ·countable sums of danach valued mappings and also in -terms

of a sort of local finenesa. The: last par� containe some ·results on

extenaions of unif'ormly- continuous .Banach· ·valued. mappings. Throughout 

the paper some problems- are stated •

.;.'i'-=-hlE!!:9!!!��!-!E�_�!:!.: 

Let X be a unif'orm. space. We shall call a :ťamily .
.
{ A";· L. €I} of 

subsets. of X hyperdiscrete, if I =U{I
8

-;aEJ·} and the families 

{U{A�; c...El-J;a·EJ}, {A; iEI
8

} 

�re uniformly discrete in· X - for all. · aE J ·• I.f J fa supposed to 

have cardinali ty ú) , we call tne :ťamily { A e,} · . W -· hyperdiscrete. 

A uniform space X is calleď hyper9is-�al (resp. · W - hyperdistal), 

i:ť each hyperdiscrete ( :w · - hyperdiscrete) tamiiy in X i� wiiformly 

discrete. (Hyperdistal spaces were d-e�inecr ·originally by Z.Frolík in 

[5 ]. ) For illustration we preserit the . follow"íng resul t: 

ť!:2E2�!1!2!L±:. L�t. M ·· be a metrizable wii:f.orm space. Then each hyper

discrete :ť'amily· ·in M is w - hyperdiscrete. 

�2!.:. Leť { xao; a E.Ab , _ b E a} b"e a hyperdiscret.-e .family in M ano 

let M _have a metrie d ·• For ea.ch b E d ·we l�t 

t b. =· ii:if { �- (Xa b . ' xa , b } ; a , a' � .b.b } .•
Obviously e.,b> O • Then we let 

� = { bEd; -½ < ib} ,. .-3n_ = {bEB; n�l < tb· � �} for

n> l ,

A· =·U:{A· ··bErl } for natural ·n • 
n · ·b' n 

The··rest o.f the proof_is evideht� 

Observe that the concept of. an_. w ·- ·hyperdist�l s·pa·ce depends ··on�·,·. 

ly on the struct.ure .of uniformly· dís"crete :ť�niilies (ai,st_·a1i T.Y l. o� ... -�tie,-
. . . . .. ' 

s-p�ce. · One can see th�t .this -cónceoť · is a.: stren·�h_ening of the · proper�- ._

ty (7) in Theorem o, so each W ./ hyperdist.al �Pac� �njoyS,th� p;�- : ': 
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perties o� Theorem o.

Let � be an in:finit.e cardinal number. We shall denote by D(�) 

the uniform space on the set ti.,,. w wi th bas i s { U J n E llJ , wbere

u
n 

= { { <t-,k>}; t.E(l(,, k<n}U{�•{k};k > n}. 

All spaces D(DC.) are complete metrizable zero dimensional topologi

cally discrete unif'orm apaces. aecall that a mapping between unif'orm 

spaces is called dis�ally continuous if' preimages of' uniformly discre 

te f'amilies are unif'ormly discrete. 

!h��?--!l The f'ollowing properties of' a uniform space X are equi

valent.: 

( l) X is w - hyperdistal

(2) .X is heredit.arily D(«-)-if f'.or aey ca.rdinal number

tL 

(3) For Qny cardinal num.ber a. the f'ollowing holde: when-

(4) 

(5) 

ever f' : x-l («. > 
n co 

is a countable f'amily of' uni-

form1y continuous bounded mappings such that

{supp f'n ;n E t.v} f'orms a unif'ormly discrete f'amily,

then the .mapping I3{f'
0

;nEt.v} is distally continu-

oue

The condition (J) assuming only distal continuity o-f

the mappings f'n
For any cardinal number � and f'or each subspace y

of' X , if' f'E U (Y, l 
00 

( «..)), then .j2 is distally.

continuous

(6) For any rlanach space E, f'nEU(X,E) boµnded, the map

ping �{f'n ;n E w} is distally continuous provided

that the f'amily { supp fn ;nEw} is uni:formly discre

t.e 

(7) Condit.ion (6) assuming only óistal continuity of the

mappings -f
0
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. (8) For any Banach algebra E and fo� any subsp,ac� .. Y of 

X , i:f ft U (X, E), then �� _ is di�t�ly cont�ous.� . · 

Proof: Using the well )enown -fact that _ea_cn.· Ban�ch apaca ie .-embedda�l,e 
.-� ..... ----

into some space t
00 

(fJL) as a topological vector subspace-·and. each :-. 

Banach alg-ebra is embeddable-·into some Í,
00

{�) as a Banach oubal-· 

gebra (see [1])_, we hav.e ·immed�ately that (3�6), (4>-9(7.), (5� 

�8)� i!l:!i!l.:. Suppose . {AL_ ;. �El} is a ·µniformly diecr�te f�ly 

in . l 00 (-ti.. ) • We · may assume_ t.bat the. ·point· O . is not contained in . 

any of the set.s A,- • Por �ch · ·· n. ·1.be :tamily { f�1 [AJ ;. LE I} is 

uniformly diacret� in X, its union 1s a part ·of supp f� ·, hence

the f'amily {:r�1 [AJ
.
;nE úJ , ·J.-EI}. is w - hyperdiscrete, and hen

ce uniformly diseieie. · If ·we ·.-puť f = �{�n;�E C&> }-·, we have :r-1[AJ =

= U{t'�1 [AJ ;nE 4}} , hence the t'amily { t'-1 [AJ ; c.E I} is unif'ormly

. discrete. -This· implies · the distal cont�n-ui ty of f • ·

í.íl�1ll _is s·elf evident. 1J1�12l.:.'. At -firsť we observe the �-ollowing 

e·asy fact: 

Lemma: Let f: x-.y be a mapping between·uniform spaces$ Suppose 

for some :ťinite uniform_ cover- I of' the space X the mapp- . 
ings ff� are distally continuous for all P€ I -. Then f 

"is diste.lly ��ntinuous. 

Proof of the lemma: Recall · that f is dis-tally continuous · i:f anď on---�--�-�--�-----�---

ly if the :ť-pre-image ot eách finite-dimensional ·uniform -cover is uni

form. Now the lemma follows �edia-tely. 

Let B(r) denote the closed tiall in l,
00

(()(.,} .centred·in O with • 

the radius r (for a positive re·a1 · ·r ), B(O) = "• Take arbi-trary 

fEU(X, l 00 (rlv ))�- For any nat.ural n· we denote 

� = t'-11!,cn + t)'- O(Il-1� . • · _ _ _ 
The families {xn;n · oaď}- ,.·{x

n:
;n even }- are both unifo_�y discrete

in -X •. For all n �� de:fine fn� U(X,- .L 00·( � >.f . b<;>unded· in_ the fol

l·owing manner: At :first we put 
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fnlxn = :rlxn ,fnl:r-
l [i00 (o( )'-.rl(n + 1� = O, f'nl f-l [Ě3cn - tU = o.

The family 

{� 
is uniformly discrete in X, f'n partly def'ined on its union is uni

formly continuous into d(n + ½>•Sowe can f'ind its unif'ormly conti

nuo'.ls extension fnEU(X,o(n + �)), because a closed ball in the spa-

ce 

.fn 

J., 00 ( f/...) is an injective uniform space (see Isbell [�). Each 
2· is uni:formly continuous and bounded, hence each fn is again

bounded and unif'ormly continuous and the f'ollowing f'am.ilies of mapp-
ings: 

{ :r!;n o.do}, {f"!;n even} 

fulfill the assump�ions of condition (3), hence the mappings 

F = I3{:r! ;n odd} , G = I3{ f'! ;n even.
}

are aistally continuous.

Now if we áenote i;. = u{xn;n odd} , B =U {xn;n even} ' the cover.

{ii.,.;j} is a finite ůni:form cover o:f X , the restrictions f'2jA = Fj.A, 

.r�jcl = GjB are distally continuous, hence using our lemma the mapp-

ing is �lso distally continuous. The rest follows from the obvi-

ous hereóitariness of the property (J). 

i2l-:=:igl! �e define the embedding j of the space D(t.t) into 

ciS follows: 

j ( < L ,n >) = { xa} , where / n :for L # a 
xa =, + l n 2n f'or. L = a 

of course, J is a uniform embedding of D( «, ) into ,l
00 

( Ol.) • If 

Y is a subspace of X • fEU(Y,D(a. )), then the mapping (jf) 2 = j 2f 

is distally conti_nuous, j 2 (D(a, )} is uniformly discret.e, hence 

f-1[r.(« U is uniformly óiscrete, and hence fEU(Y,t
.r

D(o(, )).

!,_,.,; :_) � __ i!l '-· � 
. . d .s>. • � _ oovious, an �in�shes t�e proof. 

!,Ems..rks: a') '!'he class of al: W - hyperdistal spaces is corefle�tive 

in uniform sp&ces. This is easy to see, for example veri-
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fying that condition (3) ia closed under uniform suma 

and quotients. 

b.) The classes f'rom Theorem O and Theorém l ditter. For ex- · 

ample if we take the space D ( t(J ) , the eorefiection ot

it in H( w )-t:r . h�s for _basis .cover_s, t-he trac� of which 

on each �olumn { n }•·w is a :finite partition, so it is 

not uniformly discrete, while the {A) - hyperdisere1.e co�·. 

refTection ot. ·D(iu) is uni�ormly diacrete. 

c) I:f we consider the w - hyper(iistal coreflection only, in

the structure of distal spaces·, we can compare it formal

ly wi th the e-locally fine. core.flectio·n ( [6]) in uniform

spaces, just a-s the hyperdistal core:flection in distal

spac.es. is · comparable .ťormally with the locally fine core

flection in unitorm spaces·(see.[9]). One can conatru�t

these core·:flections step by step using trans:f'ini te induc

tion, as it is shown :for a hyperdistal coreflection o:f a

given distal space in [5] .

The classes Mod and HerMod: 
�--�--�-��--------��·----�-

· If. X is a uniform space and ·E is a-.danach space, reca11· that

for :f-EU(X,E)·, gEU(X) • the product f•g is uniformly continuous 

whenever both f,g are bounded, but fails to be uniformly -co�tinuous 

in general. We shall deno·te by Mod t,he ·ciass of all wiiform spé:ácea X 

such that for any Banach space E,U(X,Ě) is·a module over U(X). 

HerMod will denote the class of all spaces �aving hereditarily the 

property Mod. 

Theerem 2: The following properties of a uniform.space X are equL-
....... ________ _ 

valent: 

(1) X has the property Mod

(2) U(x,· !
00 

(ll(, } ) is a module over U(X) · for. any carqi-
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nal /L 

(3) For any danach space E, fEU(X,E), the mapping x

f{x) llr<x) li is uniformly continuous

(4) The condition {3) restricted to spaces L
00 

(IX.) only 

( 5) For činy cardinal number ()(, , fE U (X, .. ť� ( �)) ,

gEU(X,R+ ), the mapping f•g is uniformly continuous.

(.,,l:O ,.a
+ stand for respective positive cones.)

Proof: (2)=-t(l) for the same reasons as in Theerem 1, the implicati

ons (1 )=>{ 3), (3 )==>(4) are evident. 

1�2:!12ll We prove at first that condition (4) implies that the pro

duet of any two positive real valued uniformly continuous functions 

u,v on 

!Iv = l 

X is uniformly continuous. The condition (4) gives for 
2 2 im:nedia�ely the uniform continuity of functions u ,v and 

(u+v) 2 • The assertion follows from the identity 
1 2 2 2 u• v = 2 ( { u+v) - u - v ) • 

Now taking arbitrary mappings fEU(X, ��(oe,)) , gEU(X,R+ ), we defi

ne GEU(X, ,l,�(�)) as the diagonal mapping: 

G(x) = {g{x),g(x), ••• } •

Observing that llf(x) + G{x) li= llr(x) li + g(x), we have 

f(x)•g(x) = (f(x) + G(x))·llf(x) + G(x)jl f(x)·llf(x) li -
- G(x)•llf(x) li - G(x)•g(x) • 

The first two summands on the right side are uniformly continuous im 

mecliately from (4), the others are uniformly, continuous oecause of 

uni;•orrn continuity of real valued functions g2 ano. x-g(x)•llf{x) li
hence also the mapping f.g is uniforIT.ly continuous. 

( 5) � ( 2) : Take any f E UC X, .t
00 

{ &1-., ) ) and rewri t e i t as f - f ,
+ -

where f+ ,f_ are from U(x,.,.l:O(ci)). Similarly we represent any 

gEU(X). i:::·ne asser�ior.. follows now .from the equality: 

f•g :: f+•g+ + f_• g_ - f_•g+ - f+•b_ 0 

�������� a) One can eusily verify that the class Mod is closed unde 



uniform sums and quotients, so it is a coreflec�ive aub

class of uniform spaces. 

b) ll Y is any locally convex- �pace, Y can be .embedded in

to some product of Banach spaces as a topological linear

subspace. Therefore i:f X€Mod� then. U(X, Y) is. a module

over U(X) :for all locally convex spaces Y.

The class Mod is not closed under subspaces, even each· uniform spa

ce can be embedded into some space in Mod. We shall turn to the class 

HerMod of all spaces being hereditarily in Mod now and we show that 

it has a very nice description. 

!��9.!:��-J.! The ťollowing properties of a uni:f·orm space X are equi

. valent: 

(1) X is HerMod · 

(2) For any cardinal tt, and for any subspace Y of X,

U ( Y, 1, 
00 

( t,.., ) ) i s a module ov er U { Y}

(3) XEMod and for each subspace Y of X , fEU(Y), the

re is fEU(X) extending f

(4) X

(5) If

is simul taneously Mod and H( W )-tf 
f n EU (X, i,, 00·( � ) ) ( � is an é:lrbi trary cardinal

number) is a cowitable family of bounded uniformly con

tinuous mappings such that the family { supp :ťn;nE 4J}
is uniformly discrete.in X, then the mapping 

:ť = B{.rn;nE W} is uniformly_ continuous

(6) Condition (5) for fnEU(X,E) for each �anach space· E

(7) For any cardinal number a, and for any subspace Y of 

X
, 

U(Y, ,loo(oe, )) is a ring 

(8) Condition (7) for any Banach algebra

(9) Each cover of ·the forin { un nv�}nE w ,aEA is a uni-

form cover of X, provided· that { un} nEA.l -is a· fini-

te-dimensional count&ble uni:ťorm cover· an_d for each· 
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n E úJ , { �}a E A is a uni:ťorm cover of X •

ťE��!l Again we c�n easily ooserve the equivalences (1)�(2), (5)� 

(6), (7}'i==>(8). The rest of the proof will follow the schema: 

(·2) ==>(3) ==t(4) �(5) =:at� 9) =+( ?')==t>(2) •

{2)�(3): If Y is a subspace of X, then obviously U(Y) is a 

ring, �nč the assertion follows from Theerem O. 

iJ2:=!iill Thia is immediate from Theerem O. 

1il:!í.2ll ModrlH(W )-t
f' 

is an intersection of two core:ťlective class

es, hence it itself' is a coreflective subclass of uniform spaces. Let

us óenote for a while F the corresponding core:ťlector. 

Take fnEU(X, .l
00

(()(.. )) bounded with the uni:ťormly discrete fami

ly ,:.P their e�pports. We may and shall assume that nene of them is an 

iáentical zero mapping. We put: 
f (x) 

�(x) = 
2
n�l

lr
n

ll , where llr
n

ll= sup{llr
n

(x)jl;xEx}.

The mappings � c.onverge uniformly to O, hence 

g = �{�;nEw} 

is uniformly continuous and bounded, se it has all its values in some 

closed ball .6. �ccording to the injectivity of H(w) and uniform 

discreteness of the family { supp fn}n we can find bEU(X,H(tu )) .-

such that for each xE supp f n there is b(x) = <n,1> • We denote

� = gxb the car:esian product of the mappings g,b. There is tnE 

EU (X, .ó• Hl w ) ) , hence there is also 1-"E U (X, F(B" H ( w ) ) ) • lf' we deno

te py íi 1 , 11 2 the c·orresponding project.ions onto B, H( w), we ha-

ve: 

_1" l E U ( F ( th, H ( W ) ) , ,t 
00 

( tÁ ) ) , 7f 2 E U ( F ( ó" H ( w ) ) , t gH CW ) ) • 

Now, because tfH(w) allows extensions of real valued functions, we 

can fir,d the function hEU('t.fH(W)) such that h(< n,1>) = ff tn ·11·2n
1 

Using the :fact that F(.d•H( 4J ) ) E Moc, the mapping 

G = ( (h o Tf 2) • TI l ) o 1'>

f"rom X into t 
00 

( fÁ ) is unif'ormly continuous. ( o stands for com-
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position of mappings, 

rify that 

for an algebraic product.) It is easy to ve-

G(x) = / .fn (x) .for xEsupp :fn
O otherwise • 

Therefore G = 23{:f'n;nEw} is unif'ormly continuous. (Notice thet

instead of suppoeing thať XEMod, it was suf.ficient to suppose tbat 

the pro duet of each bounded unif'ormly continuous mapping into L (X) (4,)

wi th any function f'rom U(X) is. uniformly continuous.) 

121:!í2ll Ta.ke· { un}nE w an m-discrete. uniform cover of' X , that

is, W =U{�;k=l,2, •.• ,m }, {un;nE�} is a unif'ormly discrete f'a

mily for each· · k=l·, 2, ••• ,m .•. Let us táke further for each n E" a 

uni.form cover { �}
8 

of · the space X • We shall denote V=

= {unnv!!}n,a· ,1'ťis a cover ·ot X. Now choose some ·l.Skšm. For

each n E A.. we :ťind some f , b_oµnded uniformly continuous f.rom X 7c . n 
into s.ome ,l

00 
such ·that the family {supp f

0
;nE�} is wii.formly 

discrete in X and the cover :f�1 (Y' (1))ju
0 

re:fines {unn�}
8

for 

all n-EA:k• (Y' (1) denotes the usual metrie_ cover of the· space l,.
00

. · 

wi th unit balls.) This is possible, _ because { Un ;n-E Aic} is uniformly

discrete in X and the ·closed balls in ,l,
00 

are· in-jective uni:form 

spaces. The condition (5) gives the unif'orm contin ity of the 

rk =�{f
0

;nE�}; k=l,2, ••• ,m. Now we observe that t e over 

{ U { u
n
·; n E '\:} ; k_=l , 2, ••• , m }

is a finite uniform cover of X, for each k the cover 

pp·ngs 

. �
1

,� (1) >lu{un ;nEAic} refines W'IU{u
n
,nE. } , 

hence the uniform cover 

· A{F;1_( ý (1)); k=l, 2, ••• ,m} refines 'ůY.

121--111.:. Let ó(r) for a pos-·tive real nu.mbar r denote again the. 

closed ball in �
00 

centred in O wiťh radius r , d(O) = "• Take 

arbitréiry fEU(X, .t 
00

) and denote for each ·n�tural n: 

Xn = :f-l [o(n + 1 )''-. B(n-1 >]
{xn}n is a 2-discrete countable uniform cover of x. For each � >O



- Cf't -
anó for each n t.he cover (:f2 )-l ( :f ( l ) ) is uniform on X

0 
, so 

there is a uniform cover {�}
8 

of X refining it on Xn. So the 

cover (f2 )-l (.f ( t ) ) is refined by a cover { Xn n �}n, a , the lat

ter being uniform on X according to (9). Theref'ore the mapping f'2

is uniforrr�y continuous. 

The rest follows from the identity 
l 2 2 f-g = 4 ((f+g) - (f-g) )

and from the evident hereditarines.s of the _property (9). 

i1l�i�l.:. �ccording to Theorem 2 i t remains to prove that for f E 

EU(X, .l
00

) the mapping x-f'(x)•llt(x)II is uniformly continuous. 

But this is easy, as one can take the diagonal mapping 

(x--01:rcx)II ,nf(x)II , •.. })EU(X, 1,
00

) 

instead of {x ....... llf'(x)jj)EU(X) and (7) gives the desired uniform con

tinuit.y. 

������la) The condition (4) implies immediately that the class Her

Mod is coreflective in uniform spaces, the property (9) 

allows the construction by use of transfinite induction 

for each X its coreflection in HerMod. The method is 

described for instanc.e in [3] for constructing the local

ly fine coreflection. 

b) If r is a set-preserving reflector in unif'orm spaces

(i.e. the corresponóing reflective class is closed under

products, all subspaces and contains a compact inte rval),

:he space X is called r-locally fine (following Z.Fro-

lík [?]), if each cover is uniform on X '

whenever {u
b

}a �s a uniforffi cover of rX and for all

a the covers { V5 } are u.niforn: or.: X • So if' we ó.enote
j o 

as usual rl .., tne sep&raole čistal reflector (i.e.

chooses fini :e-é.::;.me!:sionol countable uniform covers, (see

for instance [4]i, the condition (9) says nothing else
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than that �he class HerMod is exactly the class o� all 

n1-locally fine uniform spaces. Also quite interesting ia 

the class of e-locally fine spaees, where e denotes the 

separable refleetor in uniform spaces, called by· .Rice 

locally sub_-metric-fine spaces and studied in �3] , [14]. 

Obviously the class of all e-locally fine spaces is con

tained in HerMod (from condition (9)), but it seems to be 

ari open problem, whether these two classes coincide or 

not. 

c) Looking through Theorems 1 and 3, we can immediately see

that each space in HerMod is w - hyperdistal. The con

vers� is not ·true, as the following exSI:1ple shows: Let X

be a uniform space on the set R "' , the base of which is

formed by-all open finite-dimensional covers of the pro

duet space R "° � X. is a separable s-pace, uniformly dis

crete· families of which are the same as in tř = tfR � ,

henc.e X is w - hyperdistal. On the other hand X ,,-

i_ t;eX and from the condition (9) of Theerem 3 it direct

ly follows that X is not· HerMod. 

d) �or the same reasons aa in the R�mark b) to Theorem 2, .we

can see that if X is HerMod and E any locally convex

space, then ·U(Y,E) is a module over U(Y) for &ny sub

space Y · o:f X. Similar remarks can be added for otner

conditions in Theorem ).

Extensions_of_Ban�ch_vúlued_maEEinss: 

If I( is a class o� Banach spaces, we shnll use tte following no-

tation: Ext (&K) will denote tne cl&ss of all uniform spaées X- · s:..1ch 

E .p IK ��•·'v _, that whenever Y is a subspace· of X, a space .rom ,� - u·-,�;, 

then there is a uni:formly continuous extensiop fEU(X,E) of ... 

ExtaC-tK) is a claas o:f all such .. X, where for any uniformly discre-
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te subspace � of' X ,EE 1K , f : :c-,.E there is :ťE U(X,E) exten-

aing f. Einally Ext*( IK) will denote the class of all uniform-spa

ces X ,  where all bounded uniformly continuous mappings f'rom arbitra

ry subspaces of X ranging in some E E 1K have a bounded uniform 

extension to the whole X. 

We shall denote here � the class of all Banach spaces, r the 

class of all finite-dimensional Banach spaces. It was an open problem

for some time, whether Ext # ( 8) is the class. of all uniform spaces, 

or, equivalently, if a {closed) unit ball in ·eaeh Banach space is an 

injective uniform space. This problem was answered negatively .by J.

Lindenstrauss in {]-!] , where there is .constructed a Banach spaee not 

having a uniformly injective unit ball. How·ever many Banach spaces do 

have uniformly injective unit balls. (For examples see· �o] , �1].) 

We shall denote here � the class of all Banach spaces whose closed 

balls are injective uniform spaces. (Equivalently· the class of all E 

such that Ext*�{E}) are all wiiform· spaces.) 

Our aim is to study what natural coreflectiv·e condi tions allow ex

tensions of uniformly continuous Banach valued mapping.s in the above 

cases. At :first we find a natural condition for a space ·to be in

Ext ( � ) • 

Hecall that a space X is -called metric-fine (resp.(complete met

ric)-:fine), if each uniformly continuous mapping·from X into any 

metrie (resp. complete metrie) space M remains uniformly continuous 

into t:r11 • (See for example -[3] , [5] , [a]._) We �ecall as least that 

both classes are coreflect·ive in uniform spaces ·and that (complete 

metric)-fine spaces are exactly all subspaces of metric-fine spaces. 

Theerem_ 4: If X is ( compl ete metr i c )-:ťine, · then X E Ext ( 6) . 

E!:22!.:. The proof will. follow from the classical topological theorem 

(Dugundji "[2]): 

If M ia a metrie sp�ce, .ACM a closed topological subspac�, 
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f : A--t>E a continuous mapping into a lo·cally convex opologí-

cal vec-tor· space, then f. ean be extended to a continuous. f : 

M ...... E (In :ťact extension • one can find .an f such that f( )

is con-tained in the convex hull of f(A) i� E.)

Take X (complete metric)-fine, so we can find y metric-fine con-

taining X as a subspace. Take a subspace a of X ' fEU(A,E), whe� 

re EE � � E is metrizable,·pence there is a uniformly continuous 

pseudometric d on Y, such that f •is uniformly.continuous from 

(A,d) into E .  áccording to the completeness of E ,  there is f': 

(A,d) 
(Y, a) ·•E , the uniformly continuous extension to the closure.

Now using the Theorem of Dugundji, we obtain f: (Y,d)-.E a conti

nuous extension of f'. 

The space Y is met�ic-fine, hence the identity mapping i : Y--+ 

--.(Y,d) remains uniformly continuous into tf�Y,d) and simultane

ously fEU(tf(Y,d),E). Therefore fEU(Y,E) and extends f, .rf X is

the desired uniformly continuous extensiori of f to the space X. 

��!�!:��.:. a.) Observe that the proof needs only ·completeness and metri

zability of the sp�ce .-E. 

b) Theorem 4 givee a coref'lective subclass of'. Ext("'). It

is not ��own to me, whether it is the largest one, or

whether the largest coreflection contained in Ext ( I, )

exists.

The diseussion of the case .Extd is simpler. It is proveó in [7]

that H(w )-t� is _the largest coreflective·subclass contained in 
.A. 

�xtd( I'). We shall-pro_v•e that _eyen:

�2E·2�!!:!2!:_gl The class H_.( -lů. -)-tf is contai_ned in .. E�d (S).

Et2�!l Take X E H ( w )-tf · , D �ey uni.fo$y dis.er��-e subs_pace of .X • ·· 

According to �ondition (2) _in·Th·eorem O theře ia· X�H.(D)-t
:t 

• r·ake:_:·

arbit-r� :f'EUC:D,E), wh_ere E € I> ·.-· ·Bec_auae of the "inj-ectivi�y· of 
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the space H(t) we can find gEU(X,H(D)) such that for any · xED 

there is g(x) = <x,l> • We have gEU(X,tfH(D)), tfH(D) is in

Ext( i;) (Theerem 4), hence there is_ hE(tfH(D),E) such that

h( <x,l >) = f (x) for each xED. The mapping hg is the desired 

uniformly continuous extension of f. 

����r!�l a) Proposition 2 together with the remark before it gives

b) 

the result, that H( W )-tf .is the largest coreflective

subclass in both Extd ( 1h ) , Extd ( r).

Theorem 4 together with the appendix in the Dugundji theo-

rem mentioned in the proof gives the result that complete 

metric-fine spaces are contained in both Ext ( �) i6nd 

Ext •c lb); however- we do not know anything about the lar

gest coreflective subclasses there. 

c) Theorem O contains the resul t that H(w )-tf . is the lar

gest co.reflective subclass contained in Ext ( $').

The only nontrivial case is the case Ext (�) now. The best re

sult we are able to prove about this important case is the following: 

Theerem 5: The class HerMod is contained in Ext ( � ) • 
----------

r�22fl We use the property (5) of Theorem 3. Take a space E. We de

note again :S(r), :for.a positive real number r , the closed ball in 

E centred in J with radius r, B(O) = 0. 'Take arbitrary XEHerMod, 

Y its uniform subspace, fEU(Y,E). 

For each natural

y =n 

n we put 

:r-
1[B(n) B(n-1 )] •

'.f'he family \.
( v ·n even} is ... n' unifor�ly discrete in Y. For each n

even we fi�d .f� EU (X,E) bounded such that f' ! v =. f I Y
n 

and the ni -n 
:family { sup;) f�; n even} is uniformly discrete in X. This is 

le to find, because each B(n) is an injeetive uniform space. This 

implies that the mapping f' = I3{f� ;n even } ·. is uniformly continuous 
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ence the mapping g = f - f•f Y is uniformly continuous from Y in-

E. · he mapping g can be written as �{8n;n odd}, where

PP �C Yn for 11 n odd. 

ow we choose the family · { hn;n odd} , � E U(X,E) bounded such that 

the f'amily { supp hn; n odd} is uniformly discrete and for each

d n there is hnfyn = Lšnfyn . The mapping h =L3{hn;n odd} is

in uniformly continuous, so f'+ hEU(X,E) and moreover �or yEYn
h t-e is: 

/f'(y) +O = f(y} for n even

f' (y) + h (y) -
""-t' (y) + f(y) - f' (y) = f(y) for n odd • 

Thie f'inishes the proof. 

�-�@�!�! a) Again we are not able to find some larger coreflective

subclass of Ext ( !.e ) , even if we restrict to mappinga in

to spaces of the type .J,,00 ·only. On the other hand we

do not know if it is not the largest one. 

b) Theorems 3 and 5 show �hat Lf X is in the class HerMod,

the structure of' uniformly equicontinuous pQint bounded

·:ramilies on X has some ve�y nice properties: It is clo

sed under some speciál �·ountable suma (condition (5) o·f

Theorem 3), we can ex:tend t.hem from arbitrary·aubspaces,

and others. These propert·ies ha-ve good applications in the

theory of free uniform measures, but we shall not go into

details here.

c) Theerem 5 says more for spaces in � than Theo�em 4, be

cause for in�tarice in �� i t is shown that. even tbe class

o:f all e�locally· fine spa-ces la much lar.ger ·� then the class

of all (compl.e-te ?Xletric )-finé s,pa.cee.



--.::..-,fo o -

Referencee: 

L 1] DaJ, M • .:..1.: Normed linear spaces, Berl in-Gott ingen-Heidelberg,

19;8 

[2] Dugundji J.: An extension of Tietze's theorem, Pacif.J.Math. 1

(1951), 353-357

[3] .Frolík z.: � note on metric-fine spacea, Proc.Amer.Math.Soc. 46 

(1974), 111-119 

�� Frolík Z.: Uniform maps into normed spaces, Ann.Inst.Fourier, 

24 (1974), 43-55 

�j �clik z.: Three technical tools in uniform spaces, Seminar Uni

form Spaces 1973-74, MÓ ČSAV Prague 1975, 3-26 

[5] Frolík Z.: Four functors into paved spaces, Seminar Uniform Spa

ces 1973-74, MÚ ČSÁV Prague 1975, 27-72 

[6] Frolík z.: Locally e-fine measurable spaces, Trans.iuner.Math.

Soc. 196(1974), 237-247

[7] Frolík z., Pelant J., Vilímovský J.: On hedgehog-topologically 

fine uniform spaces, Seminar Uniform Spaces 1975-76, MÚ ČSAV 

Prague 1976, 75-86 

[s] Hager �. W.: Some nearly fine uniform spaces, Proc .Lond .Math.Soc.

28(1974), 517-546

[9] Isbell J.rl.: Uniform spaces, Amer.Math.Soc., Providence, .1964 

�o] lsbell J .r<.: Uniform neighborhood retracts, Pacif .J .Math. 11 

(1961) , 609-648 

[11] Lináenstrauss J.: On nonlinear projections in Banach spaces, 

Mich.J.Math. 11(1964), 263-287 

[12] Pelant J., Pták P.: Injectivity of polyheó.ra, Seminar Unif'orm

Spaces 1975-76, MÚ �SAV Prague 1976, p.73 

Hice M�D9: Finite aimensional covers of metric-fine spaces, 

Czech.:Aath,J. (to &ooear) 
�� �ife UoD., Pelant J9: Hemark on e-locally fine spaces (�his vo-

lume) 

1}5] Vilímovský �J.; Generatíon of coreflections in categories,

Comment.Math.Univ.Carolinae 14(1973), 305-323 


