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Abstract: In this contribution, we present a solution to the stochastic
Galerkin (SG) matrix equations coming from the Darcy flow problem with
uncertain material coefficients in the separable form. The SG system of equa-
tions is kept in the compressed tensor form and its solution is a very challeng-
ing task. Here, we present the reduced basis (RB) method as a solver which
looks for a low-rank representation of the solution. The construction of the
RB consists of iterative expanding of the basis using Monte Carlo sampling.
We discuss the setting of the sampling procedure and an efficient solution of
multiple similar systems emerging during the sampling procedure using defla-
tion. We conclude with a demonstration of the use of SG solution for forward
uncertainty quantification.
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1. Introduction

This contribution briefly outlines the solution of stationary Darcy flow problem
with uncertain hydraulic conductivity. The solution is obtained using the stochastic
Galerkin (GM) method. A significant part of the contribution is the demonstration
of the usage of SG solution for forward uncertainty quantification.

The work presented here is a continuation of author’s results presented in [1].

2. Stochastic Galerkin method

We start with the problem setting. Let us assume a physical domain D and
random vector Z (on sample space Ω) consisting of M independent standard normal
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random variables. We assume the hydraulic conductivity field as a function of both
points in domain D and random vector Z, more specifically in the form

k (x,Z) =
M∑

m=1

χDm (x)︸ ︷︷ ︸
kDm(x)

exp (σmZm + µm)︸ ︷︷ ︸
kSm(Z)

=
M∑

m=1

kDm (x) kSm (Z) .

I.e. piecewise constant function with the value of constant on each of M subdo-
mains Dm governed by m-th element of random vector Z. The model problem
(steady Darcy flow) than takes the form

−divx (k (x,Z)∇xu (x,Z)) = f (x) ∀x ∈ D,Z ∈ RM ,

u (x,Z) = u0 (x) ∀x ∈ ΓD,Z ∈ RM ,

−k (x,Z) ∂u(x,Z)
∂n(x)

= g (x) ∀x ∈ ΓN ,Z ∈ RM .

For testing purposes, we choose the decomposition into subdomains via thresholding
of the Gaussian random field realisation, see Figure 1.

Figure 1: Illustration of decomposition into subdomains

2.1. Stochastic Galerkin matrix equations

The weak form of the problem takes the form

a (uH , v) =b (v) , ∀v ∈ L2
(
Ω, H1

0,ΓD
(D)
)
,

a (uH , v) =

ˆ

RM

ˆ

D

k (x,Z)∇xuH (x,Z) · ∇xv (x,Z) dx dFZ,

b (v) =

ˆ

RM

ˆ

D

f (x) v (x,Z) dx dFZ −
ˆ

RM

ˆ

ΓN

g (x) v (x,Z) dx dFZ

−
ˆ

RM

ˆ

D

k (x,Z)∇xu0 (x) · ∇xv (x,Z) dx dFZ.
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The homogeneous part of the solution uH lies in L2
(
Ω, H1

0,ΓD
(D)
)

which is isomet-
rically isomorphic with H1

0,ΓD
(D)⊗ L2 (Ω). We choose the test space with the same

tensor structure, i.e. Vh,K := Vh⊗VK , where the discretization of H1
0,ΓD

(D) are finite
elements and the discretization of L2 (Ω) are polynomials

Vh = {ϕ1 (x) , . . . , ϕND
(x)} ⊂ H1

0,ΓD
(D) , VK = {ψ1 (ω) , . . . , ψNS

(ω)} ⊂ L2 (Ω) .

The dimension of Vh,K is NDNS with the basis

ξi,j (x, ω) = ϕi (x)ψj (ω) ∀ i = 1, . . . , ND, j = 1, . . . , NS.

Separable form of input data together with the tensor form of Vh,K allow us to
assemble the matrix in a compressed form. The resulting system of equations takes
the form

Au = b, A =
M∑

m=1

Gm ⊗Km, b =

Mb∑
m=1

gm ⊗ km,

(Km)il =

ˆ

D

kDm (x)∇ϕi (x) · ∇ϕl (x) dx,

(Gm)jn =

ˆ

RM

kSm (Z)ψj (Z)ψn (Z) dFZ.

We simplify the right hand side as a sum over Mb (Mb = M + 2, M terms for
Dirichlet boundary and one for forcing term and Neumann boundary) terms with
vectors gm, km, whose can be assembled in a similar way as Gm, Km.

The system can be viewed as matrix equations, assuming reshaping u intoND×NS

matrix u
M∑

m=1

KmuG
T
m =

Mb∑
m=1

kmg
T
m. (1)

3. Solving the stochastic Galerkin matrix equations

The solution of SG matrix equations (1) is quite a difficult task. We will solve
it using conjugate gradients with Kronecker preconditioner (see [5]). With the full
system, this could be prohibitively expensive (NDNS dofs). Therefore, we reduce the
test space via the reduced basis method.

3.1. Reduced basis method

The reduced basis (RB) method aims at reducing the number of basis functions
while keeping the same approximating properties. In the SG method, it makes sense
to create the reduced basis W of Vh as it is the larger part of the basis and we have
the tools to create a meaningful subspace of it. The resulting SG test space will take
the form of Vh,K ≈ W ⊗ VK , where W is the reduced basis of Vh.
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The reduced basis should fulfill all the conditions needed for the discretized sys-
tem to be well-posed (e.g. discrete inf-sup condition). In the case of our elliptic
problem, we can pick any linearly independent reduced basis W and we obtain a valid
system

M∑
m=1

W TKmWyGT
m =

Mb∑
m=1

W Tkmg
T
m, u ≈ ũ = Wy.

Approximation error of reduced basis W in the context of SG system can be
expressed via residual with respect to the original system

R =
M∑

m=1

KmWyGT
m −

Mb∑
m=1

kmg
T
m. (2)

The most difficult task is to build the reduced basis itself. We do this via Monte
Carlo method.

3.2. Construction of the reduced basis via Monte Carlo sampling

The Monte Carlo (MC) approach to the reduced basis construction is based
on iterative refinement of the reduced basis. We denote by Wl a reduced basis
at iteration l with W0 = ∅. The iterative construction can be summarized in the
following steps:

1. draw NMC samples Z1, . . . , ZNMC
of random vector Z

2. for every sample Zj assemble and solve the reduced system of deterministic
counterpart

W T
l AjWlũj = W T

l bj

3. compute indicators for a sample selection based on the probability density
function (pdf) of Z and the residual of reduced solutions ũj

fZ (Zj) ‖AjWlũj − bj‖2

4. select P (for simplicity, we use P = 1) highest values of identificators and
compute solutions at corresponding samples Zj

Ajuj = bj

5. use the collected solutions to expand the reduced basis Wl and check if the
expanded reduced basis is good enough (e.g. with residual (2))

Computation of the reduced solutions and their residuals at samples Zj is quite
costly. We would like to avoid samples around those already contributing to the
reduced basis, as they will not bring enough of “new information”. We propose

18



avoiding already generated samples using sampling (changing Step 1) from a changed
pdf (using Metropolis-Hastings algorithm)

f̃l (Z) ∝ f (Z) min
i=1,...,l

wi (Z) , wi (Z) = 1− exp
(
−‖Z −Xi‖2

Σ−1 /2
)
.

We choose the parameter Σ same as the covariance matrix of Z. Illustration of
altered pdf and comparison of generated samples can be seen in Figure 2. The
benefits of this alternative sampling have diminishing returns when M increases,
this can be seen in Figure 3.

Figure 2: Illustration of altered pdf (left), crude MC samples (middle), samples using
altered pdf (right)
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Figure 3: Efficiency of reduced basis construction using different NMC , crude sam-
pling and sampling using altered pdf, and comparison with optimal RB and sparse
grid

In Figure 3, we demonstrate the efficiency of the MC approach to the construction
of RB on a series of problems with an increasing number of subdomains/number of
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random variables and µm = 0, σm = 0.3. We compare two variants: M1 - crude MC
sampling with NMC = 1 and A100 - sampling using altered pdf and NMC = 100. We
add a comparison with the optimal (“best”) case of RB constructed from the singular
value decomposition of the computed full solution and point selection using Smolyak
nested sparse grids (see [3]). We measure the quality of RB in the terms of “true”
L2 (Ω, H1 (D)) error of the resulting SG solution compared to pathwise deterministic
solution on the same finite element grid. The “true” error is approximated using
1000 MC samples.

3.3. Deflated conjugate gradients

During the construction of RB, we encounter a solution of many similar systems.
We propose the use of deflated conjugate gradients (DCG) [4] with the current it-
eration of reduced basis Wl as a deflation space to speed up the solution. The
main part of the deflation is to project preconditioned residual using the projector

P = I −Wl

(
W T

l AjWl

)−1
W T

l Aj. This is fairly cheap as the reduced basis Wl has
only a small number of columns.

We show the reduction of the number of iterations when using deflation on a problem
with 5 subdomains and µm = 0, σm = 0.3 using target precision of the reduced
basis 10−6 and precision for the solution of deterministic problems 10−9. We test three
very different preconditioners (additive Schwarz, incomplete Cholesky factorization
with no filling allowed, and diagonal) to demonstrate that the benefit of the use
of DCG is independent of used preconditioner. The comparison of the number of
iterations with and without the use of deflation can be seen in Figure 4. The total
number of saved iterations is over 80% for all tested preconditioners, i.e. the solution
of the series of problems is approximately 5x cheaper.

5 10 15 20 25 30 35 40
100

101

102

103

Figure 4: Comparison of number of iterations needed to solve the deterministic
problems
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4. Use of SG solution - TSX experiment

The main benefit of the SG solution is the result in form of a polynomial surrogate,
i.e. an easy and cheap to evaluate approximation of the original problem. We can use
this to perform extensive forward uncertainty quantification. We demonstrate this
on a simplified tunnel sealing experiment (TSX) [2] modelled as stationary Darcy
flow. We will be interested in the stochastic behaviour of pressure in different parts
of the domain.

The problem domain is D = (0, 100) × (0, 100) \ E (E is the ellipse with cen-
ter [50, 50] and height 2× 1.75 and width 2× 2.1875). The behaviour of pressure in
the tunnel follows

−divx

((∑3
i=1 1Di

(x) 10Zi
)
∇xu (x,Z)

)
= 0 ∀x ∈ D,Z ∈ R3,

u (x,Z) = 3 · 106 ∀x ∈ Γ1,Z ∈ R3,

u (x,Z) = 0 ∀x ∈ Γ2,Z ∈ R3,

where Z1 ∼ N
(
−16, 1

3

)
, Z2 ∼ N

(
−18, 1

3

)
, Z3 ∼ N

(
−21, 1

3

)
, Γ1 is the outer bound-

ary of the rectangle, Γ2 is boundary of cut-out ellipse, and Di (1-yellow, 2−teal,
3−blue) are marked in Figure 5.

Figure 5: Problem geometry

4.1. Results of forward uncertainty quantification

In Figure 5, we can see a marked red line. We are mainly interested in the
behaviour of pressure on this line. Figure 6 shows the comparison of the solution at
mean values with the mean value of the stochastic results supplemented by 25%, 50%
and 75% quantiles. Note the great difference between the solution at mean values
and the mean value of the stochastic solution. The distribution of the pressure
at each point on the selected line can be found in Figure 7. Finally, we include
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Figure 6: Behaviour on vertical line
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Figure 7: Behaviour on vertical line - distribution at each point

2-dimensional distributions of log10 of pressure for pairs of three selected points (black
dots in Figure 8/green dots in Figure 5), see Figure 9. We choose to present log10 of
pressures as the two dimensional distributions of pressures were very hard to read.

4.2. Overview of results

The presented results are mainly academic as we used a fairly simplified model.
But we can draw some general conclusions. First, the behaviour of the mean value
of the stochastic result can be wildly different from the result at the mean values of
parameters. The medians are also different, but only slightly in our model. Second,
it is very important to choose positions of “real-life” measurements carefully as we
can easily pick measurements with overlapping information (as is clearly visible in
Figure 8).
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Figure 8: Behaviour on vertical line - correlation between points

Figure 9: 2-dimensional distributions of log10 of pressure for pairs of selected points

23



5. Conclusions

The stochastic Galerkin method can be used to create a very precise polynomial
surrogate model. Its main drawback is the need for the solution of a very large
system of linear equations. In this contribution, we focus on reducing the SG system
of equations using the reduced basis method. We present a sampling approach to
the construction of the reduced basis, which is demonstrated to be very efficient.
Moreover, we demonstrate that the series of similar deterministic systems, we need to
solve during the reduced basis construction, can be solved almost five times cheaper
using the deflated conjugate gradients. In Section 4, we showed a sample of the SG
solution usage for forward uncertainty quantification. This type of analysis can be
helpful in e.g. design of experiments.
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