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Abstract: The Bayesian inversion is a natural approach to the solution of
inverse problems based on uncertain observed data. The result of such an
inverse problem is the posterior distribution of unknown parameters. This
paper deals with the numerical realization of the Bayesian inversion focusing
on problems governed by computationally expensive forward models such as
numerical solutions of partial differential equations. Samples from the poste-
rior distribution are generated using the Markov chain Monte Carlo (MCMC)
methods accelerated with surrogate models. A surrogate model is understood
as an approximation of the forward model which should be computationally
much cheaper. The target distribution is not fully replaced by its approxima-
tion; therefore, samples from the exact posterior distribution are provided. In
addition, non-intrusive surrogate models can be updated during the sampling
process resulting in an adaptive MCMC method. The use of the surrogate
models significantly reduces the number of evaluations of the forward model
needed for a reliable description of the posterior distribution. Described sam-
pling procedures are implemented in the form of a Python package.
Keywords: Bayesian inversion, delayed-acceptance Metropolis-Hastings, Markov
chain Monte Carlo, surrogate model
MSC: 65C40, 62F15, 35R30

1. Introduction

This contribution focuses on the acceleration of sampling methods in the Bayesian
inversion using surrogate models and describes the resulting Python package created
within author’s PhD studies. The motivation for the development of the package
was the solution of inverse problems from the field of geosciences. The underlying
mathematical models are usually based on computationally expensive numerical so-
lutions of boundary value problems and the observed data are corrupted with noise.
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This contribution provides an analysis of implemented sampling methods. In order
to carry out thorough numerical experiments, a computationally cheap model prob-
lem is considered. Applications to geoengineering problems can be found in previous
publications [2, 4].

Section 2 outlines the principle of the Bayesian inversion that provides the prob-
ability distribution of the unknown parameters (called posterior distribution). Sec-
tion 3 describes methods used to provide samples from the posterior distribution,
focusing on the acceleration using surrogate models. Section 4 describes the Python
package and its usage. Section 5 discusses the efficiency of the sampling process, the
discussion is supported by numerical experiments.

2. Problem setting

Consider a mathematical model G:Rn → Rm. The aim is to find a probabilistic
description of input parameters to the model corresponding to a given vector of noisy
outputs y ∈ Rm.

Further consider a probability space (Ω,FΩ,P) and measurable spaces (Rn,B (Rn)),
(Rm,B (Rm)), n,m ∈ N. We work with three (multivariate) random variables:
unknown parameters U : Ω → Rn, observed data Y : Ω → Rm, observational noise
Z: Ω → Rm. Their relationship is described by the noise model Y = G (U) + Z.
Therefore, y is a realization of Y .

The probability distribution of U is called the prior distribution, fU denotes its
probability density function (pdf). It expresses the information about the unknown
input parameters known from experience (i.e. without the knowledge of y). Simi-
larly, fZ denotes the pdf of the noise distribution (i.e. probability distribution of Z).
Now, the aim can be retold in the Bayesian way: We would like to obtain the condi-
tional distribution of U given Y = y, called posterior distribution. We also say that
we refine the prior distribution using the observed data y.

According to the Bayes’ theorem, the pdf of the posterior distribution is given by
the formula

fU |Y (u|y) =
fZ (y −G (u)) fU (u)´

Rn fZ (y −G (v)) fU (v) dv
∝ fZ (y −G (u))︸ ︷︷ ︸

likelihood

fU (u)︸ ︷︷ ︸
prior

,

where ∝ denotes proportionality, fZ (y −G (u)) (as a function of u) is called the data
likelihood.

The objective is to generate samples from the posterior distribution, see Section 3.
Figure 1 illustrates the principle of the Bayesian inversion on a sample observational
operator G:R2 → R. This model problem will be also considered in numerical
experiments in Section 5.1.

3. Markov chain Monte Carlo (MCMC) methods for posterior sampling

MCMC methods serve to generate samples from a target probability distribution.
Here, the target distribution is given by the posterior pdf which is understood as
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(d) Posterior distribution

Figure 1: Illustration of Bayesian inversion

a function of u (y is fixed). The target pdf f can be written as

f (u) ∝ fZ (y −G (u)) fU (u) ; (1)

∝ denotes equality up to a multiplicative constant. We consider the Metropolis-
Hastings (MH) algorithm and its modification called the delayed-acceptance MH
(DAMH) algorithm, see [6, 7]. In recent years, the DAMH algorithm has been
widely used and developed, see e.g. [8, 10].

The MH algorithm (Alg. 1) assumes a symmetric proposal distribution such as
the Gaussian random walk. In that case,

q (·|u) is the pdf of Nn (u;C), (2)

u ∈ Rn denotes the mean vector and C ∈ Rn×n the covariance matrix.
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Algorithm 1 Metropolis-Hastings (MH) algorithm
Choose an initial sample u(0) ∈ Rn such that fZ

(
y −G

(
u(0)
))
fU
(
u(0)
)
> 0.

For k = 0, 1, ...

1. Propose a sample v from the proposal distribution with pdf q
(
·|u(k)

)
.

2. Accept v with probability a
(
u(k), v

)
= min

{
1, fZ(y−G(v))fU (v)

fZ(y−G(u(k)))fU(u(k))

}
(i.e., set

u(k+1) = v). Otherwise reject v (i.e., set u(k+1) = u(k)).

It can be noticed that the observational operator G is evaluated for each proposed
sample v. Therefore, if G is computationally expensive, the MH algorithm is not
suitable. Higher sampling efficiency can be achieved by the DAMH algorithm in
combination with the use of a surrogate model G̃ that approximates G. Evaluations
of a suitable surrogate model should be much cheaper compared to the evaluations
of G. The DAMH algorithm, as introduced in [6], works with the true posterior and
also with its approximation. The key property of this algorithm is that it provides
samples from the true posterior, the approximation serves only for the acceleration.

Using a surrogate model, the approximation of the posterior pdf can be obtained
simply as

f̃ (u) ∝ fZ

(
y − G̃ (u)

)
fU (u) (3)

The application of the DAMH algorithm to the target distribution in the form of (1)
and its approximation (3) leads to Alg. 2.

Algorithm 2 DAMH algorithm using a surrogate model; symmetric proposal pdf
Choose an initial sample u(0) ∈ Rn such that fZ

(
y −G

(
u(0)
))
fU
(
u(0)
)
> 0.

For k = 0, 1, ...

1. Propose a sample v from the proposal distribution with pdf q
(
·|u(k)

)
.

2. Pre-accept v with probability ã
(
u(k), v

)
= min

{
1,

fZ(y−G̃(v))fU (v)

fZ(y−G̃(u(k)))fU(u(k))

}
. Oth-

erwise reject v.

3. If v is pre-accepted, accept it with probability a
(
u(k), v

)
=

min

{
1,

fZ(y−G̃(u(k)))fZ(y−G(v))

fZ(y−G̃(v))fZ(y−G(u(k)))

}
. Otherwise reject v.

Further improvement can be achieved by increasing the quality of the surrogate
model. During the DAMH algorithm, new snapshots

(
u(k), G

(
u(k)
))

are obtained and
it is beneficial to use them for the update of the surrogate model G̃. The resulting
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DAMH algorithm with surrogate model updates (DAMH-SMU) can be written as
Alg. 2 with an added step:

4. Optionally, use
(
u(k), G

(
u(k)
))

to update the surrogate model G̃.

After G̃ is modified, it is necessary to recalculate G̃
(
u(k)
)
; however, the computation

cost is assumed to be negligible.
This natural modification of Alg. 2 utilizes all evaluations of G known so far. To

implement the surrogate model updates, non-intrusive surrogate models should be
used. As shown in numerical experiments in Section 5.1, suitable surrogate models
can be constructed for example using a projection to a polynomial basis or using
radial basis functions.

MCMC methods are sequential in principle. Therefore, typical utilization of
computational resources consists in running several independent sampling processes
in parallel. The DAMH-SMU algorithm allows additional acceleration - the parallel
processes can share one surrogate model constructed using snapshots obtained by
all of the sampling processes. Benefits of this approach are supported by numerical
experiments, see Section 5.1.

4. Implementation

The sampling methods described in Section 3 are included in the author’s Python
library for the numerical realization of the Bayesian inversion (available at [5]). The
implementation utilizes MPI processes via the mpi4py library, [9]. For the scheme
of the parallel processes see Fig. 2. Several sampling processes (SAMPLER 1 to N)
are running in parallel. These processes share one surrogate model which is refined
using data from all of these processes. The COLLECTOR process serves for the
construction of the surrogate model and for its distribution to the SAMPLERs. The
SAMPLERs also share a pool of SOLVERs, i.e., processes that evaluate the forward
model G. SOLVERs are typically implemented via a linked numerical library. The
SOLVERS POOL assigns the computations required by SAMPLERs to individual
SOLVERs. The evaluations of G typically form the majority of the computational
time; therefore, for a good utilization of computational resources, the number of
SOLVERs is typically lower than the number of SAMPLERs.

The typical sampling process can be divided into several phases:

1. The first phase is the basic MH algorithm, obtained snapshots are used for the
construction of a shared surrogate model.

2. The main phase is the DAMH-SMU algorithm during which the surrogate
model is updated and used for the acceleration of the sampling process.

3. When the surrogate model is accurate enough, its updates can stop, i.e., the
DAMH algorithm is used.

4. Post-processing of obtained samples. This includes the computation of mo-
ments, visualization, autocorrelation analysis, etc.
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Figure 2: MPI processes

The sampling processes use the Gaussian random walk proposal distributionNn(u,C).
For each sampling phase, it is possible to specify the covariance matrix C, surrogate
model type, and a stopping criterion. The stopping criterion can be a pre-specified
length of the produced chain, number of G evaluations, or reaching the maximum
sampling time. For the surrogate model construction, two methods are implemented:
projection to a basis of Hermite polynomials and interpolation using radial basis func-
tions (RBF); for details see [4]. In the case of the polynomial surrogate model, the
polynomial degree is chosen based on the number of currently available snapshots
up to a pre-specified maximal degree. In the case of the RBF model, it is possible
to specify the RBF type (e.g. polyharmonic, Gaussian, etc.) and to set a limit on
the number of snapshots used for the construction of the surrogate model.

5. Sampling efficiency

MCMC methods are usually understood as methods for the construction of an
ergodic Markov chain invariant with respect to (wrt) a target probability distribution.
MH and DAMH algorithms are valid (invariant and ergodic) under mild assumptions
on supports of q, f , f̃ .
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In the case of the basic MH algorithm, it can be shown that obtained samples
form a realization of a Markov chain invariant wrt the posterior distribution. The use
of the Gaussian random walk proposal (2) also implies the ergodicity of the Markov
chain. For details see e.g. [11].

The DAMH algorithm can be understood as a specific version of the MH algo-
rithm with a modified proposal distribution that includes the pre-acceptance step
based on the surrogate model. For the explanation see [6]. Therefore, the resulting
Markov chain is also invariant wrt the posterior distribution. Under the additional
condition

supp f̃ ⊃ supp f,
the Markov chain ergodic, for a detailed explanation see [4].

The DAMH-SMU algorithm was obtained by a small modification of the DAMH
algorithm; however, there is a significant difference in ensuring ergodicity. Since G̃
changes, the proposal distribution also changes and the algorithm becomes an adap-
tive MCMC method. Several possibilities of ensuring the ergodicity of this type of
adaptive MCMC methods are offered by [1, 12]. In situations when it is not possible
to prove the ergodicity of the DAMH-SMU algorithm, the validity of the sampling
process can be ensured simply by stopping the adaptations at some point. The whole
DAMH-SMU algorithm is then understood as a means to find suitable parameters
of proposal distribution for the next phase (DAMH algorithm).

Besides the theoretical properties, we should also deal with practical aspects that
affect the sampling process efficiency. Specifically, the choice of q has a major impact
on sampling efficiency. Too low variance of q (·|u) causes high autocorrelation of the
resulting Markov chain; therefore, too many samples are required to explore the
parameter space. Conversely, if q (·|u) has a high variance, large amount of proposed
samples are likely to be rejected, which also results in a high autocorrelation.

There are various approaches attempting to find an “optimal” proposal distribu-
tion. Theoretical and experimental results are based on studying the impact of the
average acceptance rate

α = E [a (u, v)] =

ˆ
u∈U

ˆ
v∈U

a (u, v) dQ (u, v) dµ (u)

on the integrated autocorrelation time (IAT) τ = 1 + 2
∞∑
i=1

ρk (ρk is the auto-

correlation at lag k). In practice, these values are estimated as a part the the
post-processing phase. The average acceptance rate requires monitoring the ratio
of accepted/rejected samples. A reliable empirical estimation of IAT is difficult in
practice since it requires Markov chains many times longer than the value of IAT.

When an estimation τ̂ of IAT is available, the sampling efficiency can be assessed
using the efficiency criterion proposed in [3] – cost per almost uncorrelated sample
(CpUS). In the case of the DAMH algorithm,

CpUS =

(
Nacc +Nrej

N
+ costG̃

)
τ, (4)
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N is the length of the generated Markov chain, Nacc (Nrej) is the number of accepted
(rejected) samples, and costG̃ is the ratio of the average cost of G̃ evaluations to the
average cost of G evaluations. In the case of the basic MH algorithm, CpUS is given
by IAT (by definition), i.e. CpUS = τ . This is in accordance with formula (4), since
N = Nacc +Nrej and costG̃ = 0 (G̃ is not used).

5.1. Numerical experiments
The first set of numerical experiments examines the efficiency of MH and DAMH

algorithms depending on the variance of the proposal distribution. These experi-
ments can also be used to compare these algorithms in terms of the optimal CpUS.

The proposal pdf q (·|u) is the pdf of

Nn (u;C) = N2

(
u;σ2I

)
where σ ∈ {0.4, 0.6, . . . , 5.0}. For each σ, 20 Markov chains of sufficient length (in
order to obtain a good estimation of IAT) were generated in parallel using MH and
DAMH algorithms. The following methods were considered:

“MH” Basic MH algorithm, CpUS ≈ τ̂ .

“exact” DAMH algorithm with a hypothetical ideal surrogate model. This does
not require any simulation, data obtained using the MH algorithm are
recycled. The surrogate model is assumed to be exact; therefore, there
are no rejections and CpUS estimation is obtained as

CpUS ≈
(
Nacc

N
+ costG̃

)
τ̂ .

“constant” DAMH algorithm with a non-informative surrogate model, G̃ (u) = 0 for
each u. CpUS is calculated using (4), τ is replaced by its estimation τ̂ .

Table 1 shows obtained data required for the calculation of CpUS for chosen values
of σ. In this model problem, the evaluations of G are very cheap; therefore, for
illustrative purposes, the value of costG̃ is chosen artificially. Figure 3a shows the
dependence of CpUS on σ for costG̃ = 0.3. For each algorithm, the optimal CpUS
is marked. However, in typical applications, the value of costG̃ is usually much
lower. Figure 3b shows the corresponding results recalculated for costG̃ = 0.001. As
indicated by these results, the DAMH algorithm requires higher values of σ than the
MH algorithm for higher efficiency. Furthermore, the optimal value of σ increases
with decreasing value of costG̃.
In addition, Figure 3b contains results obtained for more realistic surrogate models:

“poly” DAMH algorithm with a polynomial surrogate model.

“rbf” DAMH algorithm with a RBF surrogate model.
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MH, DAMH “exact” DAMH “constant”
σ 0.4 1.0 2.0 3.0 4.0 5.0 0.4 1.0 2.0 3.0 4.0 5.0

Nacc
N 0.61 0.38 0.20 0.12 0.07 0.05 0.56 0.32 0.16 0.09 0.06 0.04

Nrej
N 1− Nacc

N 0.31 0.36 0.25 0.16 0.11 0.08
τ̂ 91.0 23.6 16.7 21.6 31.3 45.2 100.8 33.9 23.1 29.3 40.9 57.8

Table 1: Data required for the calculation of CpUS

1 2 3 4 5
standard deviation of proposal pdf
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US

costG = 0.3
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(a) Non-negligible surrogate model cost
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costG = 0.001
MH
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constant
poly
rbf

(b) Computationally cheap surrogate model

Figure 3: Comparison of MH and DAMH algorithms in terms of CpUS

Naturally, the values of CpUS cannot be lower than with the “exact” surrogate model.
The lowest achieved CpUS is approximately 16 for MH, 2.5 for “poly” and “rbf”,
and 2.3 for “exact”.

In the previous experiment, standard DAMH algorithm without surrogate model
updates was considered. The second numerical experiment is designed to show the
benefits of surrogate model updates during the sampling process. This will be shown
through monitoring the amount of rejected samples in the DAMH algorithm. These
samples require the evaluation of the (usually computationally expensive) observa-
tional operator G but they are rejected afterwards; therefore, the number of rejected
samples should be as low as possible. In the hypothetical ideal case of the exact
surrogate model, there would be no rejected samples.

For this purpose, the RFB surrogate model is used and the sampling process is
divided into several phases:

MH (100)→ DAMH (long)
5 times︷ ︸︸ ︷

→ DAMH-SMU (100)→ DAMH (long)

The initial phase is the basic MH algorithm with stopping criterion set to 100 eval-
uations of G. Then, there are five DAMH-SMU phases, all of them terminated after
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Figure 4: Benefits of surrogate model updates

100 evaluations of G. After each of the phases, there is a long DAMH phase. These
additional DAMH phases serve only for monitoring the surrogate model quality, they
do not affect the DAMH-SMU phases in any way. Figure 4 shows the ratio of rejected
samples (to the number of all samples) for each DAMH phase corresponding to sur-
rogate models constructed from increasing numbers of snapshots (from 100 to 600).
The figure shows the intended behavior – with increasing quality of the surrogate
model, the ratio of rejected samples decreases.

6. Conclusions

The contribution focused on MCMC methods providing samples from the exact
posterior distribution. Such methods require many evaluations of the observational
operator. It was shown that the use of surrogate models and the DAMH algorithm
can spare a significant number of G evaluations compared to the basic MH algorithm.
Also, it was shown that the surrogate model can be updated during the sampling
process, leading to a further increase in the efficiency of the sampling process.

An advantage of the presented Python framework is that the implemented meth-
ods have general use, the forward model G can be a “black box”. The only require-
ments for the use of this Python package are the specification of the prior distribution
and the observational noise, and the availability of a solver that evaluates the obser-
vational operator G.
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